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INTRODUCTION 
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are 1, 3, 5 and 6, although some of the notions in chapter 2 are necessary.  All Matrix 
and Transformation work is found in chapter 7, and all Complex Numbers in chapter 
10.  Chapter 9 on Induction also covers a section of the IB HL Mathematics syllabus.  
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approach where appropriate (as in the case of Complex Numbers), and by mentioning 
their names, to the many mathematicians who have led the evolution of these ideas 
for the last 500 years or so. 
 
The book was reprinted with modifications in 1994.  Although it has become the 
norm to publish entirely new textbooks as often as possible, then to discard them as 
quickly as possible, the authors believe that the best textbooks are those that are 
continuously revised, corrected, and updated. 
 
The new text-searchable version of the book is now available on the web at  
http://ginestier.hostned.ws  
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students to synthesize the skills and ideas acquired throughout the
course.
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inventories, as well as for the problem supplement.

• The glossary provides definitions of relevant mathematical terms.
• The index lists topics and main concepts for easy reference.

Chapter Organization
• Each chapter begins with a discussion of a problem which can be solved

using the mathematics developed throughout the chapter.
• Teaching material is clearly separated from exercise material.
• Worked examples enhance the understanding of each topic.
• Colour is used to highlight generalizations, rules, and formulas.
• Mathematical terms appear in boldface type when they are first

introduced. All relevant terms are defined in the glossary.
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• Exercise material is carefully sequenced from questions that utilize and

apply knowledge to those that develop critical thinking skills.
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Chapter Summary.
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skills and understanding of the mathematical concepts in the chapter.
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CHAPTER ONE

Introduction to Vectors
In the first seven chapters of this book, you will be studying the algebra of
mathematical objects called vectors.

Vectors are among the most recent inventions in mathematics that you will
encounter in high school. Indeed, vector analysis was only fully developed
at the turn of the 20th century. Unfortunately, very few properties and
theorems in vector analysis are named after their originators. To compensate
for this, a short history of the development of vectors is presented here.

In 1843, the famous Irish mathematician Sir William Hamilton invented
an algebraic system that he thought could model any physical situation. He
called the elements of his algebraic system quaternions. (Complex numbers,
which you will study in chapter 10, form a subset of quaternions.)
Hamilton, with his followers, attempted to apply the theory of quaternions
to many areas in mathematics, and to use these to describe physical
phenomena. A movement was created, which kept quaternion theory in
the forefront of mathematical research until the end of the century.

Around the same time, the German mathematician Hermann Grassmann
published a treatise, called Die Ausdehnungslehre, discussing much more
general extensions of the number system than Hamilton's quaternions.
(These extensions include complex numbers, quaternions, vectors, and
matrices. The general name for these objects is hvpernumbers or holors.)
However, Grassmann's work was considered incomprehensible at the
time of its publication, in 1844.

In 1881, the American mathematician Josiah Willard Gibbs, who was the
first professor of mathematical physics at Yale, used ideas based on the
works of Hamilton and Grassmann to publish a pamphlet called Vector
Anal%'sis. At first, Gibbs' ideas were rejected strongly by the supporters of
quaternions, who maintained that their theory was 'complete', and that
vectors were unpalatable 'hermaphrodites'.

The self-taught English scientist, Oliver Heaviside, like Gibbs, found
quaternions unsatisfactory for the description of many physical
phenomena in mechanics and electromagnetism. Despite his lack of a
formal education beyond the age of 16, he started producing original and
entertaining scientific papers in 1872, at the age of 22. The works that he
published between 1893 and 1912 firmly established the superiority of
vectors over quaternions to explain electromagnetic theory.

Today, vector analysis is an important part of mathematics. Furthermore,
any physicist or engineer must have a firm grasp of the methods and
symbolism of vector analysis.



HAMILTON was portrayed by a contemporary artist with his mace of office as President
of the Royal Academy of Ireland. He was Royal Astronomer of Ireland from 1826 to 1865.
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4 Chapter One

1.1 What is a Vector?

In mathematics, you often deal with numbers. However, many of the
concepts used are not just numbers, or numbers alone. For example, lines,
points, sets, matrices are not numbers.

Vectors are objects that generally need more than one number, to be
defined. In this way, they are similar to points. However, vectors have
other qualities that make them radically different from points. The nature
of vectors should become apparent through the examples of statements
below, as you shall see presently.
Note: Each statement makes use of a single number.

1. She is 60 km out of town.
2. The wind is blowing from the northeast (that is, from bearing 045°).
3. The elevator is stuck on the 12th floor.
4. The temperature in the office is 25°C.
5. The truck drove 5 blocks away from the Post Office.
6. The rocket moved in a straight line away from the earth with a speed of

5000 km/h.

Some of these statements require more information to be complete,
whereas others do tell you everything you want to know with the single
number contained. You will see the idea of a vector emerging from those
statements which appear incomplete.

In 1, you need to know in which direction the 60 km is; thus you need to
know another number, the bearing. (The bearing of a object is its direction
measured clockwise from north in degrees, and expressed as three digits.)

N

L800 00 m 080

town r

The diagram indicates that she is 60 km out of town, on a bearing of 0800.
You need the two numbers, 60 and 080. The 60 km describes her distance
from the town. The two numbers 60 and 080 describe her displacement
from the town.

In 2, you know where the wind is coming from, but you do not know its
speed. The statement is incomplete. You need another number.

N /
Oom 045

/
0" fr

fr fr

The diagram indicates a speed of 15 km/h as well as the bearing 045°.
1 cm represents 10 km/h.
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In 3, you do have complete information.
The single number 12 tells you
exactly where the elevator is.

In 4, you again have enough information.
The single number is 25.

N

In 5, direction must be considered.
After travelling 5 blocks,
the truck may be __________________ __________________
in many different places. '236°

P

If it is at point P as the diagram indicates, it would be more informative to
have, for example, the two numbers 3 and 2. These numbers tell you
respectively how far west and south it is. Or, the two numbers could be the
length of OP = f32 + 22 = and the bearing of OF, namely 2 36°.

In 6, besides the number 5000 representing the speed, one or two other
numbers indicating the direction of travel of the rocket would be needed.

rocket

Observe the following about the preceding examples: Whenever more than
one number was needed, a specific direction was involved, and it was
convenient to draw a line segment with an arrow on it.

These 'directed line segments' represent vectors.

, headortip

tail

• The length of the directed line segment represents the magnitude of the vector.
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In the diagram, the directed line segment CD is twice as long as the
directed line segment AB. If AB represents a magnitude of 5, then CD will
represent a magnitude of 2 x 5 = 10.

A B

C 0

The direction of the line segment, as indicated by the arrow, represents the
direction of the vector.

(Any two parallel lines with arrows pointing the same way are said to
define the same direction.)

Thus,

the magn ca ep
qe s

A directed line segment gives you a picture' of a vector. The vector can
also be represented by two (or more) numbers, as you saw in the examples.
You will be investigating that type of representation further in section 1.3.

N o 1- A T i o N
A vector can be represented by a single letter like this: v. Note that an
arrow is put over the "v"; this is to indicate that v represents a vector.

A similar notation is also used for the vector u represented by the directed
line segment joining a point P to a point Q: you can write u = PQ.

P

Note: In some texts, vectors are represented in bold print, without an
arrow, thus: v.

The length or magnitude of a vector is a real number. (Any real number is
called a scalar, to distinguish it from a vector.) The length of the vector v

is denoted by IVt. The length of the vector PQ is denoted by IPQI.

Note: In some texts, the length of the vector v is represented by v, and the

length of the vector PQ by PQ.

U = P0
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ii I inj'o irai i I'roperli 01 Vec to ic

Take another look at the directed line segments representing the vectors in
the examples 1, 2, 5, and 6 above. In statement 2 about the wind, many
directed line segments were drawn, although there is only one wind'!
This indicated that the wind does not blow on only one point. The
directed line segments all represent the same vector.

Indeed, one of the most important attributes of a vector is that it has
magnitude and direction only. It does not have a particular place. Because a
vector can be represented by any one of a family of directed line segments
having the same length and direction, the following is true.

A vcclor is ('ior\t%Ii('te. A (l!rccIcd i s 'neiii rcj)rcscrlur 1

uii ttIieio tou ttiiii!.

Ti t1iiIdii('ii ail 101

You have studied translations before, and you will be seeing them again in
more detail in chapter 8.

A translation is a transformation in which a figure or an object is moved
to any other position, without altering its shape or size and without turning.
(Instead of saying that an object is translated, you can say that it is shifted
or displaced.)

F-

For example, the triangle ABC is translated to the triangle A'B'C' in the
xy-plane above. The translation is depicted by the vector v.

Indeed, there is a one-to-one correspondence between translations and
vectors. It may help you to understand better that a vector is everywhere if
you imagine translating the entire plane with the vector v, then drawing
the infinite number of equal directed line segments showing the
translation of every point in the plane.

Here, v = AA' = BB' = CC', etc.

y

B

V

A

x
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Thus, any directed line segment with the appropriate magnitude and
direction will represent the vector correctly. This leads to the following
definition of the equality of vectors.

o F F, N , T, N Two vectors are equal if and only if they have the same magnitude and the
same direction.

Alternatively,

two directed line segments that have the same length and the same
direction represent the same vector.

Example GivenAB = u, CDI = lul, PQ = v, with line segment PQ parallel to line
segment AB, as shown.

B

A

Justify the following: a) AB * BA

b) CD*u
c) u*v

Solution a) Although ABI= IBAI, the direction of AB is opposite to the direction
of BA. Therefore the directions are not the same. Thus, AB *BA.

b) CD and u have different directions, thus are not equal.

c) ui * lvi, thatis, u and v have different lengths. Thus u and v are
not equal. •

. M M A A Y Any number of parallel lines with arrows pointing the same way define a
particular direction.

A vector is everywhere; it can be represented by any directed line segment
which has the correct magnitude and direction.

Equal vectors have the same magnitude and direction.

U
V

P
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1.1 Exercises

1. Which of the following should be
represented by vectors?
a) weight
b) frequency

-c) velocity
d) volume (of a solid)
e) volume (of a sound)
f)
g)
h)

- i)
j)

-k)
-

1)

2. Most calculations done on a small scale,
compared to the size of the earth, assume
that the earth is flat.
With that assumption, which of the
following can be considered directions?
a) east c) downtown
b) up d) nextdoor
In reality, knowing the earth to be
approximately spherical, which of the
above are directions?

3. If IvI= 2, state the value of the following.

a) ui b) Iwi c) IABI

U

4. A directed line segment of length 0.5 cm
pointing directly downwards represents a
weight of 10 newtons (N). Use the same
scale to draw directed line segments to
represent the following.
a) Juan is pushing upward with a force of

100 N.
b) Helen is pulling a sled westward with a

force of 80 N.
c) The briefcase weighs 25 N.

6. a) If U = v, does it follow thatiui=ivi?
Explain.

b) IfIui=ivi,doesitfollowthatu=v?
Explain.

7. The vector representing the displacement
from Montréal to Québec can be described
by its magnitude, namely 245 km, and its
bearing, namely 041°. Describe in a similar
manner
a) the displacement from Québec to

Montréal,
b) the displacement from Québec to

St Célestin, given that St Célestin is
exactly halfway between Montréal and
Québec.

8. State, with reasons, whether or not the
following pairs of directed line segments
represent the same vector.

f)\

5. Given that AB = v and PQ = v, what can you
say about the line segments AB and
PQ?

age
temperature change
distance
displacement
capacity
force
acceleration

c)

/4
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9. ABCD is a square. State, with reasons,
whether or not the following statements
are true.
a)
b) AC=DB
c) IACI=IBDI

10. Given that M is the midpoint of segment
PQ,

a) give reasons why QM = MP
b) state any other vector equality from the

diagram.
P

11, In the triangle ABC, P is the midpoint of
AB, and Qis the midpoint of AC. IfAP = u

and AQ = v, express PB and QC in terms of

uandv. A

13. In question 12,ifIPQI= 5,IPSI=4, and
P11 = 3, state the value of each of the
following.
a) IQPI b) IQRI c) IRII

14. OADBECFG is a rectangular solid where
OA = a, OB b, and OC = c. Name all
the other vectors equal to a, b, and c.

15. For each of the following, name and draw
three representatives of the vector depicting
the translation from figure f to figure f',
where A — A', B —* B', etc.
a)

16. In question 15 a), what would the diagram
look like if all the possible representatives
of the translation vector where drawn?

F

C E

A

B

D

B

12. PQRS is a parallelogram whose diagonals
intersect at 1. Assuming all the properties
of a parallelogram, state, where possible,
another vector equal to

a)PQ d)RQ
b)PR e)IQ
c) P1 f) SQ

S R

A0B

As

b)

C,
S

• B'

0'

S
s,

R P
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1.2 Three-dimensional Space
Vectors can be represented by directed line segments. In two dimensions, a
directed line segment drawn on a page represents a vector. In three
dimensions, a vector could be modelled by a pencil held above your desk,
with the point indicating the direction of the vector. To understand
vectors better, you need familiarity with three-dimensional space,
and with diagrams on a plane surface that represent three-dimensional
objects. You must learn how to represent three-dimensional objects
on paper, so as to produce a visual impression of the third dimension.

In two-dimensional coordinate geometry, or 2-space, you are accustomed
to the xy-plane. The figure shows how the point A = (5,2) is represented.

y1
4(5 2)

IxI

The x andy axes are both real number lines. Thus, the set of points in this
plane can be called IJ x o or 2, that is, the set of all ordered pairs of real
numbers.

In three-dimensional coordinate geometry, or 3-space, you use three
mutually perpendicular axes x, y, and z. The xy-plane becomes part of the
xyz-space. By convention, you put the y and z axes on the paper, and you
try to give the impression of the x-axis rising out of the page at right angles
to the paper.

The coordinate system using the triple (x,y,z) is said to form a
right-handed system. Use your right hand as a model. Stretch out the
thumb and the first two fingers. Let the positive x-axis be represented by
your thumb, and the positive y-axis by your first finger. Then the direction
of the positive z-axis will be represented by your second finger.

TiiI
If you followed the same instructions, using your left hand instead of the
right, you would find the z-axis pointing in the opposite direction. That is
why it is important to define the triple (x,y,z) in a foolproof way. If you use
an (x,y,z) system, instead of saying that the point A of the xy-plane has
coordinates (x,y) = (5,2), you say that its coordinates are (x,y,z) = (5,2,0).
The point B, shown on the same diagram, has coordinates (5,2,3).

2 Y

x,
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3-space is not difficult to imagine, since it is all around you. In fact, any
rectangular room, such as your classroom, gives you a good framework for
imagining a 3-space coordinate system.

In the drawing shown, Maria is sitting at her desk, facing the blackboard.
There are windows on the wall to her left. The corners are represented by
the letters as shown. If you choose the point 0 as origin, then you could
represent the x-axis by OA, the y-axis by OC, and the z-axis by 0G.

A

In this figure, the floor OABC is the xy-plane; here, every point has
coordinates (x,y,O).

The blackboard wall OCFG is the yz-plane; points here have coordinates
(O,y,z).

The window wall OADG is the zx-plane; points here have coordinates
(x,O,z).

Once you have specified a unit of measurement along the axes, any point
in the room can now be described by its three coordinates.

For example, suppose you choose the unit as 1 metre. Maria's left hand, L,
is 3 m from the blackboard, 2 m from the window wall, and I m above
the floor. Hence the coordinates of L are (x,y,z) = (3,2,1).

The drawing of the classroom above illustrates the three essential rules of
mathematical 3-dimensional drawing.

lord 3- ililcO' ')IldJ r1hl(I1cnh1LidIdrdv!J1:
do O\Ci ii Iins
I\CCj) 'I al

3. l(cI) I irIICIS l)r1ir

It is especially important to mark right-angles according to these rules.
Observe how some of the right angles at 0, A, B and C are marked in the
figure. Incorrectly drawn right-angle markers can lead to very confusing
3-D drawings. Producing a good drawing is more of a challenge in 3-D
than in 2-D. It requires practice, and sometimes more than one attempt.

F

B
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So far you have only looked at positive values along the axes of your 3-space.
In the diagram above of a classroom, any point in the room could be
specified by its three positive number coordinates.

How can you represent the points outside the room?

If you use negative numbers too, a 3-space coordinate system will allow
you to specify any point in space, in the same way that a 2-space
coordinate system allows you to specify any point in its plane.

The two-dimensional plane is divided by the axes into four quadrants.
Points whose coordinates are all positive are found in only one of these
quadrants.

posdive coordinates Z
in this
quadrant positive coordinates

X inthis Y
octant

x
Three-dimensional space is divided into eight octants (from the Greek
"octo", meaning eight). Points whose coordinates are all positive are
found in only one of these octants.

The set of all points in 3-space, regardless of the signs of their coordinates,
is called R x x R or

Example Plot the pointsA = (2,—3,—4)andB = (—1,5,6)ina 3-space coordinate
system, and draw the segment AB.

Sot u t ion To locate A, proceed 2 units along the positive x-axis, then 3 units parallel
to the negative y-axis, then 4 units parallel to the negative z-axis.

zl

x

B is located in a similar fashion.
The points A and B can be joined to obtain the segment AB. •

Note: From the diagram, it looks as if AR passes through 0. However, this
is not the case; but this does show that you can sometimes have
difficulty in interpreting a 3-dimensional drawing. You must
beware of the pitfalls of a drawing in perspective.

You cannot yet prove that AR does not pass through 0. However, the
methods shown in chapter 5 will allow you to do that.

6
B

2 Y
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u rr! a fl

Look again at your classroom. Without making any specific reference to
the origin' and the taxes', you can discover other important facts about
lines and planes in 3-space.

tO!e

You know that any two distinct points determine a straight line. Similarly,
any three distinct points, not all on a single straight line, determine a plane.

In the classroom drawn below, whenever you name any two points, you
are identifying a unique line containing those two points:
"the line AE" (a diagonal across the back wall).
Whenever you mention three points, you are identifying a unique plane
containing those three points:
"the plane AEB" (the back wall).

F

b'zr :n / .s

You can see that the plane of the ceiling (EFG or DEFG) and the plane of
the floor (OABC) never meet. These are parallel planes.

However, the floor and the front wall (OCFG) do intersect. The points of
the straight line OC lie in both of these planes, as the diagram shows.

G F

Two planes are either parallel, or they intersect in a straight line.

Since any straight line can be the intersection of two planes, the following
converse is true.

Any straight line is contained in an infinite number of planes.

/. .r/

0

C
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s / Ii;iec

In the drawing of the classroom, the lines BC and CF meet at the point C.
Note that they are in the same plane BCFE.

The lines BC and EF are parallel—they never meet.

Although the lines BC and OG never meet, they do not seem to fit the
notion of 'parallelism'. Indeed, they are not parallel, and they do not
intersect. Such lines in space are called skew lines. You can draw skew
lines as follows.

Two distinct parallel lines in 3-space never meet, but are in the same plane.
This is not the case for BC and 0G. so they are skew. On the other hand,
the lines BC and EF, which also never meet, are in the same plane BCFE, so
they are parallel.
Given two distinct lines, L1 and L2, in 3-space, there are three possibilities.

1. L1, L2 meet; therefore they define a plane. They are coplanar.
2. L1, L2 are parallel; therefore they do not meet, but they are coplanar.
3. L1, L2 are skew; they do not meet, and they are not coplanar.

Iiit'i'Iiii.s / 1i;ie ti/Ill Pl,i,i'
In the drawing of the classroom, the line CF meets the floor OABC at the
point C.

In general, a line intersects a plane in a single point. The diagram shows
the line L crossing the plane U at the point A. (The dotted line indicates
that part of L which is behind U.) A line perpendicular to a plane is
perpendicular to all the lines in that plane.

Some lines and planes never meet. For example, the lines EF, ED, DF never
meet the plane of the floor. In these cases, the line is said to be parallel to
the plane.

line

7
. M M A A V

Three distinct points, not on the same straight line, determine a plane.
Two planes are either parallel, or intersect in a straight line.
Two lines which are neither parallel nor intersecting are skew.
A line is either parallel to a plane, contained in the plane, or intersects the
plane in a single point.
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ii. Exercises

(The diagram is to be used to answer
questions 1-4.)

w V

RB

1. Above is a drawing of a rectangular box
PQRSWTUV. A is the midpoint of segment
PT, and B is the midpoint of segment RV.
State two lines parallel to each of the
following.
a)TW b)WS c)PR

2. State two lines perpendicular to each of the
following.
a)TW b)WS c)AB

3. State whether the following pairs of lines
are parallel, intersecting, or skew.
a) TQandWR d) PVandQS
b) TQandSV e) PVandQW
c) PWandQW f) ABandSQ

4. Copy the above drawing and join the line
AB. Does the line AB really pass through S?
What could you do to enhance the
three-dimensional drawing, indicating
precisely whether or not S is on the line
AB?

5. ABCDT isa right square pyramid. It is called
"square" because it has a square base
ABCD, and "right" because its apex, T, is
vertically above the centre of the base.

A B

a) Draw the pyramid, and locate the centre
O of its base (the intersection of the
diagonals AC and DB).

b) Join TO, and mark the right angles TOA
and TOD.

c) Given that M is the midpoint of BC,
join OM, and MT. Mark the right angle
in the triangle TOM.

6. In question 5, if AB = 6 cm, and TO = 4 cm,
use the theorem of Pythagoras to calculate
the exact value of the lengths of TM and TB.

7. In question 5, name the following.
a) two skew lines
b) the three planes intersecting at point B

8. Plot the following points in l.

A(1,1,1)
B(2,O,O)
C(O,3,O)
D(O,O,—1)

E(2,O,—3)
F(O,—2,5)
G(—3,—3,—3)

H(1,2,—5)
J(—1,2,5)

9. III is divided into eight octants. State the
signs of the coordinates (x,y,z) of a point in
each octant.

10. State the condition that must be satisfied by
the coordinates (x,y,z) of a point
positioned as follows.
a) on the x-axis
b) on the y-axis
c) on the z-axis

11. State the condition that must be satisfied by
the coordinates (x,y,z) of a point
positioned as follows.
a) in the xy-plane
b) in the yz-plane
c) in the zx-plane

12. How would you describe the set of points
P(x,y,z), given that x = y?
Draw this set in UI.

T
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In Searci of Trigonometry as an Aid
To Visualization of 3-Space

The use of trigonometry to solve triangles that occur in three-dimensional
situations should help you to visualize and familiarize yourself with
3-space concepts. To solve triangles that are not right-angled, you can use
the sine law and the cosine law. You will find these described on
page 542.

Examine the following examples and their diagrams very carefully. The
examples should help you to grasp some intuitive notions about angles in
3-space.

Given the rectangular box shown, find, correct to the nearest degree, the
angle between
a) the lines BG and BF
b) the lines BG and BE
c) the line BH and the plane ABFE
d) the planes ABGH and ABFE.

Since F is a right angle, you can apply trigonometry to the right
GF 2triangle BFG. The angle required is 0where tan0 = — = — = 0.4
BF 5

hence 0 22°.
b) The angle between BG and BE is in triangle BGE which is not a right

triangle. You can use the cosine law to find , ifyou can determine the
sides BG, BE and GE.

BG is the hypotenuse of the triangle you used in part a), that is, triangle
BFG, thus BG2 = BF2 + PG2 = 52+ 22 = 29, so BG =

Also, the triangle BFE (on the 'floor') is right-angled at F, as is the triangle
EFG (on the 'front wall'). You can find the lengths BE and EG in the same
way.
BE2=BF2+FE2=52+42=41, soBE='fii
GE2 = GF2 + FE2 = 22 + 42 = 20, so GE =

Finally, you can apply the cosine law to the triangle BGE to find the angle .
GE2 = BE2 + BG2 — (2)(BE)(BG)cos

2O41+29—2j'Jcosd
(41 + 29 — 20)hence cosç= =0.725 018...,2ViVi

giving = 44°.

Example 1

Solution a)

G

2 cm

F

A 4 cm
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c) If you hold your pencil against the paper you are writing on, you will
notice that there are many different angles between the pencil and the
paper. Similarly, there are many different possible angles between BH
and the 'floor' ABFE. It depends on which line from B you choose in
the floor!

The angle between a line and a plane means the smallest possible angle
between the line and the plane. This angle will be found between the line
and its perpendicular projection on the plane. In our example, it is the
angle y between BH and BE. Note that BEH is a right triangle. Thus

tany==—-—=O.3123..., soy17°.BE Jjj
G

2 cm

F

5 cm

(In the activities you will be calculating the angle between BH and BF, and
the angle between BH and BA. You will find that both of these are greater
than 17°.)

d) The angle between two planes H and fl can be found as follows.
1 Find the line of intersection, L, of the two planes.
2 Choose a point on L, that you will use to find

a line perpendicular to L, in H, and a line perpendicular to L, in fl2.
3 The angle between those two lines is the required angle.

point chosen

In Example 1, the line of intersection of the planes is AR. If you choose B
as the point on this line, BF and BG are lines which obey the above
criteria. Thus the angle required is 0, calculated in a) as 22°. U

A 4 cm

L
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Example 2 The CN tower in Toronto is 553 m high. A person in a boat on
Lake Ontario, at a point B due south of the tower, observes the top T of the
tower at an angle of elevation of 8°. At the same time, another person,
at a point C on a bearing 095° from the tower, observes the
angle of elevation of T to be 11°.

Calculate the distance BC between the two people, correct to 3 significant
figures.

Solutioii Your diagram must indicate bearings at ground level, as well as a vertical
tower. Look carefully at the features of the diagram.

T

North

South

East

Denote the distance of the first person from the base of the tower by x, and
the distance of the second person from the base of the tower by y.

From right triangles BAT and CAT respectively,
553 ° 553tan8 =—andtanll
x y

553 553thusx= =3935m,andy= =2945m.0.1405... 0.1943...
Note: The distances x andy are written here to 4 significant digits for

clarity of reading. You should retain the actual values using the full
accuracy of your calculator for subsequent use of x andy.

You can now find the distance d between the people by using
the cosine law in the surface triangle BAC. Note that the angle opposite d is
180° — 95° = 85°.

d2 = x2 + y2 — (2)(x)(y) cos 85°
= 21 625 032.67

so d 4650

Thus the distance between the two people is about 4650 m. U

M M A R
The angle between a line and a plane is the angle between the line and its
perpendicular projection on the plane.

The angle between two planes IT and fl2 is the angle between a line in H1
and a line in H2, each line chosen to be perpendicular to the
line of intersection of the planes.
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Activities

0

A

2 cm

Give all angles correct to nearest degree, and all lengths correct to
3 significant digits.

1. Given the rectangular box shown, where M is the midpoint of AE,
find the following.
a) the angle a between the lines BH and BF
b) the angle /3 between the lines BH and BA
c) the angle y between the lines BH and BM

Note: All your answers should be greater than 170,which is the value of
the angle between BH and BE, that is, the angle between BH and the
plane ABFE.

2. Given a right pyramid ABCDT, on a square base ABCD, with
AB = 6 cm, and height TO = 4 cm, calculate the following.
a) the angle TAB
b) the angle 0 between a slant edge (such as TB) and the base ABCD
c) the angle between a slant face (such as TBC) and the base ABCD.

3. A plane sheet of plywood measuring 1.2 m by 2.4 m is inclined with
its shorter edge at an angle of 300 to the horizontal.
a) How high is the top edge of the plywood?
b) Calculate the angle between a diagonal of the sheet of plywood

and the horizontal.

4. A woman on a frozen lake observes the top of a radio tower, due
north of her, at an angle of elevation of 21°. She then skis for 500 m
on a bearing 06 50, and finds herself due east of the tower. Calculate
the following.
a) the height of the radio tower
b) the angle of elevation of the top of the tower from the second

point of observation

5. A flagpole is placed at one corner of a courtyard 25 m long and
20 m wide. The angle of elevation of the top of the flagpole from the
opposite corner of the courtyard is 18°. Calculate the height of the
flagpole, and the angles of elevation of the top of the flagpole from the
other two corners of the courtyard.

6. The angles of elevation of the top T of a vertical post TO are observed
to be a and/I from points A and B due west and due north of the post.
If the distance AB =d, show that the height of the post is

d
'I (cot2 a + cot2 /1)

4 cm
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1.3 Vectors as Ordered Pairs or Triples

A point in a plane coordinate system can be represented by an ordered pair
of numbers. In the diagram the point A has coordinates (5,2).

point A • A

1 1

01 X 01 x
Draw the vector OA.
This vector, represented by a directed line segment joining the origin 0 to
a point A, is called the position vector of point A. Recall from section 1.1
that vectors can also be represented by two (or more) numbers; here, you
could represent vector OA by the same ordered pair, (5,2), as point A. But
beware: it is very important to distinguish between vectors and points.
When writing vectors as ordered pairs, an arrow notation will therefore
be used, as follows: vector0A = (5,2), as distinct from the point A = (5,2).
The entries for the vector OA are called components.
The entries for the point A are called coordinates.

In some texts, vectors as ordered pairs are written as columns, in order to

be distinguished from points, as follows: OA =
[5]

Indeed, you will be using this notation for vectors in chapters 7 and 8.

Other texts use square brackets for vectors as ordered pairs. Yet others
make no distinction between representing points or vectors. In these texts,
the reader must be vigilant as to which is which, noting the distinction
from the context.

Unfortunately, there is no standard notation. As a student of mathematics,
you should familiarize yourself with the different representations in use.

The vector v, equal to the position vector OA, can be drawn wherever you
like. In other words, it can be represented by any directed line segment
parallel to OA, pointing the same way as OA, and congruent to OA.

v= OA = CD=EF=GH=AB = (5,2)

G
F

B

tad Ljfl 1 V

E
v 0 1

c
In each of these cases, the run from the tail of the vector to the tip is 5, and
the corresponding rise is 2.
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Because vectors can be drawn anywhere, you can draw a vector expressed
as an ordered pair using grid lines only, without an x-axis, a y-axis, or an
origin. The diagram shows the following vectors:
a = (3,2)
b = (—2,4)
c = (3,0)

d=(O,—2) _____
e = (—3,—4)

A corresponding result holds in 3-space. Draw the xy-plane in perspective,
with the x-axis coming out of the page, at right angles to it. Again, draw
the vector v = OA. z

Because a vector can be drawn where you want, as long as it has the
correct magnitude and direction, the vector v can be represented by
directed line segments hovering above or below the plane, as you can see
from the second diagram.

If you now think of A as a point in 3-space, you would call A by its three
coordinates (x,y,z), thus: A = (5,2,0).

The vector OA, which is the position vector of the point A, would be
represented by an arrowed ordered triple, thus: OA = (5,2,0)

The coordinates of point P(2,3,—4) in the figure are the numbers 2, 3, and —4.

The components of vector OP = (2,3,—4) are also the numbers 2, 3 and —4.

x

In general, the point P(a,b,c), defined in a 3-space coordinate system with
origin 0, has position vector OP = (a,b,c,).

Similarly, the point P(a,b), defined ma 2-space coordinate system with
origin 0, has position vector OP = (a,b).

The abbreviations OP = p. OQ = q etc., are often used in problems that
involve the position vectors of different points.

e

y

zl
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The set of two-dimensional vectors, or vectors in 2-space, will be
designated by v2.

The set of three-dimensional vectors, or vectors in 3-space, will be
designated by V3.

I:/iii!,! 0/ l'OLlo;.s

You saw in section 1.1 that vectors are equal if and only if they have the
same magnitude and direction. Thus, two equal vectors can be represented
by a directed line segment from the origin to the same point, and hence by
the same ordered pair. This leads to the following.

In V2, (a,b) = (r,s) if and only if a = rand b = s

Similarly, in V3,
(a,b,c) = (r,s,t) if and only if a = r and b = s and c =

/ntjtIi o/ ti r
The length of a vector is defined as the length of a directed line segment
which represents the vector.

Note: The length of a vector is sometimes called its "magnitude" or its
"norm."

First, look at an example in 2-space.

Example 1 Find the length of the vector v = (2,3).

Solution v can be represented by OF, the position vector of the point P(2,3).

You need to find IOP = the length of line segment OF.
By using the theorem of Pythagoras, p
lv2=IOP2=22+32so /
IV = OP = \122 32= / 3

02
In general, in V2.

ifv=(x,y),thenIvI=Jx2+y2

x

A similar result is true for the length of a vector in 3-space.



ZI Chapter One

Example 2 Find the length of the vector; = (2,3,4).

y

x

Solution p can be represented by OP. the position vector of the point P(2,3,4).

In the diagram, OA = CB = 2, OC =AB = 3, and OD = BP = 4. You need to

find p = IOP length of segment OP.

From the right triangle OBP, OP2 = 0B2 + BP2

but from the right triangle OAB, 0B2 = 0A2 + AB2
0P2=0A2+AB2+BP2

and since BP = OD, AB = OC, then OP = 0A2 + 0C2 + 0D2
or IOPf=2j-32+42=29
thus IpI=IOPI=V. I

In general, if OP = (x,y,z), then OA = x, OB = y, and OC =z; you have the
following result in V3.

If v = (x,y,z), then vi = + y2 +

IfP is a point in a coordinate system of origin 0, then OP is called the
position vector of P.

in 2-space in 3-space

If P = (a,b), then OP = (a,b) If P = (a,b,c,), then OP = (a,b,c)

The length of v = (x,y) is The length of v = (x,y,z) isivi2 ivI=x2+y2+z2

3
B

SUMMARY
x

Vectors (a,b) = (r,s) if and only if
the numbers a = r and b = s

Vectors (a,b,c,) = (r,s,t) if and only if
the numbers a = r, b = s and c = t
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rcises

1. Write the vectors a, b, c, d, s, t,
u, v, w represented below, as ordered
pairs.

2. On a grid, draw six directed line segments
representing the vector u = (6,2).

3. Repeat question 2 for the vector
V = (—3,—5).

4. Use a grid to draw the vectors a = (3,4),
b = (4,—i), c = (—2,5), and d = (—1,—i).

5. Calculate the lengths of the vectors a, b,
c, and d of question 4.

6. a) Given the point P(4,—3), draw the
position vector OP.

b) If OQ = (—1,7), state the coordinates of
the point Q.

c) If OR = (0,2,—2), state the coordinates
of the point R.

7. In a 3-space coordinate system, draw the

position vector p of the point P(2,3,5).

8. a) On a grid, draw points A, B, and C such
that AB = (4,3) and BC = (I,—5).

b) Use your drawing to express AC as an
ordered pair.

c) Conjecture a rule by which the
components of AC can be obtained
from the components of AB and of BC.

9. ApointP, whose position vector is
OP = (1,2), is translated to position F'
according to the vector v = (4,1). What are
the coordinates of P'?

10. Show that the length of v = , — is\5 5/
1 unit. (v is known as a unit vector.)

ii Given that OP = (2,x) and that IOPI = 5
calculate x.

12. Given that u (2,3) and v = (n,-!),
calculate the following.

a) u
b) n, given that ju =

1 [he position vector of P is OP = (x,y,z).
Show that IOPI= Vx2 + y2 + z2.

xy
14. In a certain city the blocks are 100 m

square. You walk, from a point 0, 4 blocks
east, then 3 blocks north, to arrive at a
point P.
a) How far have you walked?
b) What is the (direct) distance

from 0 to F?

1 '. The vectors p = (3,x) and q = (w,—6) are
equal. State the values of x and w.

16. The vectors a = (2,—1,k) and b = (m,n,7)
are equal. State the values of k, m and n.

17. u = (2h—k,—3), and v = (4,h + k). Given
that u = v, calculate the values of h and k.

18. Use a 2-space coordinate system to find the

vector PQ given the following points.
a) P(0,0), Q(3,2), d) P(3,2), Q(—1,2)
b) P(3,2), Q(0,0), e) P(5,—2), Q(—I,---3)
c) P(3,2), Q(4,7) f) P(a,b), Q(c,d)
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1.4 Vector Addition

You know that vectors can be represented by directed line segments, or by
ordered pairs or ordered triples of numbers. Vectors will be more useful to
you once you can combine them according to certain operations.

The first operation you will learn will be vector addition. Recall that there
is a one-to-one correspondence between translations and vectors.

To find a definition for the addition of two vectors, consider two
translations, represented by vectors u and v, performed in succession.
(This is sometimes called the composition of two translations.)

/2

Recall that a vector can be drawn anywhere. To find a vector that
represents the result of performing these translations in succession, let

u=OPandv=PQ.Then
the translation from 0 to P (vector u = OF)
followed by
the translation from P to Q (vector v PQ)
gives
a "resultant" translation from 0 to Q (vector OQ).

This idea suggests the following definition of vector addition for vectors
represented by directed line segments.

V
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D E F / N I T i o N Given any three points 0, F, and Q: OP + PQ = OQ

This definition is also called the triangle law of vector addition.

This law states that, if two vectors are represented by directed line
segments such that the tail of the second is the same point as the tip of the
first, then the directed line segment from the tail of the first to the tip of
the second represents their vector sum.

Note 1 Because a triangle is always in a plane, the triangle law works in
/3 as well.

2 If you consider the vectors as displacements, then the resultant or
sum vector is the short cut from the initial point
to the final destination.

Example 1 Given the vectors u andy shown, draw a directed line segment
representing the vector u + v.

You must draw at least one of the vectors again, so that the tip of u is
coincident with the tail of v. (It does not matter where you draw them).

.
The following example will suggest a rule for vector addition for vectors
represented by ordered pairs.
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Example 2 Given the vectors u = (2,3) and v = (5,—4).

a) Use a grid to drawu and u wherever you wish; then draw them again
so that OP= uandPQ = v.

b) Express OQ = u + v as an ordered pair.
c) State an algebraic relationship among u, v, and u + v.

b) OQ=u+v=(7,—1) __________
c) u+v=(2,3)+(5,—4)=(2+5,3+(—4))(7,—1). U
It appears that the resultant vector can be obtained in component form by
adding the first components of u and v, then the second components of
u and v.

This leads to the following definition of vector addition in U2, for vectors
represented by ordered pairs.

DEE/NI TION (a,b)+(p,q)=(a+p,b+q)
Similarly, the definition of vector addition in V3for vectors in component
form is as follows.

DEFINITION (a,b,c)+(p,q,r)=(a+p,b+q,c+r)

Example 3 Given p = (—5,6), q = (4,3), andu = (2,3,4), w = (—1,1,5) find

a) p+q, b) u+w.

Si1iil The resultant displacement is given byu + v

u + v = (4,7) + (1,—6) = (4 + 1,7 — 6) = (5,1). U

t ILltiOfl a)

ilOti a) p + q = (—5,6) + (4,3)
= (—5 + 4,6 + 3)
= (—1,9)

b) u+w=(2,3,4)+(—1,1,5)

=(2+(—1),3 + 1,4 + 5)
= (1,4,9) U

Example 4 An object is displaced according to the vector U = (4,7), then according to
the vector v = (l,—6). What is the resultant displacement of the object?
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Example 5 Given u = (2,—1,—6), V = (2,5,x), and u + v = (y,4,—3), calculate the
values of x andy.

Solution u+v=(2,—1,—6)J-(2,5,x)=(2+2,—1+5,—6+x)=(4,4,—6+x)
but v=
so (4,4,—6 + x) = (y,4,—3).

Thus, from the definition of equality of vectors,
y=4,and—6+x=—3sothatx=3. •
Note: The calculation of the middle component, 4, confirms that the

arithmetic is correct.

A mathematical object that can be represented by directed line segments,
or by ordered pairs or ordered triples of numbers, is a vector provided that
it obeys the laws of addition defined above.

Such a vector is the ordered triple used to describe the monthly sales of a
realtor, for example,
v = (h,c,b), where h = number of houses sold

c = number of condominiums sold
b = number of business locations sold.

Example 6 Suppose a real estate agent, Jessie LaRue, made the following sales in the
winter of 1989:

in January, j = (2,1,1,),

in February,f= (1,3,0).
She then left town for her annual holiday for the next three months, so she
made no further sales. Indicate, by means of a vector, how many
properties of each type she sold during the winter period.

0 Ofl w=(2+1,1+3,1+O)=(3,4,1)
Thus she sold 3 houses, 4 condominiums and 1 business location. U

. M M A R
Component laws of vector addition:
mV2 mV3

(a,b) + (p,q) = (a + p,b + q) (a,b,c) + (p,q,r) = (a + p,b + q,c + r)

Geometric law of vector addition (the triangle law):
OP + PQ= OQ

Vectors are mathematical objects that may be represented either

by directed line segments that combine according to the triangle law of
addition, or

by ordered pairs or ordered triples of numbers, that combine by the
addition of components.
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1.4 Exercises

1. Given the parallelogram PQRS, use the
triangle law of vector addition to simplify

a) PQ+QR, b) PS+SR.

2. In the parallelogram PQRS, PQ = SR = u,
and PS = QR = v. What can you conclude
about the sums u + v and v + U?

3. Given the regular hexagon PQRSTU shown,
where PQ = a, QR = b, and RS = c,find
the following vectors in terms of a, b,
and c.

a) TS
b) UT

c) PR
d) US
e) PT
f) QS

5. In question 4, if AB = u,AE = v, and
AD = w, express each vector sum
of parts a)—d) in terms of u, v, w.

6. Redraw the following vectors appropriately
to find a directed line segment representing
their sum.

7. If a = (3,5), Li = (2,—7), c = (5,—2), show
that a +b = cby drawing the three
vectors a, b, c on a grid.

8. An object is displaced in a plane according
to the vector u = (—1,4), then displaced
again according to the vector v = (—1,—4).
a) Calculate the resultant displacement,

w.

b) Draw the three displacements u, v, w,
on a grid.

T S

U

C

R

b

P —Q
'9

a) //
b)

+

4. A parallelepiped is a prism whose opposite
sides are congruent parallelograms. Given
the parallelepiped shown, find a single
vector equal to each of the following.

a) AB+BC d) AB+(CG+FG)
b) AB+FG e) DH+CB
c) CG+FG f) HC+BF

0H

D

F

A B
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11. What conclusion can you draw from parts
c) and d) of questions 9 and 10?

12. Given that u = (2,5) and v = (4,3),
a) calculateu + v as an ordered pair
b) drawu, v,andu + vona grid
c) calculatelul,IvI,andlu + 1'.

d) Doeslul+IvI=Iu + vi? Explain.

13. Repeat question 12 for u = (—1,3),
v = (—2,6). Do you get the same answer for
part d)? Explain.

14. Given u = (2,5), v = (4,3), w (1,—2),
p = u + v, andq =v + w
a) calculate p + w as an ordered pair
b) calculate u + q as an ordered pair.

What conclusion can you draw from your
results?

15. Given u = (3,p,q), v = (—1,p,7), and
u + v = (2,8,—2), find the values of p
and q.

16. The realtor Jessie LaRue, back in town for

July and August, notes j= (1,2,1)
according to the number of houses,
condominiums, and business locations she
sold during July. Her summer sales, for the
two months July and August, are
represented by the vector s = (2,2,1). Write
the vector a, representing her sales in
August, as an ordered triple.

17. A skater at a point A on a frozen lake goes
240 m towards the north, then 100 m
towards the east to arrive at point B. Draw
a vector diagram to represent the resultant
displacement AB. What is the magnitude of
this displacement? What is the bearing of B
from A?

18. A particle is displaced 5 cm along bearing
295°, then 8 cm along bearing 190°. Find
the magnitude, correct to 2 decimal places,
and direction of the resultant displacement.

19. Two vectors p and q are drawn so that
they have a common tail and form an angle
of 110°. IfIpi= 7,IqI= 3, calculate the
following.
a) p + q, correct to 3 significant digits
b) the angle 0 between p and (p + q), to

thenearest degree

20. Given the rectangular box shown, where
IABI = 12, BFI = 4, and IFGI = 3,calculate
the following.
a) AB+BFI
b) I(AB+BF)+FGI
c) Show that

lAB +BFi'IABi+IBFi

21. The relationship in question 20 part c) is
known as the triangle inequality. Why?
There is a special case of three points A, B
and F which make the equality hold true.
How then are the points A, B, and F
positioned?

9. Given p = (2,3),q = (—1,5), r = (3,—4),
find the following vector sums.

a) p+q c) q+r
b) p+r d) r+q

10. Given u = (0,1,—2), v = (3,—3,7),
w = (—4,—5, 1), find the following vector
sums.
a) u1-v c) v+w
b) u+w d) w+v

H

D

A

G

3

F

12 B
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Between Pigeons and Problem Solving

Ifsix people are in a room, prove that at least three of them are mutual
acquaintances or at least three are mutual strangers.

What does this problem have to do with pigeons? There is a very simple
idea in discrete mathematics called "the pigeonhole principle" that will
enable you to solve this problem.

In its simplest form the pigeonhole principle is stated as follows.

If m pigeons are placed in k pigeonholes and m > k, then at least one of the
holes must contain at least two pigeons.

To understand the principle, consider the case of m = 3 and k = 2, that is,
three pigeons and two pigeon holes.

The diagrams show all possible situations.
A B A B A B A BH 1

— L±

At least two pigeons are in one of the holes in each of the four cases.

You can also see the truth of the principle for three pigeons and two
pigeonholes in another way.

Suppose you try to distribute the pigeons as evenly as possible in an
attempt to avoid two pigeons in one hole. Then you would put one pigeon
in A and a second pigeon in B. This still leaves one pigeon to be
pigeonholed, so that one of A or B must contain two pigeons.

The following problems can be solved using the pigeonhole principle.

\ou have I (I identical red sor ks dud 12 ideiitkal yellow socks i U driwer.
Ii is so (ldrk hdt you cannot see. How many socks must YOU ren1o C I mm
the d rawer so that you will have at least two socks ol the same colour?

Think of the colours as pigeonholes and the socks as pigeons. With only
two pigeonholes (colours), if you select three pigeons (socks) you must
have at least two pigeons in the same hole. This means you must have two
socks of the same colour.

\ou select, at randuni, 5 pointS in het'—plaiie whose coorditiates are
integers. The 1)01115 ca i he joined li a total of 10 line segments. Prove that
at least one ol the line segments . oiitai ns a third point whose coordinates
are in teiers.

The coordinates of the 5 points can be separated into 4 classes as follows.
(even, even) (even, odd) (odd, even) (odd, odd)
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Since there are 5 points (pigeons) and 4 classes (pigeonholes), at least two
points must be in the same class. If these points are (a,b) and (c,d), then

(a+b c+d\
their midpoint —-—, —) must have coordinates that are Jntegers. This

is true because a and b will be both even or both odd. Also c and d will be
both even or both odd. Since the sum of two odd numbers and the sum of

a+b c+d
two even numbers are each divisible evenly by two, both and

will be integers.

A________
0.5cm

B
1cm

Divide the square into four congruent squares (pigeonholes). Because of
the pigeonhole principle at least two of the points (pigeons) must be
located in the same small square, say in the top left one. Now the furthest
apart these two points can be is at the corners of a diagonal, say at A and B.
But by the Pythagorean theorem, AB = + Ø52 = J0.25 + 0.25

Hence there must be at least two points that are at most cm apart.

You may wish to try these problems.

1. Five points are randomly selected in an equilateral triangle whose
sides are 2 cm. Prove that at least two of the points are at most a
distance 1 cm apart.

2. 26 distinct numbers are selected from among the first 50 natural
numbers. Prove that at least two of these numbers must be consecutive.

3. How many playing cards must you draw from a deck of 52 playing
cards to be certain that at least two cards are from the same Suit?

4. How many students must be in your school to be certain that at least
two of them have the same birthday?

The following problems, the second of which is the problem at the
beginning, need the generalized pigeonhole principle for their solution.
This is stated as follows.

If more than sn pigeons are placed in n pigeonholes, then at least one hole
must contain at least s + 1 pigeons.

5. How many students must be in your school to be certain that at least
four of them have the same birthday?

6. If six people are in a room, prove that at least three of them are mutual
acquaintances or at least three are mutual strangers.
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1.5 Properties of Vector Addition

Sulu and Mary met downtown and decided to shop separately before
having lunch together. Mary walked 3 blocks south, then 4 blocks east.
Sulu walked 4 blocks east, then 3 blocks south. Did they then arrive at the
same spot to meet for lunch?

Vector addition has two important properties which you will discover in
the examples that follow.

Example 1 Given that u = (2,3) and v = (5,—i), find the following.
a) u + v, geometrically as a directed line segment, and algebraically as

an ordered pair
b) v + u, also geometrically and algebraically.
c) Draw conclusions from your results.

c )Iution geometric algebraic
A

a) /'TTL. B u+v=(2,3)+(5,—1)

b) ___
(ii) Q =(5+2—i+3)=(72)

c)OB=PR=(7,2),u+v=v+u u+v=v+u=(7,2) U
Thus, you can add two vectors in either order and obtain the same
resultant vector.

This holds true for any vectors. By virtue of the diagram below (diagrams
of Example i combined) the triangle law of vector addition
is sometimes known as the parallelogram law of vector addition.

VB

Given any vectors u and v, the following property holds.

1! - t ii
Vector addition is thus said to be commutative.

Note: The triangle law also shows that commutativity holds, as follows.
u + v = OA + AB = OB

and
(Observe that this can be checked on the above diagram.)
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Example 2 Given u = (3,2), v = (5,—i), and w = (1,—i), find the following.

a) [U + ;] + w, geometrically as a directed line segment, and
algebraically as an ordered pair

b) u + [v + w], also geometrically and algebraically.
c) Draw conclusions from your results.

Solution geometric

U + [v + w]
= (3,2) + [(5 + 1,—i—i)]
= (3,2) + (6,—2)
= (9,0)

[u + vJ + w = u + [v + wJ

The following property holds true for any vectors u, V. and w.

(u ) - ti - u it)
Vector addition is thus said to be associative.

i/it' 4 .csoc,at, i-' Pipt'r1v '/ Ve!'r Adduiu

Given any three vectors u, v and w, draw the vectors so that u =OF,

v = PQ, and w = QR. The triangle law shows that associativity holds as
follows.

(OP+PQ)+QR=OQ+QR=OR
and OP+(FQ+QR)=OP+PR=OR
(Observe that this can be checked on the above diagram.)
Since the operation of vector addition is associative, you do not need the
brackets. You have a perfectly clear meaning for u + v + w,

namely, u + v + w = (u + v) + w.
This means the additions are performed in order one after the other.
Similarly, p + q + r + s + ... also indicates that the additions are to be
performed in order, one after the other.

algebraic

[u + v] + w
= [(3 + 5,2 — 1)] + (i,—1)
= (8,1) + (1,—i)
= (9,0)

a)

b)

c)

[u + v] + w = OR

(LI V W

+ [v + w] = OR

Li V W

[u + v] + w = u + [v + w] U
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Thus, you can add any number of vectors (as long as they have the same
dimensions), as follows.

Geometrically, use the triangle law repeatedly, with each vector's tip joined
to the tail of the next one, as shown in the diagrams below. This law, for
adding more than two vectors represented by directed line segments, is
known as the polygon law of vector addition.

S

Algebraically, add the respective components, for example,
(3,5) + (4,—6) + (—2,8) = (3 + 4 — 2,5 —6 + 8) = (5,7)

The polygon law of vector addition can also be expressed as follows.

For any points A, B, C, D, E: AB + BC + CD + DE = AE

Note: The polygon is not necessarily in one plane; a polygon that does not
lie in a plane is known as a skew polygon.

Example 3 Given the vectors u = (5,2,0), v = (0,6,0), w = (0,0,—4),

a) findu+v+w
b) show a geometrical interpretation of this sum by drawing the tail of

the vector u at the origin 0 of a 3-space coordinate system.

I ion a) W _____ b) Using the polygon law,
=(5,2,0) + (0,6,0) + (0,0,—4) + =
=(5+0+0,2+6+0,0+0—4)
= (5,8,—4)

This is a good example of a skew polygon (OPQR is a skew quadrilateral). U

SUMMARY Vector addition is commutative: u + v = V + U

Vector addition is associative: (u + v) + w = u + (v + w)
(thus brackets are not required for multiple additions.)

V

w

U

zj
2

5

y

x
Q

' w
R
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1. Name a single vector equal to each of the
following sums.
a) u+v

D

2. Repeat question I for the following sums.

a) p+q+r+s+t
b) p+q
c) p+q+r
d) p+q+r+s
e) q+p AB

3. a) State the commutative law for vector
addition.

b) Use any two vectors u and v
to illustrate geometrically that
vector addition is commutative.

c) Use the vectors u = (—3,5) and
v = (4,1) to illustrate algebraically that
vector addition is commutative.

4. a) State the associative law for vector
addition.

b) Useanythreevectorsu, vandw
to illustrate geometrically that
vector addition is associative.

c) Usethevectorsu = (—3,5), v= (4,1),
and w = (2,—7)
to illustrate algebraically that
vector addition is associative.

5. State which of the four usual operations
in R, namely addition, multiplication,
subtraction and division, are commutative
and associative.
If an operation does not have either the
commutative property or the associative
property, give an example to demonstrate
this. (Such examples, used to prove that a
property does not hold true, are known as
counterexamples. One counterexample is
sufficient for disproof.)

6. a) State whether or not the operation of
exponentiation is associative in IlL That
is, state whether or not it is true that,
for any three real numbers a, b, c,
[ahJc =

b) If exponentiation is associative, prove
it. If it is not, disprove it by using a
counterexample.

7. Simplify the following.
a) 4P+PC
b) YZ+XY

8. Given any five points in space P, Q, R, S. T,

a) explainwhyPQ+QR+RS+ST=PT
b) simplifyPQ+QR+RS+ST+TP.
c) What is the magnitude of your answer

to b)?
d) Are there any special cases in which

any of the answers to a) or b) do not
hold true?

9. Given the rectangular box shown, calculate
the following
a) IAB+BF+FG
b) IBF+FE+EH
c) BF+FG+GHI0
d) AB+BF+FE

A

10. Find u + v + w in the following cases.
a) u = (2,—5), v = (1,3), w = (—6,1),

b) u = (0,0,3), v = (4,4,—i), w = (1,1,—2),

11. a) Show a geometric interpretation of
each of the sums in question 10.

b) Which of the above cases, if any, give
an example of a skew polygon?

12. Given the skew quadrilateral OPQR where
OP= (5,2,0),PQ = (0,6,0), and
QR =(0,O,—4), calculate

a) OQI,
b) IORI,
c) the angle QOR.

U

c) AD+DC+CB
d) QR+RQ

G
2
F
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1.6 Vector Subtraction

i/ic Let 0 1or
In V2,supposeu= (5,3) and V= (—5,—3),

then u + v =(5,3) + (—5,—3) = (5 — 5,3 — 3) = (0,0).
The vector (0,0) is called the zero vector of V2: (0,0) = 0.

The vector v = (—5,—3)

is written —u and is called
the opposite of u. 7*
Geometrically, if the triangle law is used:

PQ +QP =PP, =
thusPP=0=(0,0) p
In general, v = (a,b) and —v = (—a,—b) are called opposite vectors, and
(a,b) + (—a,—b) = 0.

These concepts hold inasimilar fashion in '113: —v —(—a,—b,—c) is the

opposite of vector v = (a,b,c), and the zero vector is 0 = (0,0,0).

The vectors v and —v are said to have opposite directions.

cIIl)!,-(1 ho,, 0/ I ctors

The subtraction of vectors is defined by
V/

gadding the opposite' vector. /

u r U

The geometric interpretation
of this is shown in the diagram. U V

Now the zero vector can be defined by

ii ii 0

As an example of vector subtraction, if u = (8,6) andv= (3,2),
u — v = u + (—v) = (8,6) + (—3,---2) = (8 — 3,6 — 2) = (5,4).

In general, (a,b) — (p,q) = (a,b) + (—p,—q) = (a — p,b — q).

Thus vector subtraction in component form is carried out as follows.

Ill III

(i.It) (f''l) 1° /tt I jt/,i) (a p,b q,
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Example 1 a) Calculate the vector (5,6) — (1,4).
b) Demonstrate this subtraction by using a diagram.

This is a universal result, and is known as the
subtraction form of the triangle law.

Notice that the diagram indicates
thatOQ—OP=PQ. •

(Watch the order of the letters carefully.)

PQ ()Q OP

Note: When the law is written this way, any other single letter could be
substituted for 0. This very important property allows you to choose
an origin, and this can help you through some tricky vector
problems which you will encounter later.

The subtraction form of the triangle law can also be written as follows,
using the abbreviations OQ q, OP =p.

I;

Example 2

Sotut 10 U

Use the subtraction form of the triangle law to simplify the following.

a) ED-EF
b) CD+BC+AB

a) UsingEasorigin, and applying the law directly,
ED - EF = FD

b) Use any origin 0, and the abbreviations OA =a, OB = b, OC = c.

Then CD+BC+AB
=d—c+ c—b+b—a
=d—a
=AD I

Solution a) (5,6) — (1,4) b)
= (5 — 1,6 — 4)
= (4,2) (1,4)

(4,2) 0

(5,6)

q —p
0

P
q

p 0
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Example 3 a) Given the points in 2-space A (2,3) and B =(7,4),
find the vector AB.

b) Given the points in 3-space P = (2,0,—i) and Q(—3,4,1),
find the vector PQ.

Solution a) You can use the points to determine the following position vectors.
SinceA (2,3),OA =a = (2,3)
SinceB= (7,4),OB = b = (7,4)
Now AB = b — a

= (7,4) — (2,3)

Example 4 If vector RS = (—1,4,6), and the point S = (1,2,6), find
the coordinates of R.

Solution LetR=(x,y,z),sothatr= (x,y,z).
Since RS= s—r

(—1,4,6) = (1,2,6) — (x,y,z)

thus (x,y,z) (1,2,6)— (—1,4,6)
=

(2,—2,0)

Hence the coordinates of R are (2,—2,0). U

y

RULES

= (5,1)

b) In a similar manner, the position vectors of P and Q are respectively

p = (2,0,1) and q = (—3,4,1).

Thus PQ = q — p = (—3,4,1) — (2,0,1) = (—5,4,0). U

In this example, you have used vector subtraction. Be careful not to
attempt to subtract points'. Such an operation has not been defined.

The example leads to the following rules.

In V2, given points P1 =(x,y1) and P2 = (x2,y2),

the vector P1P2 = OP2 — OP1 = (x2
— x1,y2 — y).

Thus IPP2I= J(x2 —x)2 + (Y2 — yi)2

In V3. given points P1 = (x1,y,z1) and P2 =

the vector P1P2 = OP2 — OP = (x2
—

x1,y2
— y1,z2 —

z1).

Thus IP1P= /x2 — x1)2 + (Y2 — y)2 + (z2
—

z1)2
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You might note that examples involving vector subtraction can be resolved
using vector addition. For instance, in Example 3a), you could state that
AB = AO + OB = —OA + OB = (—2,--3) + (7,4) = (5,1), as before.

However, you will find that handling subtraction and addition equally
well gives you a lot more flexibility.

further ProperIie o/ ec Addition

Observe that, given any vector v,
v + 0 = v and 0 + v = v.

Because of this property, the zero vector is called the neutral element, or
the identity element for vector addition.

Observe also that, given any vector v,
v + (—v) = 0 and (—v) + v = 0.

Because of this property, (—v) and v are called inverses of each other, for
vector addition.

s u M M A R y u = (a,b) and —u = (—a,—!,) are opposite vectors in V2

V = (a,b,c) and —v = (—a,—b,—c) are opposite vectors in /3

The sum of two opposite vectors is the zero vector.

Subtraction of Vectors T

ST = OT — OS = t — s
S

(a,b) — (p,q) = (a—p,b—q) in V

(a,b,c) — (p,q,r) = (a — p,b — q,c — r) in V3 0

—s

S
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1.6 Exercises

1. Determine whether the following are true
or false.

a) AX-XC=AC
b) AX-AC=CX
c) CA-XA=CX
d) -AX-XC=AC

2. If Q, Rand S are any points, express the
vector RS in terms of QR and QS.

3. Simplify by using the subtraction form of
the triangle law.
a) OP—OR
b) QZ-QX
c) AD+CB+DC
d) AB+CA+BC
e) OB—OA+BC

4. PQRS is a plane quadrilateral, and 0 is any
other point in space. Express the following
vectors in subtraction form, using position
vectors with origin 0.

a) PQ
b) QR
c) RS
d)RP

5. ABCD is a square and 0 is any point. If
OA = a,OB —b, and OC = c, express the
vector OD = d in terms of a, b, and c.
(Hint: Recall that in a square, AB = DC;
write these vectors as subtractions.)

6. Use the properties of vector addition to
prove that (—q) + (p + q) = p

7. Given p = (2,3), q = (—1,5), r = (3,—4),
find the following.

a) p—q c) r—p
b) q—r d) p—r

8. Given u = (0,1,—2), v = (3,—3,7),
w =(—4,—5,1), find the following.

a) u—v c) w—u
b) v—w d) u—w

9. What conclusion can you draw from parts
c) and d) of questions 7 and 8?

10. Given the vectors of questions 7 and 8,
simplify the following.
a) p+q—r c) w—v±u
b) p—q+r d) —u—v—w

11. Given a = (11,—2,k), b = (m,n,8), and
a — b = (5,0,1), find the values of the real
numbers k, m, and n.

12. Given the points P(2,3), Q(7,4), and
R(—1,1), use vector subtraction to
determine the following vectors in
component form.
a)PQ b)QR c)RP

13. Use the answers of question 12 to calculate
the sum PQ + QR + RP. Explain your result.

14. Given the points L(1,0,—7), M(2,2,9) and
N(—3,—4,6), use vector subtraction to
determine the following vectors in
component form.
a) LM b) MN c) NL

15. GivethatR is at (12,10), S is at (15,11),
and OP = RS, find the coordinates of the
point P.

16. Repeat question 15 for R(6,—1,3) and
S(2,—5,—1).

17. Given the points A(2,5), B(3,—1), C(—4,6),
D(0,2), find the coordinates of the point M
such that OM = AB — CD.

18. Given two perpendicular vectors u and v,
whose magnitudes are not necessarily the
same,

a) findlu+ vintermsofIuIandvI,
b) showthatlu+vI=Iu—vI.

0

R

S



1.7 Multiplication of a Vector by a Scalar 43

1.7 Multiplication of a Vector by a Scalar

Consider the vectors u = (1,2), v = (2,4), w = (5,10).

Is there any relationship among

By vector addition, you can see that

andw=u+u+u+u+u. / /;
It seems natural to write _ // or

v=2u - 2u

andw 5u

Note: u, v, and w are all in the same direction (that is, parallel, and
pointing the same way).

In the last section, you saw that the vector —u had the same length as u,
but the opposite direction. You can think of—u as being the same as —lu.

Similarly, —v has the same length as v, but the opposite direction. Thus
—v = —2u.

Although these give rise to an unusual combination of symbols
w=5u -

c Ii.i real nuI1t)er \ 1t1

this operation is accepted. It is called multiplication of a vector by a scalar
or scalar multiplication of a vector.

If k is a positive scalar and u is a vector, then kuis a vector in the same

direction as u, with length k times the length of u.

If k is negative, then the direction of ku is reversed (that is, the direction of ku
is opposite to the direction of u), and the length of ku is 1k I times the length of u.

In general,
I lie e HiS u a iii lu are pa ra id;
lie ieiiiii 1)1 eiorka is k it.

Note: 1k I means the absolute value of the real number k, whereas I u
means the length of the vector u.

This should not lead to any confusion, because both length and absolute
value are always numbers (scalars) greater than or equal to zero.

In some texts, a distinction is made by writing the length of the vector u

as lull.
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Scalar multiplication can also be defined for vectors in component form,
as shown in the following example.

Example 1 Calculate the following by using vector addition, given u = (1,3).

a) v=2u b) w=5u

Solution a) v=u+u=(1,3)+(l,3)
= (2,6) = (2 x 1,2 x 3) or

2(1,3) = (2 x 1,2 x 3)

b) w=u+u+u+u+u= (1,3)+ (1,3)+ (1,3)+ (1,3)+ (1,3)

= (1+1 + 1 + 1 + 1,3+3 + 3 + 3 + 3)
= (5,15) = (5 x 1,5 x 3) or

5(1,3)
= (5 x 1,5 x 3). U

This leads to the following definition for the multiplication of a vector in
component form by a scalar.

D E F I N I T I 0 N k(x,y) = (kx,ky) in V2 or k(x,y,z) = (kx,ky,kz) in V3

Example 2 Find the lengths of vectors U = (1,3), V = (2,6) and w = (5,15) of Example 1,
to verify that the length of a vector ka equals Iki times the length of a.

Solution IuI=I12+32=fi
1= J2+ 62= iJ= 2Iiö= 2Iu as expected.
IwI= .J52 + 152 = = sIi =51u1, as expected.
An alternate way of calculating wi is to use some factoring:
wi = (3 x 5)2 = .J52(12 + 32) = 5fi, as before. U

You can now combine the operations of vector addition and
multiplication by a scalar.

Example 3 Express as a single vector 3(1,—6,4) + 2(5,0,2) — 4(1,1,1).

Solution 3(1,—6,4)+ 2(5,0,2)— 4(1,1,1)
= (3,—18,12) + (10,0,4) — (4,4,4)

=(3+_1O—4,—18+O—4,12+4—4)
= (9,—22,12) U
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At this point, you will look at an example which will illustrate the various

properties of the operation of multiplication of a vector by ascalar.

Example 4 Given the vectors U = (2,0,—3) and V = (1,—6,—2), calculate the

following.
a) 5(4u) b) 5(u + v) c) (2 + 3)u

Solution a) 5(4u) = 5(4 x 2,4 x 0,4 x [—3])= 5(8,O,—12)
= (40,0,—60).

Note that this result is the same as

(5 x 4) u = 20(2,0,—3) = (20 x 2,20 x 0,20x [—31) = (40,0,—60).

b) 5(u + v) = 5(2 + 1,0 — 6,—3 — 2) = 5(3,—6,—5)
= (15,—30r25).

Note that this result is the same as

5u + 5v = 5(2,O,—3)+ 5 (1,—6,—2)

= (1O,0,—15) + (5,—30,—10)
= (15,—30,—25).

c) (2+3)U5U
butalso2U+ 3u=U+U+U+U+1 5u,

because vector addition is associative.

5u=50,_3)(b0,0,_15) U

The above example suggests the following properties of multiplicationof a

vector by a scalar.

PR OP ER TI E s For any vectors u, v, scalar5 1, m.

1. k(mu) = (km)u

2. k(u + v) = ku + kv

3. (k + m) u = ku + mu

Example 5 Simplify BD - AD + AB - CB.

Solution Using vector subtraction from a common origin 0, and theabbreviations

OA=a,OBb,0C c,OD=d,

BD —AD + AB — CB = I'— (d --a) —a —(b--c)
=d—.b--d+a ÷b — a— b+ c

=c—b
=BCU
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'ses
1. Copy the vector a shown onto a grid.

a

On the same grid, draw representatives of
the following vectors.

2a
3a
5a

—2a

—a

2. Givenuv,pHq,butu .j' p,state
which of the following are parallel to u.

a) 2u
b) —3v

c) 4p
d) —5q

3. ABCDis a parallelogram and M is the
midpoint of BC. If AB = 2u and BM = v,

express the following vectors in terms of u
and v.
a) AM
b) BC
c) AD
d) DB
e) CA

4. Draw on a grid the vectors p = (2,—5),

q = (2,5), r= (6,—15), s = (—4,10).
Which of these vectors are parallel?
Which are in the same direction?

5. The points A, B, C are such that AB = (2,—3)

and BC = (4,—6).
a) Express BC in terms of AB.
b) Express AB in terms of BC.
c) Show that the points A, B, and C must

lie on the same straight line (that is,
points A, B, C are collinear).

6. Using the points of question 5, calculate the
following vectors in component form.

a) BA b) AC c) CA

7. Express each of the following as a single
vector.

a) 5(2,—1)±2(3,2)+(—7,1)
b) (1,—4,—3) — 4(2,3,—5) + 2(2,2,2)

c) (2,—7,i)+(3,2,1)

8. Given thevectorsu= (2,1,—3),v=(1,0,4),

w = (4,1,5), express each of the following
as a single vector.

a) 3u—4v+2w,

b) u+2v—w.
c) What does your result in b)indicate

about the vectors u, v, and w?

9. Given the vectors of question 8, calculate
the following.
a) I3u—4v+2w
b) u+2v—w

10. Given the vectors u = (—1,3) and v = (2,1),
illustrate, both algebraically and
geometrically, that

a) 3(2u)=6u,

b) 4(u + v)= 4u+ 4v

c) (3+1)u=3u+u
11. Simplify each of the following.

a) 3v+4v—6v
b) 2(u—2v)+4v

c) —5(u+2v)--5u+9v
d) 3u—v+2w—(u—v)—2(u+w)
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12. Simplify the following, by using a common 16. a) If A is the point (2,3) and B is the point
origin 0 and vector subtraction. (8,1), calculate in component form the

a) vectorOM=0A+0B.

b) b) Plotthepointso,A,B,Mina2-space
coordinate system of origin 0.

c) AD — BC + DC — 2AB c) Show that M is the midpoint of AB.

13. Given that!, = ka, where k is not zero, 17. Given any three points 0, A, and B, a point
use the properties of scalar multiplication M is positioned such that MA-F MB = 0.

to prove that a = 1'.
a) Express MA in terms of MB.

k b) How are the points A, B, and M related

14. Prove the properties geometrically?
c) Use vector subtraction, with origin 0,

k(mu) = (km)u to find OM in terms of OA and OB.

k(u + v) = ku + kv 18. Given the two vectors u and;, and

(k + m)u = ku + m, IuI= 4. Find the value oflu + ;I
in each of the following cases.

for any scalars k, m and vectors u, V. a) v = 3u

15. Given any non-zero vector v, calculate the b) V = —5u

1 - c) u and v perpendicular,IvI = 3

length of v. .
lvi d) u perpendicular to (u + v),ivl = 9.6
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1.8 Applications of Vector Subtraction and

Multiplication by a Scalar
You can now apply the properties you have learned, to solve certain
geometric problems by using vectors.

Most problems can be solved by using vector addition. However, the
technique of using the subtraction form of the triangle law, together with
a common origin, unravels many geometric problems quite neatly. For
clarity, the abbreviations OA = a, OR = b,... are used for the position
vectors of A, B,...

Example 1 ABCD is a quadrilateral in which AR is parallel to and congruent to DC.
Prove that sides AD and BC are also parallel and congruent.

So Iti Ii o ii Let 0 be any point. Let OA = a, OR =b, OC = c, and OD = d.

B

Write a vector equality from what is given in the problem.
AB = DC

Writing as subtractions, I' — a = c — d

rearranging, d —a = c— b

that is, AD = BC
hence AD is parallel to and congruent to BC, as required.

lllc'i IilIlt'c Ii1i'ii

Using vector addition, AB +BC = AC

and AD+DC=AC

sofromQand, AD+DC=AB+BC GJ
but DC = AB ® [given]

so — ® gives AD = BC, as required. •
Note: This example proves the following property of a parallelogram.

o If a quadrilateral ABCD is such that AR = DCand AR IIDC, then that
P quadrilateral is a parallelogram.

d

a A
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The next example uses vector addition, and the above property.

Example 2 A parallelogram ABCD is such that AB= uand AD = V. AC is produced to

E, and CA is produced to F such that PA = CE = w.

a) Express the vectors FB and DE in terms of u, v, and w.
b) Hence show that FBED is a parallelogram.

Solution W

a) FB=FA+ABW+U
DE = DC + CE = u + w

b) FB=DE from a)
Hence, FB = DE and FBIIDE.
Thus, by the above property, FBED is a parallelogram. U

Example 3 OABC is a quadrilateral with OA = a, OC = c, and OB = 2a +

B

0
a

a) Express the vectors AB and CB in terms of a and c.
b) Draw geometric conclusions about the quadrilateral.

Solution a) Using the subtraction form of the triangle law, with 0 as origin,
AB=OB—0A(2a+ c)—a=a+ cand
CB=OB—OC=(2a+ c)— c=2a

b) Thus CB is in the same direction as a and twice the length of a. In
geometrical terms, that means that CB is parallel to OA, thus the
quadrilateral is a trapezoid. U

C

A
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Example 4 In triangle OAB, M is the midpoint of side OA and N is the midpoint of
side OB. Prove that the side AB is parallel to segment MN, and that the
length of AB is twice the length of MN.

Sokitioii Choose 0 as origin, and use the abbreviations OA = a, OB = b, OM =

ON=n.

M N

Write vector statements from what is given in the problem.

rn = a and 2J n =

Subtracting the equations — aj.
— — 1—.

1—n — m = —b — —a

thus MN=--AB
2

which proves that AB is parallel to MN, and is twice the length of MN, as
required. •
Note: In this example, you have proved the midpoint theorem.

T H E o R E M In any triangle, the line segment joining the midpoints of any two sides is
parallel to, and half the length of, the third side.

Example 5 IfM is the midpoint of AB, and 0 is any point, find an expression for OM
intermsof0Aand0B.

Use the abbreviations OA = a, OB = b, and OM = m. Since M is the
midpoint of AB, the lengths AM = MB, and AMIIMB,
thus =

m—a=b—m
2m = a + b .

2 2

F R M L A
Note: This example gives the following mid-point formula. If M is the

midpoint of AB, and 0 is any point, then OM =OA + OB
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7. If ka+ mb —(k c = 0, prove that
(a — c) and (b — c) are parallel vectors.

8. Points A and B are the midpoints of sides
PQ and SR respectively of parallelogram
PQRS. Prove that PBRA is a parallelogram.

9. In parallelogram PQRS, prove that
QS + RP = 2RS.

10. D, E and Fare the midpoints of sides AB,
BC and CA respectively of a triangle ABC.
If 0 is any point, prove that
OA+ OB+OC=OD+OE+OF.

11. Given any quadrilateral ABCD (which may
be skew), let K, L, M, and N be the
midpoints of sides AB, BC, CD, and DA
respectively. Prove that KLMN is a
parallelogram.

12. Given a quadrilateral ABCD (which may be
skew), let M be the midpoint of AC and N
be the midpoint of BD.

a) ShowthatAB+AD+CB+CD=4MN.
b) If M and N coincide, show that

AB = DC.
T c) What kind of a quadrilateral is ABCD if

M and N coincide?

13. Given a tetrahedron (a triangular pyramid)
ABCD, let P be the midpoint of AB and W
be the midpoint of CD. M is the midpoint of
PW. The position vectors ofA, B,C, D, M
from some origin 0 are a, b, c, d, m
respectively.

Show that m = -'-(a + b + c + d).

1.8 Exercises

1. OABC is a quadrilateral in which
OA = 2v—u, OC=u, and OB = 2v.

ExpressAB and CB in terms of u and v,
and thus describe the quadrilateral.

2. Describe the quadrilateral of question 1,

given thatl2v — ul=u.
3. OABC is a quadrilateral in which OA =a,

OC = c, and OB = a + -ic. Express AB

and CB in terms of a and c, and thus
describe the quadrilateral.

4. In the diagram, OP = p and OQ = q. It is
also known that OS = 20P, OT = 40Q, and
QR = 3QP.

0

R

S

0
LI

a) Express the following vectors in terms

of p andq:
OS, OT, QP, TS, QR, OR, TR.

b) Hence show that the points T, S and R
are on straight line.

5. Given that RQ = 2QS, and RB = 2AS, use
vectors to show that AQB is a straight line.

RN
AN

0

A

6. Assuming that the opposite sides of a
parallelogram are parallel and congruent,
prove that vector addition has the
commutative property. That is, prove that
for any vectors u and v, u + v = v + u.

0
w

B C
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1.9 Unit Vectors—
Standard Basis ot a Vector Space

In this section, you will learn how to express vectors of V2 and V3 in terms
of certain vectors whose length is 1 unit.

Any vector whose length is 1 is called a unit vector.

Example 1 Find the lengths of i = (1,0) and j = (0,1).

Solution IiI=V12+02= 1 andsimilarly,
IjI='.
i and j are thus unit vectors.

If you draw these vectors with their tails at the origin, 0, you can see that
they are unit vectors along the x and y axes respectively.

I I

Example 2 Write the vector v = (4,2) in terms of iand j, using the operations of
vector addition, and multiplication by a scalar.

Solution v= (42) is the position vector of point C(4 2)
OB=4,soOB=4i,and
BC=2, soBC=2j. V =(4C
But v—OB+BC

— — - _____ -
so (4,2)=4i+2j. U 0 1 B x

A similar property holds true for any vector.

P R P E A T
1fF = (x,y) is any point in 2-space, then
OP= xi yjis the position vector of P or

(x,y)=xi+yj
Every vector of V2 is equal to a position vector. Hence, every vector of V2
can be expressed in terms of the vectors i and j. For this reason,
i and j are called the standard basis vectors of V2.
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In V3, the unit vectors along the x-axis, and y-axis, and z-axis are called i,

j and k respectively, where
i = (1,0,0), j = (0,1,0), and k = (0,0,1).
Similarly, every vector of 'V3can be expressed in terms of these three
vectors according to the following property.

P A 0 P E R 1
1fF = (x,y,z) is any point in 3-space, then
OP=xi +yj +zk is the position vector ofF or
(x,y,z) = xi + yj + zk

z

//Th
For this reason, , j and k are called the standard basis vectors of V3.

These basis vectors, whether in \V2 or in V3, are all perpendicular or
orthogonal to each other.
Furthermore, because they are all unit vectors, they are called normed
vectors.
These words are combined and used to describe the set of vectors (i,j)as
an orthonormal basis of 'V2.

Similarly, the set of vectors (i,j,k) is an orthonormal basis of V3.

You will study other bases of V2 and V3 further in chapter 2.

Other I nil ''rors

Example 3 a) Findaunitvectorinthedirectionofu=(3,4).
b) Verify that your solution is a unit vector.

Solution a) The lengthu = ,J32 + 42 = = 5. You must find a vector that has

the same direction as U, but whose length is only ofjuj.Call this

- - 1- 1— 134vector e: then e = — u = — (3,4) = i
5 5 \55

_
b) 1,asrequired. •
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o general giv ii i i
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V

Replacing v by its unit counterpart e is called normalizing v.

Example 4 Normalize the following.

a) v=(—2,5)
b) w= (0.2,0.2,0.1)

Solution a) Let e, be a unit vector in the direction of v. Because

Iv=J(_2)2+52=,/, ______
= (-5)=

b) Let e be a unit vector in the direction of w. Because
= fO.22 + 0.22 + 0.12 = Ø3

= w = (0.2,0.2,0.i) =('). •0.3 3 333

Example 5 Normalize 4v, where v is any vector.

Solution Let the unit vector in the direction of 4v be e4

e4 (4v)
4v I
I= —- 4v

I
4v

I

V

=e,. U

This last example shows that there is only one unit vector in the direction
of v. In other words, the unit vector in the direction of v does not depend
on the length of v.
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V'c I'i .'/'1c&

The properties of vectors that you have learned so far will now allow you
to define the following.

D E F / N / 1 / N A vector space V is a set of mathematical objects called vectors, together
with two operations, called vector addition and multiplication by a scalar,
having the following properties.

P R 0 P F R T / F S Vector Addition

Al. V is closed under addition: u,v €V impliesu +v V

A2. Addition is associative: u + (v +w) = (u + v) +w
A3. ThereisaO€Vsuchthatforallu€V,u+0=u
A4. If u C V. then there exists —u C V such that u + (—u) = 0

A5. Addition is commutative: u + v = v + u

(These properties mean that V is a commutative group with respect to
addition.)

Multiplication of a Vector bya Scalar
Ml. Ifu€V,k€111,thenkueV
M2. (krn) u= k(rnu), k, m R

M3. k(u + v)= ku+ kv
M4. (k + m) u = ku + mu

M5. There exists I such that lu = u

Whenever you work with vectors, you are working in a 'vector space".
You have been doing just that in this entire chapter. What you have above
is a summary of all the properties of vectors, valid for V2, and V3. and any
other vector space. You may need to refer back to these properties in the
chapters to come.
Note: Just as a vector is different from a point, a vector space is not a set of

points such as I2 or R. (There are no points in a vector space.)

M M A R
A vector whose length is 1 is a unit vector (or a normed vector).

i,j), where i = (1,0) and j = (0,1),
is the standard basis for the vector space V2
(i,j,k}, where i = (1,0,0), j = (0,1,0), and k = (0,0,1),
is the standard basis for the vector space V3
These sets of vectors are called orthonormal bases.

In V2, (p,q) = pi + qj
In V3. (p,q,r) = pi + qj + rk

To normalize v is to find the unit vector e, in the direction of v:

= V

I vI
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1.9 Exercises
1. Express the following vectors as ordered

pairs.
a) i+j
b) —5i+j
c) —2j

2. Express the following vectors of V2 in terms

of iandj.
a) u=(2,—7)
b) v=(6,1)
c) w=(—3,O)

3. Express the following vectors as ordered
triples.
a) i±2j+3k
b) 41—k

c) —f—k
4. Express the following vectors of V3 in terms

of i,f and k.
a) u = (2,—4,6)

b) v=(0,—1,—1)
c) w=(0,10,0)

5. Simplify the following.

a) 6(31—f) c) 5(31—k)
b) —2(—i+ j— k) d) V'ii+ '/f

6. Simplify the following.

a) 5(i+j)—3(2i—j)
b) —(4i--2f-t-k)+2(i—5k)—2f

c) !(3j+5j—k)+(—i—j—3k)+i

7. Which of the following are unit vectors?

a)
____

d)

b) b (ç=) e) e= (0.2,0.4,0.4)

c) =(*o-)f) =G'-)

8. Normalize the following vectors.

a) u=(3,—4) d) z=(1,1,1)
b) v=(0.1,0,0) e) p=('h,3)
c) w=(2,6,—1) f) q=(5,—4)

9. Given the non-zero vector r = (x,y,z),
prove that the unit vector in the direction of

ris e= (4,4,4
\IrIIrIIrI

10. Find the unit vector in the direction of PQ
in each of the following cases.
a) P is the point (—3,6) and Q is the

point (4,1)
b) P is the point (2,—3,5) and Q is the

point (1,—1,0)

11. Given that u = (—5,12), v = (2_6) and

w = (2,0,7), find the unit vectors e, e,, e
in the directions of u, v, w respectively.

12. e1 and e2 are two perpendicular unit
vectors. Calculate the following lengths.

a) 1e1+e21 b) 1e1+2e21.

13. If u= (4,1,—2) andv= (0,3,3), find the
unit vector in the direction of each of the
following.
a) u+v b) 3u—v c) u—4i—f

14. For any v V and any k II, prove that
the unit vector in the direction of v
is equal to the unit vector in the direction
of kv.

15. IfOA=2i—3f—kand
OB = I + f — k, show that the vector AB
is parallel to the xy-plane.

16. If u = (i,/) and; prove

that the vectors u and v form an
orthonormal set.
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I Search of Vectors
as Classes of ai :qu valence Relation

This section attempts to show how vectors as particular mathematical
objects can be manufactured from elementary mathematical building
blocks.

Relations aiid their Giij'it
When you link certain elements between two sets, you say that you are
setting up a relation between the two sets.

A relation is often described by a sentence.

Example

is exactly divisible by.. . ." between the set S =(2,3,4,5,6) and itself
creates the following relation.
2 —* 2, 3 — 3, 4 -+ 2, etc.,
where the arrow replaces the words 'is exactly divisible by".

The set of all ordered pairs satisfying the sentence defines the relation, as
follows.

R = ((2,2), (3,3), (4,2), (4,4), (5,5), (6,2), (6,3), (6,6))

The relation can be graphed, or represented pictorially, in different ways.
Here are two examples.

SI

6
5
4
32•

arrowgraph Cartesian graph

However, a relation "from S to 5" can also be called a relation "in 5".
The above relation in S can be graphed with the following special type of
arrowgraph.

S
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/l!ilaIe!ICL Relation in a Set

An equivalence relation in a set S has the following properties. It is
1. reflexive (for all x S. x — x)
2. symmetric (x -* y y —÷ x)
3. transitive (x — y andy —. z x — z)

Example

Consider the relation in the set of whole numbers, liW, defined by ".. .has
the same remainder on division by 3 as.. .

Observe what happens as the arrows are placed in a diagram.

• A set of subsets called a partition naturally forms.

• Each subset (or element of the partition) is called an equivalence class
for the relation.

Good names for the equivalence classes here would be

(0,3,6,9,. . . } = "the class of 0" 0,

(1,4,7,...) = "the class of 1" = 1, and

(2,5,8,...) ="theclassof2"=2.
You could call these classes "remainders".

Notice that 0 = 3, 1 = 4, etc., and that these classes are infinite sets.

The partition is the set of classes MV3 = (0, 1, 2).

(The classes in this example are sometimes called the "integers modulo 3")

'2\
8
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I/cc 1o!.s

Consider the set D of all directed line segments in a plane. (Denote the
directed line segment from A to B by AR.)
In this set, consider the relation defined by
"AB -* PQ if and only if ABQP forms a parallelogram."

You will have the opportunity to verify that this is an equivalence relation.

The diagram shows that the directed line segments AB, PQ, RS satisfy the
relation. There are many others! The "class of AB" = LAB, PQ, RS }

Another name for this class is the vector 4B.

From this precise definition of a vector in a plane, you can see that
'drawing' a vector would actually cover the entire plane. Thus the vector is
effectively everywhere. That is what allows you to draw a directed line
segment representing the vector wherever you choose.

Activities

1. Verify that the relation defined by "AB — PQ if and only if ABQP is a
parallelogram", in the set of all directed line segments of a plane, is an
equivalence relation.
That is, verify that this relation is
reflexive (AB — AB),

symmetric (AB — PQ = PQ- AB), and
transitive (AB — PQ and PQ —* RS AB — RS)

2. Describe the partition created by each of the following equivalence
relations.
a) "is similar to" in the set of all triangles
b) "has the same mother as" in the set of all Canadians
c) "is in the same class as" in the set of children attending a public

school
d) "is parallel to" in the set of all straight lines
e) "is congruent to" in the set of all line segments in a plane
f) "(p,q) —* (p',q') ifand only if p + q' = q + p" in the set of ordered

pairs of whole numbers iAV x W\V

g) "(p,q) — (p',q') ifand only if pq' = qp" in the set of ordered pairs
of integers 1 x [1 — (0)] (that is, the ordered pairs (p,q) where p, q
are integers and q * 0).
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Ifl Ft dly

Li nc Con pt

• Any number of parallel lines with arrows pointing the same way define
a particular direction.

• Any real number is called a scalar, to distinguish it from a vector.

• A vector is everywhere: it can be represented by any directed line
segment that has the correct magnitude and direction.

Lc/I!lIiIi 1 I L .jiIi
• Equal vectors have the same magnitude and the same direction.

• If P is a point in a coordinate system of origin 0, then OP is called the
position vector of P.

r 1fitio, nd iivt ic ',
• geometric law of vector addition (the triangle law)
OS+ST=OT

in 2-space
• If P = (a,b), then OP = (a,!')

• The length of v = x,y) is

lvl= Jx2 +y2

in 3-space
• If P = (a,b,c), then OP = (a,b,c)

• The length of v = (x,y,z) is

lvi = Ix2 + y2 + z2

S

S

t

T

0

• geometric law of vector subtraction (the triangle law)
ST = OT — OS = t — s

• component laws of vector addition and vector subtraction
mV2 mV,
(a,b)+(p,q)=(a+p,b+q) (a,b,c)+(p,q,r)=(a+p,b+q,c+r)
(a,b) — (p,q) = (a — p,b — q) (a,b,c) — (p,q,r) = (a — p,b — q,c — r)
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• IIJ'/h r, ii '/ 1

• If k is a scalar and u is a vector, then ku is a vector parallel to U, whose

length isIkIIuI
(u and ku have the same direction if k> 0, but have
opposite directions jfk < 0.)

• In component form, k(x,y) = (kx,ky) in V2 or k(x,y,z) = (kx,ky,kz) in V3.

Lii,! Lt iis
• Any vector whose length is 1 is a unit vector (or a normed vector).

• To normalize v is to find the unit vector e in the direction of v:

= V

I vi

• Given the standard basis vectors

i=(I,O)andj=(0,l) i=(1,O,O),j=(0,1,O)andk=(O,O,1)

of V2, then of V3. then

(p,q)=pi+qj (p,q,r)=pi+qj+rk

t'ed ei

A vector space V is a set of mathematical objects called vectors, together
with two operations, called vector addition and multiplication by a scalar,
having the following properties.

Vector Addition

Al. V is closed under addition: u,v cv implies u +v V
A2. Addition is associative: u + (v +w) = (U + v) + w
A3. ThereisaO€Vsuch that forallUEV,u+0=U
A4. If u V. then there exists —u V such that u + (—u) = 0

A5. Addition is commutative: u + v = V + u

(These properties mean that V is a commutative group with respect to
addition.)

Multiplication of a Vector bya Scalar
Ml. then ku€V
M2. (krn)u= k(mu), k,m E ii
M3. k(u + v)= ku± kv

M4.(k+m)u=ku+mu
M5. There exists 1 such that lu = u
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nventory

Complete each of the following statements.

1. A number of arrowed parallel lines with the arrows pointing the same
way is said to define a _______

2. A _______ has both length and direction.

3. A real number is called a , to distinguish it from a vector.

4. A vector can be represented by a _______ line segment. A vector can
also be represented by an _______or an _______ of numbers.

5. Two directed line segments represent the same vector if they have the
same _______ and the same _______

6. If (x,2) = (—3,y), then x = ______ andy = ______

7. A plane can be determined by three distinct non-collinear , or
by two distinct _______ lines.

8. In a three-dimensional mathematical drawing, you must keep
vertical, and parallel.

9. Skew lines are lines that are neither ________nor ________

10. Given P(2,—3,4), then the position vector OP = _______

11. If v = (2,2,—i), then the length of the vector v,written , is
equal to _______

12. Thevectorsum(1,—7)+(—1,9)=

13. The vector sum FG + GH = ______

14. The vector difference NK — NL = _______

15. The product of the scalar 5 and the vector (2,1,4) is _______

16. If AB = u and CD = ku, where k is a scalar, then the lines AB and CD
are _______. The length of the vector ku is _______

17. Given the points P(3,8) and Q(1,6), the vector PQ in component form
is _________

18. A vector of length one is called a _______vector.

19. The vector v =(4,—3) can be expressed in terms of the standard basis
vectors i and j as follows. v = _______

20. Normalizing V means finding the _______ vector e in the direction
of v. If V = (4,—3), then e = _________
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Review Exercises

1. M is the midpoint of segment AB, P is the
midpoint of AM, Q is the midpoint of MB.
a) Give reasons why AP = PM.
b) State all other vectors in the diagram

equal to AP.
c) State all vectors in the diagram equal to

BM.

A

2. In the square ABCD, F, Q, R and S are the
midpoints of AB,BC,CD, andDA
respectively. If AP = u and BQ = v,

express the following in terms of u and v.

a) PB b) RC c) DR d) QC e) AS

3. ABCD is a regular tetrahedron, that is, a
solid made up of four congruent equilateral
triangular faces. Its apex, D, is vertically
above the centre of the base. The midpoints
of AB, BC, and CA are M, N, and P
respectively.
a) Draw the tetrahedron, and locate the

centroid 0 of its base (the intersection
of the medians AN, BP, and CM of the
triangular base).

b) Join DO, and mark the right angles
D0A, DOB, and DOC.

c) List the other right angles defined in
the diagram.

A

N

B

4. In the tetrahedron of question 3, calculate
the following.
a) the angle between two edges (such as

angle DAB)
b) the angle between an edge and a face

(such as angle DAN)

5. In the tetrahedron of question 3, name the
following.
a) a pair of skew lines
b) the three planes intersecting at point D

6. In a 3-space coordinate system, draw the

position vector p of the point P(—1,2,3).

7. A point F, whose position vector is
OP = (5,—2,—4), is translated to position F'
by the vector v = (1,2,3). What are the
coordinates of F'?

8. Find k so that the length of the vector
- ii 2v = t —,——,k us one unit.\2 3 /

9. Given that u = (—2,2,5) and V = (k,—1,—3),

calculate k, where 2Iui = lvi.

10. An object is displaced in a plane according
to the vector u = (2,—3), then displaced
again according to the vector v = (6,1).
a) Calculate the resultant displacement,

w.

b) Draw the three displacements u, v, w
on a grid.

c) Calculate wi.

0
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d) 2u—3v
e) u+2v+3w

1—k — —
f) —u—v—2w

2

11. Given the regular octogon ABCDEFGH
shown, where AB = u, BC = v, CD = w,
and DE = z,find the following vectors in
terms of u, v, w, and z.

a) FE
b) GF
c) AF
d) GE
e) AE

G

18. Given u = (5,—6,—3), V = (2,0,4),
w = (—l,2,—5), find the following.

a) u—v
b) v-w

c) w—u

19. The points F, Q, R are such that
PQ = (4,—1,2) and PR = (12,—3,6).

a) Express QR in terms of PQ.
b) What can you say about the points F, Q

and R?

20. Find the coordinates of the points F, Q, and
R, of question 19, given that OP = (3,0,—i).

21. Given the two vectors u and v, and
lvi = 5, find the value oflu + vi in each of
the following cases.

a) 3v=2u
b) v=—u
c) u and v are perpendicular,

and Iui= 2

22. Given the parallelepiped shown, state a
single vector equal to each of the following.
a) AC-AD
b) AB-AD
c)BF-CG G

d) AC-EH
e) HD-GB

D

w

H C

U

12. Given u = (k,4,rn), v = (1,n,—8), and
u + v = (—3,4,—2), find the values of k,m
and n.

13. A boat starts at a point A and sails 600 m
on bearing 045°, then 400 m towards the
east to arrive at point B. Draw a vector
diagram to represent the resultant
displacement AB. What is the magnitude of
this displacement? What is the bearing of B
from A?

14. Simplify the following by using the
subtraction form of the triangle law.

a) QP—QR
b) XA-XY+AY

15. Given the points L(5,6,—3) and M(—8,i 1,4),
use vector subtraction to determine the
vector LM in component form.

16. Given any four points A, B, C, and D in
space, express the following vectors in
subtraction form, using position vectors
with origin A.

a)BC b)CD c)BA
17. PQRS is a parallelogram and Ois any point.

If OP = p. OR= r, and OS = s, express
the vector QO in terms of p. r, and s.

A B

23. The diagonals of a quadrilateral bisect each
other. Prove that the quadrilateral is
parallelogram.

24. ABCD is a rectangle and PQCD is a
parallelogram. Prove that ABQP is a
parallelogram.
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25. Simplify the following.

a) 6(—i+ 2j)— 3i — 4j)
b) 1O(4i+2j—5k)

- 1(16i— 4j)

—6j+ 3k

26. Find the unit vector in the direction of PQ
in each of the following cases.
a) P is the point (—1,—2) and

Q is the point (1,3)
b) P is the point (4,3,—3) and

Q is the point (6,—5,—1)
c) P is the point (a,b,c) and

Q is the point (d,e,J)

27. e1, e2, and e3 form an orthonormal set.
Calculate the following lengths.

a) Iei + e31

b) Ie + e2+ e31

c) e2+3e31
d) e1 — 2e2 —

3e31

28. In triangle OAB, points P and Q divide the
side AB into three equal segments with P
closer to vertex A than to B.

a) ShowthatAQ=PB.
b) Prove that OP + OQ = OA + OB.

29. A vector having the same magnitude as
—6i + 8k is

A. 31+4j—5k

B. -31+4k

C. —61+4j+4k

D. lOi+ lOj+ 10k

E. —lOj
(83 1-1)

For information about these questions, see the
introductory pages of this book.

30. In a three dimensional rectangular
Cartesian co-ordinate system, the points 0,
A, C andD have co-ordinates (0,0,0),
(6,0,0), (0,6,0) and (0,0,6) respectively.
OABCGFED is a cube, as shown in the
figure.

The points P and Q are the mid-points of
[AEJ and [FG] respectively.

x

a) Write, in column vector form, each of
the vectors OP and OQ.

b) 1. Find the square of the length of each
of the vectors OP and OQ.

ii. Show that PQ= 3'Junits.
iii. Examine whether OPQ is a right

angled triangle, giving a reason for
your result.

c) Given that the points R and S are the
midpoints of [BP] and [CQ]
respectively,

i. prove that OR = 10P + OB and
2 2

ii. find the length of RS.
d) An ant walks from P to Q along the

surface of the cube. By considering the
net of the cube, or otherwise, find how
far the ant walks, given that the
distance travelled must be as small as
possible.

(7 SMS

z

G

P
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Linear Dependence
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The photographs show two cities A and B. The streets of city A run east to
west and south to north. The streets of city B go east to west and southwest
to northeast.

If you wish to locate an intersection P in city A you can use origin 0 and
position vector OP. The diagram shows two perpendicular unit vectors
i and j where ii equals one city block east to west, and ill equals one
city block south to north.

City A

Since intersection P is three blocks east and two blocks north of 0,

OP= 3i+ 2j.
Every intersection point in city A can be expressed as a combination of a

scalar times i, plus a scalar timesj. Such a combination is called a
linear combination of vectors i and j.

Observe that the vector 3 i depends on vector i. Vector 3 i is described

as being linearly dependent with vector i.

Recall that 3x + 2)' is a linear expression, and that 3x + 2y = k defines a
linear relation.

To locate an intersection Q in city B you will need origin 0 and two unit
vectors u and v. These vectors are not perpendicular to each other.
Observe thatlul is one city block east to west while v is one city block
southwest to northeast.

City B

Since the point Q is three blocks east and two blocks northeast of point 0,
OQ = 3u + 2v. Again vector OQ is called a linear combination of vectors

u and v, and the vector 3u is described as being linearly dependent with
vector U.

In this chapter you will learn more about the linear combinations of
vectors and about the dependence of vectors on each other.
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2.1 Linear Dependence of Two Vectors

Vectors are not directed line segments but vectors can be represented by
directed line segments. A vector in \V2 can also be represented by an
ordered pair; a vector in V3 by an ordered triple. There is a relationship that
is derived from the directed line segment representation of a vector. This
relationship is called linear dependence.

Suppose aand b can be represented by the parallel directed line

segments PQ and RS respectively.

R
X

In this situation you can write aUb. But every directed line segment
which is congruent to, parallel to, and in the same direction as PQ
represents the vector a. In particular, the directed line segment SV =a.

Because the three points R, S. and V are collinear, a and b are called
collinear vectors. Note that a and b can also be described as being parallel.
Thus, for vectors there is no distinction made between vectors that are parallel
and vectors that are collinear. The symbol H when used with vectors can be
read either "parallel to" or "collinear with".

Two vectors that are collinear or parallel are linearly dependent vectors.
The zero vector 0 is parallel and linearly dependent with every other vector.

0 E FIN! TI ON TwovectorsaandbarelinearlydependentifandonlyifaUb.

What is the algebraic condition for two vectors to be linearly dependent?
In section 1.5 you learned that every scalar multiple of a is parallel to a.
Hence a and sa, s Ii, are linearly dependent. Also, any two vectors that
are linearly dependent are parallel, and so one vector must be a scalar
multiple of the other vector.

t ii tI/ebraic ( ,,/iii;i fr Ii t'e!,c 1 / Ii;iearl i)epe;idciii
Two non-zero vectors a and b are linearly dependent if and only if
b = sa, for some s

Example 1 Given c = 3a and d = 2a, prove that c and d are linearly dependent.

SOltitiOFi Geometric Proof
You must prove that cId.
Since cand dare each scalar multiples of a, each vector is parallel to a.

But cIIa and dIa implies that cId.
Thus, c and d are linearly dependent.
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Algebraic Proof
You must prove that c is a scalar multiple of d or that d is a scalar
multiple of c.

Since c = 3a, therefore a = 1c.
3- - fi—\ 2-

Thus, d = 2a = 2i —c I = —c.
\31 3

Therefore, c and d are linearly dependent. U

In Example 1, you proved that

d=cor
3

3d = 2cor
3d + (—2)c = 0.

Thus, real numbers m 3, and k = —2 exist such that md + kc =0. This
leads to the following alternate form of the first algebraic condition.

1/!'tIh't tlq&'I',aic ( i/itiii /r Ii 1'cir 1' I' Liiuir/i Dc1'ei,Ji,i.

Two vectors a and b are linearly dependent if and only if m, k exist,
not both equal to 0, such that ma + kb = 0.

Proof of this algebraic condition

Part 1 Given a and b are linearly dependent,
prove m, k exist, not both equal to 0, such that ma + kb = 0.

Proof: a and b linearly dependent b = pa, for some p II

b — pa = 0

(—p)a + (1)b = 0

Therefore, m =—p, k = 1 exist, not both 0, such that ma + kb = 0

Part 2 Givenrn, k exist, not both equal to 0, such that ma + kb = 0,

prove a and b are linearly dependent.

Proof: At least one of k and mcannot be 0.
Supposek * 0, then ma + kb =0 can be written
kb = —ma or

m
b = ——a

k

Thus, a and b are linearlydependent.
Note: If m and k are both zero, the statement ma + kb =0 would imply

that Oa + Ob = 0. This statement is true for all vectors a and b,
whether or not they are linearly dependent.
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Example 2 Which of the following vectors are linearly dependent with a = (1,2,—3)?

b= (4,8,—12),c= (2,4,—5)

Sotu t 10 ft You must check to see which vectors are scalar multiples of vector a.
b = (4,8,—12) = 4(1,2,—3) = 4a

Therefore, b and a are linearly dependent.

c= (_i,_,) = —(1,2,—3) = — a

Therefore, C and a are linearly dependent.

If d = ka, k t
then (2,4,—5) = k(1,2,—3) = (k,2k,—3k)

and 2 = k, 4 = 2k, —5 = —3k

This forces k = 2 and k = at the same time, which is impossible.

Therefore, d and a are not linearly dependent. I

E F I N / T / N Two vectors that are not linearly dependent are linearly independent.

Important Fatts about Tito Linear/v Independent Voctors

Geometric

If a and b are linearly independent, then a ' b.

Algebraic

1. Noscalarp exists such that a = pb.
2. If a and b are'-1inearly independent and

ma + kb = 0 then m = k= 0.

Intuitively, this last statement says that the only way that you can add two
non-parallel vectors to obtain the vector 0 is to multiply each vector by the
scalar 0.

Example 3 The two vectors a and bare linearly independent. If xa + (y — 3)b = 0,
then find the values of x andy.

Sot u t 10 ft Since a andb are linearly independent, and
xa + (y — 3)b = 0, then
x = 0, andy —3 = 0.
Thusx=0,andy=3. •
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2.1 Exerci; s

1. Vectors a and b are linearly dependent.
a) What is the geometric relationship

between a and b?
b) State two algebraic equations that are

true relating a and b.
c) What conditions, if any, are imposed

on the scalars in the equations in b)?

2. You are given two vectors x and y such

that xIy. What is the algebraic
relationship between x and y?

3. Use the fact that a vector as a directed line
segment can be drawn anywhere to explain
how two collinear vectors can be
represented by two line segments that are
not collinear.

4. If z = wdwhere w l, then how are
vectors z and d related?

5. Scalars s and t exist, not both 0, such that
sm + tk = 0. How are vectors m and k
related geometrically?

6. Points P and Q are such that PQ = a * 0.
a) If R is any point on line PQ explain why

a and PR are linearly dependent.
b) If T is any point not online PQ explain

why a and PT are linearly
independent.

7. Given thatalic, c ji( b,andd= 5c,
which of the following vectors are linearly
dependent with a?
a) u=3a
b) v=-2b
c) w=7c
d) r=mc
e) t=—6d?

8. List all sets of parallel vectors from among
the vectors a, b, c, d, u, v, w, r, and

9. Given; =(i),
a) write three vectors collinear with a
b) write three vectors linearly dependent

with a
c) write one vector linearly independent

with a.

10. Given b = (4,1,3),
a) write three vectors collinear with b
b) write three vectors linearly dependent

with b
c) write one vector linearly independent

with I'.

and b are linearly independent. Use the
following equations to name vectors that
are linearly dependent with a.
7c + 4a = 0
5b + 2d = 0

ma—ke=0,m,k€IJi,m*0.

12. a) a and b are linearly independent.
What is the geometric relationship
between a and 1'?

b) x y. Are x and y necessarily
linearly independent? Explain.

13. a) p and q are linearly independent
vectors and rp + vq = 0. What
conclusion can you draw about the
scalars r and v?

b) Scalars m and k exist, both equal toO,
such that ma + kb = 0. Are a and b
necessarily linearly independent?

14. Which of the following pairs of vectors are
linearly dependent? Justify your answer.
a) (1,2), (4,8)
b) (—3,2), (—6,3)

c) (8,_2),(_1)
d) (3,6,2), (6,12,4)
e) (—1,—1,6), (6,6,—36)

tof question 7. f) (4,0,1), (4,1,1)
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20. Given that a and b are linearly
independent, find the values of the scalars
in each of the following.
a) sa+tb=O
b) ra+(3—m)b=O
c) (x— 1)a±(y+2)b=O
d) (2z—6)a+(7+3k)b=O

21. a and b are linearly independent
non-zero vectors such that
3a + kb = ma — 5b. Find the values of
the scalars k and m.

22. p and q are linearly independent
non-zero vectors where
5cp + dr —6q =0 and
3q+2p+ r=O.
Find the values of the real numbers c and d.

23. Given that
a = 3b — 2c + 4d,
e = 2b + 6c — 2d,

f= 41, — lOc + lOd + e,

prove that a and fare linearly dependent.

24. Givena=mc40,andb=kd*O,
where c and d are linearly independent,
a) use a geometric argument to prove that

a and b are linearly independent
b) use an algebraic argument to prove that

a and b are linearly independent.

25. a and b are linearly dependent and P,Q, R
are points such that PQ =a and PR =b. D
is any point on the line containing points P
and Q. Prove that scalars rn and k exist such
that QD = ma, and QD = kb.

26. a and b are linearly independent. O,A, B,
and Care points such that OA = a, OB = b,
and OC = 4a — 3b. Prove that points A, B,
and C are collinear.

B

15. ABCD is a parallelogram. Name vectors
linearly dependent with each of the
following.
a)AB c)AE
b)AC d)BD

A D

C

16. Explain why each of the vectors AB, AC,
and BD from question 15 is linearly
independent with each of the other vectors.

17. Given the points P(—2,4), Q(—3,7), and
R(—4, 10),

a) write PQ and PR in component form
b) prove that PQ and PR are linearly

dependent
c) use part b) to draw a geometric

conclusion about the points P. Q, and R.

18. Given the points A(1,3,—2), B(5,5,4), and
C(—l,2,—5),

a) write AB and AC in component form
b) prove that AB and AC are linearly

dependent
c) use part b) to draw a geometric

conclusion about the points A, B, and C.

19. a) a $' b. For what real numbers m and k
is ma + kb = 0? Are a and b
linearly dependent?

b) aIIb,andIaI=IbForwhatreal
numbers m and k is ma + kb =0? Are
a and b linearly dependent?
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In Search of a Solution for a System
with Three Variables: Elimination

Pr1h'n
Solve the linear system
3x— y+2z—l
5x+3y+ z=17
x—2y—3z=11 ®

Soluriu

One method you can employ to find the solution of a system of 3 equations
in 3 variables is elimination. Another method using matrices will be found
on page 95.

The first step in elimination is to obtain two equations in two variables by
eliminating one variable from each of two different pairs of the original
equations.

Eliminate z from and ©.
2xaJ lOx+6y+2z=34 ®

3x— y+2z=—1
®—@ 7x+7y =35 ®
Eliminate z from aj and 5J.

3xaJ 15x+9y+3z=51 ©
x—2y—3z=11 GJ

+ J 16x + 7y = 62 ©

Now eliminate one of the variables, say y, from the two equations in two
variables, ® and.
—© —9x=—27

x= 3

By back-substitution you can find y = 2 and z = —4, giving the solution
(x,y,z) = (3,2,—4)



74 Chapter Two

2.2 Linear Dependence of Three Vectors

In the last section you studied the linear dependence of twovectors. What
could it mean to say that three vectors a, b, and c are linearly
dependent?

If two vectors a and b are linearly dependent, recall that the algebraic
condition between the vectors can be expressed in two equivalent ways.
1. m and k exist, not both 0, such that ma +kb = 0.

2. Some s DI exists such that b sa

The definition chosen for the meaning of the linear dependence of three
vectors will be an extension of the first algebraic condition for two vectors
to be linearly dependent.

D E F / N I T N
Three vectors a, b, and c are linearly dependent if and only if m, k, and p
exist, not all equal to 0, such that ma + kb + pc = 0 m, k, p F.

Example 1 will demonstrate the geometric significance of this equation.

Example 1 Suppose a, b, and c are linearly dependent vectors in V3 such that
3a + 2b — 4c = 0. Find a geometric relationship among a, b, and c.

Solution Three vectors in 3-space are not usually coplanar. You will show that the
above algebraic condition forces the three vectors to be parallel to the same
plane.

Points P. Q, and R can be selected such that PQ = 3a, and QR = 2b.

ThenPQ+QR—4c=0.
Q b

Thus, 4c = PQ + QR. 2b
But, PQ + QR = PR R
thus, 4c=PR. 4C

Now any three points lie in one plane, that is, are coplanar. Thus, points F,
Q, and Rare coplanar, and segments PQ, QR,andPR lie in this same plane.
So, 3a, 2b, and4c all lie in this plane. Since aI3a and bII2b and

cII—4c, then a, b, and care parallel to this plane.

Hence, a, b, and c are parallel to the same plane. •

Note: Two vectors are collinear if directed line segments that represent
them can be translated so that each segment lies along the same line.
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D E F I N / T N
Three vectors are said to be coplanar if directed line segments that represent
them can be translated so that each segment lies in the same plane U.
These vectors can be coplanar in any one of a family of planes parallel to
plane H.

You should visualize this definition using the top of your desk and three
pencils as a, b, and c to realize that three vectors being coplanar is the
exception rather than the rule.

Two non-collinear vectors always lie in the same plane. (Place two pencils,
a and b, on your desk. If you introduce any third vector (a third pencil, c),
it does not have to lie in this plane. (The pencil can make a non-zero
angle with the desk.)

R P E R - Three vectors are linearly dependent if and only if the three vectors are
coplanar.

Proof of coplanar property
Part 1 Given three linearly dependent vectors a, b and c in V3.prove a,
b, and c are coplanar.

Proof:

You will need to show that three line segments representing a, b, and C,
can be drawn in such a way that the line segments form a triangle. The
sides of a triangle must lie in the same plane.

Since a, b and care linearly dependent, then m, k, p exist such that
ma + kb + pc = 0, where not all of m, k, and p are equal to 0.

Suppose m * 0. Then distinct points P and Q exist such that PQ = ma.

Let R be the point such that QR = kb.

Then ma + kb + pc = 0 becomes
b

PQ + QR + pc = 0.
— ma_,—N kb

Thus, pc = —(PQ + QR). ______________ R
But PQ+QR=PR C

thus, pc = —PR.

Now any three points lie in one plane, that is, are coplanar. Thus, points P,
Q, and Rare coplanar, and segments PQ, QR, and PR lie in this same plane.
So vectors ma, kb andpc all lie in this plane. Since aIma, bilk/iand

clipc, then a, b, c are parallel to this plane.

Hence, a, b, and c are coplanar.
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Part 2 Given a, Ii, and c are coplanar, prove a,b, and c are linearly
dependent, that is, prove that ma + kb + pc = 0, where not all of m, k,
and p are equal to 0, m, k, p IR.

Proof:

Case 1: No two vectors are linearly dependent.

Select points P and Q such that PQ = a.

R

Since b 4(' a, a point S. not on line PQ, exists such that QS = b.

Sincec 4{' a, and a, b, c are coplanar, then a point T exists such that
PT = c, where T is in the plane PQS, but T is not in line PQ.

Since b ' c, the lines containing segments PT and QS must intersect at
some point, say R.

Thus, for some real numbers k and t,
QR = kb, and PR = tc

but PQ+ QR+ RP=0

thus a+ kb— tc=0

thus (1)a + kb + (—t)c= 0.

Therefore, rn = 1, k = k, and p = —t exist, not all 0, such that
ma + kb + pc = 0.

Therefore, a, b, and c are linearly dependent.

Case 2: Two vectors are linearly dependent.

Suppose a and b are linearly dependent. Then w R exists such that
b = Wa.

Thus, wa — b = 0.

Thus, wa + (—1)b + (0)c = 0.

Therefore, rn = w, k = —1, and p = 0 exist, not all 0, such that
ma + kb + pc = 0.

Therefore, a, b, and c are linearly dependent.
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A relationship similar to the second algebraic condition for two dependent
vectors is true for three linearly dependent vectors.

You know that a, b, and c being linearly dependent implies that m, k,

and p exist, not all 0, such that ma + kb + PC = 0.

Suppose m * 0. Then ma + kb + pc = 0 can be written

ma = —kb — pc, or

m m

This relationship is described by saying that vector a is a linear
combination of vectors b and c.

Thus the previous property can now be written in terms of
linear combinations of vectors.

A E A T
a, b, and c are linearly dependent if and only if at least one vector can
be expressed as a linear combination of the other two vectors.

Example 2 a) Prove the vectors d = (2,3), e = (6,1), f= (4,2), are linearly
dependent.

b) Express one of the vectors as a linear combination of the other two
vectors.

coluiion a) A geometric proof is simpler here. You must show that d, e, and f
are coplanar.
The three vectors d, e, and fare 2-space vectors (in V2),so they are
coplanar in the plane of this 2-space. But three coplanar vectors are
linearly dependent. Thus, the three vectors d, e, and fare linearly
dependent.

b) If d is a linear combination of e and f, then
d = se + tf,

or (2,3) = s(6,1) + t(4,2)
or (2,3) = (6s + 4t, s + 2t)
Equating components gives

2 = 6s + 4t
3 = s + 2t

Solving these equations gives s = —1 and t = 2.

Thus,d can be expressed as a linear combination of e and f, namely
d=—e+2f. U

Note: Part b) of Example 2 provides an algebraic proof for part a) but the
algebraic argument is more complex than the geometric one.
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Example 3 Prove the following vectors are linearly dependent. Express one of the
vectors as a linear combination of the other two vectors.

a= (2,1,3),b= (3,—5,4),c= (12,—7,17)i You can use either of the two equivalent conditions for linear
dependence to prove that a, b, and c are linearly dependent. You will
see a proof using both conditions.

When employing the first condition as in method 1, additional algebra
must be performed to obtain a linear combination. If the second condition
is used as in method 2, the linear combination appears as part of the proof.

/ I Prove m, k, and p exist, not all 0, such that ma +kb + PC = 0.

You must find m, k, and p such that

m(2,1,3) + k(3,—5,4) + p(l2,—7,17) = (0,0,0)

or, (2m,m,3rn) + (3k,—5k,4k) + (l2p,—7p,17p) = (0,0,0)

or, (2m + 3k + 12p,m — 5k —7p,3m +4k + l'7p) = (0,0,0)

Hence, 2m + 3k + l2p = 0
m—5k-- 7p=O

3m + 4k + l7p = 0

You can solve this system by the method of elimination or by the use of
matrices as described on page 73 and page 95 respectively. Elimination
will be used here.

Eliminate k from 1D and®
5x®÷3x© 13m+39p=0 ®
Eliminate k from ® and ®
4x©+5x® 19m+57p=0 ®
Eliminate m from® and®

®— 13 —®÷ 19 0+Op= 0,whichistrueforallvaluesofp.
Select p = 1. From®, m = —3. Substituting into® gives k = —2.

Hence, real numbers m = —3, k = —2, p = 1 exist, not all zero, such that
ma + kb + C = 0.

Hence the three vectors are linearly dependent.

Using these values, ma + kb + pc = 0 gives —3a — 2b + c = 0

Solving for a, —3a = 2b — c or a = +
3 3

This expresses a as a linear combination of 1' and c.
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i1t'(Ii&j 2 Prove that at least one of a, b, and c is a linear combination of
the other two vectors.

Suppose a = mb + kc.Then,
(2,1,3) = m(3,—5,4) +k(12,—7,17)

or (2,1,3) = (3m,—5m,4m) + (12k,—7k,17k)
or (2,1,3) = (3m + 12k,—5m — 7k,4m + 17k)

Thus,2= 3m+12kQ
1 = —5m — 7k
3= 4m+17k®

Eliminating m from IJand®

5x+3xaJgives 13=39k,ork=1.

Substituting in gives 1 = —5m —

7(i), or m = —&

Becausem and k must satisfy all three equations you must check these
values in equation J.

Substitutingin , L.S. = 3, R.S. = 4(_) + l7() = = 3 = L.S.

Since a = —b + is a linear combination of b and c, then a, b,
3 3

and c are linearly dependent. •

Note: Method 2 will not work if a and b are multiples of each other. In
this case, it will be necessary to show either a or b is a linear
combination of the other two vectors. Method 1 will always work.

U 44 44 A A V
Iiiiiar Dopi'iicl&';ice 4 Five or Three Vectors

two vectors: a, b three vectors: a, b, c

geometric
condition

a, b, care coplanar

algebraic 1. m, k exist, not both 0, 1. m, k, p exist, not all 0,
conditions such that such that

ma+kb=0, or ma+kb+pc=0, or
2. /, = sa, for some s 2. at least one is a linear

combination of the other
two; for example
c=sa+tb s,t€
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2.2 Exercises

1. Vectors a, b, and care linearly
dependent.
a) What is the geometric relationship

among a, b, and C?
b) State two algebraic equations that are

true relating a, b, and c.
c) What conditions, if any, are imposed

on the scalars in the equations in b)?

2. You are given three coplanar vectors x, y,
and z. State two equations showing the
algebraic relationship among x, y, and
z.

3. Explain why three coplanar vectors can be
represented by three directed line segments
that are not coplanar.

4. a) The vector kis a linear combination of
the vectors d and e. What is the

geometric relationship among k, d,
and e?

b) Scalars a, 1', and c exist for the vectors in
a) such that a k + bd + ce = 0. What,
if anything, must be true about the
scalars a, b, and C?

5. Vectors a and b are linearly dependent.
Vectors c and d are such that
c= 3a + 2bandd= 4a+ 2c.
a) Use a geometric argument to show that

c and d lie in the plane of a and b.
b) Use an algebraic argument to show that

c and d lie in the plane of a and b.

6. a) Prove that 0 = (0,0) is linearly
dependent with every vector in V2.

b) Prove that 0 (0,0,0) is linearly
dependent with every pair of vectors
in V3.

7. Prove that the vectors a = (4,1,2),
b = (—1,0,3), and c = (2,1,8) are linearly
dependent.

8. Prove the vectors in each of the following
are linearly dependent. In each case express
one of the vectors as a linear combination
of the other two vectors.
a) a = (2,3,—4), b = (—1,6,2),

c = (8,—3,—16) _____
b) d = (—5,—6), e = (2,3), f= (—1,—3)

c) q= (4,0,1),h= (—8,15,—12),
n = (0,3,—2)

d) p = (6,—4), q = (—3,9), r = (—3,2)

9. Thevectorsa= (0,—1,—4),b= (1,5,—i),
and c = (3,k,5) are linearly dependent.
Find the value of k.

10. The vectors x = (8,—1,3), y = (—4,2,m), and
z = (4,5,7) are coplanar.
Find the value of m.

11. Given the vectors u = (1,2), v= (3,2), and
w = (—1,3). If possible, write a = (3,6) as a
linear combination of each of the
following.

c) uandvonly
d) u,v,w

12. Repeat question 11 fora = (—1,2).

13. Given the vectors u = (2,0,0), v = (0,—1,2),
w = (1,0,3), and t = (0,0,1). If possible,
write a = (0,—3,6) as a linear combination
of each of the following.

a) uandvonly
b) u,v,andwonly
c) u,v,w,andt

14. Repeat question 13 for a = (5,—1,3).

15. If any two of three vectors are linearly
dependent, then prove that the three
vectors are linearly dependent.

16. Given a = (2,1,—3), b = (0,2,5) and
c = (—4,—2,6), prove that constants m, k,
and p, not all zero, exist such that
ma + kb + PC = 0

a) uonly
b) vonly
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2 i Linearly Independent Vectors and
Basis Vectors

Two vectors can be linearly dependent or linearly independent but not
both. You know that three vectors can be linearly dependent. You are now
ready to define linear independence for three vectors. You will do this in
such a way that three 'rectors (in general, any number of vectors)
can be linearly dependent or linearly independent, but not both.

D E F I N I T, N
Three vectors that are not linearly dependent are linearly independent.

Geometrically this definition suggests that three linearly independent
vectors cannot be coplanar.

Also, three vectors being linearly dependent means that m, k, and p exist,
not all equal to 0, such that ma + kb + PC = 0. This fact implies that if
the only values that can be found for m, k, and p such that
ma + kb + PC = 0 are m = k = p = 0, then a, b and c are not linearly
dependent. Hence, the three vectors are linearly independent.

S Li A4 Al A A Y
Liiit'ai IiiI&''iiIciic )/ I iI Iii &' !t

two vectors: a, b three vectors: a, b, c

geometric a .4f' I'
condition

a, b, c are not coplanar

algebraic 1. If ma + k1 = 0 then If ma + kb + pc = 0 then
conditions m = k = 0, or m = k = p = 0

2. no s exists such that
b=sa, s€t11

Two linearly independent vectors you have met in V2 are the unit vectors
i and j In chapter 1 you learned that any vector in V2 can be written
m i +kj, where m and k are scalars. Thus every vector in the plane of i

and j can be expressed as a linear combination of i and j.

In Example 1 you will find that a similar fact is true for every pair a, bof
linearly independent vectors, that is, any vector in the plane of a and I'
can be expressed as a linear combination of a and b.
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Example 1 If a and b are two linearly independent vectors, and c is any other
vector coplanar with a and b, prove that c is a linear combination of a
andb.

a fl on You will need to show that scalars s and t exist such that c =sa + tb.

Since a and b are linearly independent, they are not parallel. But they are
coplanar. Now the vectors a and b can be translated in their common
plane so that each becomes a position vector with its tail at the origin of a
2-space coordinate system. Let a = OA and b = OB

Case 1: c is not parallel to eithera orb. Y C

Let c = OC. From C draw a line parallel to OB
intersecting OA orOA extended

atpointD.ThenOC=OD+DC.
X

Since D is in OA, a real number s exists such that OD = sa.

Since CD is parallel to OB, a real number t exists such that DC =tb.

Thus, OC = sa + tb or c = sa + tb. Hence, c is a linear combination of
a and b.

Case 2: c is parallel to either a or b.

Suppose c is parallel to a. Then a real number p exists such that c =pa.
Hence, c = pa + Ob. Hence, c is a linear combination of a and b. •

The results of Example 1 are true for any two linearly independent vectors
in V2. Two linearly independent vectors form a basis in the 2-space plane
in which they lie.

o E F / N , T / N Any two linearly independent vectors a and b form a basis for V2.

If c= sa + tb, then s and t are called the components of c in the basis

{a,b).

Example 2 Prove that the components of a vector in the V2 basis {a,b} are unique.

Solution Suppose that a vector c has two pairs of components (s,t) and (p,q)in
basis {a,b}.

You will need to show that (s,t) and (p,q) are the same ordered pair.

Eecause both ordered pairs are components, you have two equations for
c, namely c = sa + tb and c = pa + qb.

Thus, sa + tb = pa + qb or, (s — p)a+ (t — q)b = 0.

Since {a,b) is a basis in V2. a and b are linearly independent.
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Hence, s — p = 0, and t — q = 0, or s = p and t = q. Thus, the components of
c in a,b} are unique. U

The most important basis in V2 consists of the unit vectors i = (1,0) and

j = (0,1). You will prove i and j form a basis for V2 in Example 4.

You have now seen that if two vectors in 2-space or in 3-space are linearly
independent then any third vector in the same plane can be written as a
linear combination of the two vectors.

As you will see in the following example, every vector in 3-space can be
written as a linear combination of three linearly independent vectors.

In other words, it is impossible for four 3-space vectors to be linearly
independent.

Example 3 Ifa, b, and c are three linearly independent vectors, and d is any other
vector, then prove that m, k, p R exist such that d = ma + kb + PC.

cc liiiion You will make use of the fact that the plane containing vectors a and b
intersects with the plane containing C and d.

a, b, C, and d can be translated so that each becomes a position vector
with its tail at the origin of the 3-space coordinate system. Since the three
vectors a, b, and C are linearly independent, the three vectors are not
coplanar.
Let fl1 be the plane containing a andb.
Let fl2 be the plane containing C and d.
Since U1 and 112 are distinct non-parallel planes, they intersect in a line L.
Let v be any vector along lineL. Then v lies in the plane 11k. Hence v is a
linear combination of a and b.

Thus,v=sa+tb@ C -j
AlsovliesinlT2,sov=Wd+ rC
From 1j and ©
sa+tb—wd±rc /
Thus, wd = sa + tb — r
or, d = -f-a + — -C (w * 0, see note).w w 1

Thus, d = ma + kb + pc,

a

L

b
s t r

wherem =—,k=—,p=——.
w w w - -

Note: The scalar w can not be 0, otherwise vand c would be scalar
multiples and hence collinear. Thus, C would be coplanar with b
and a, which is not true.
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If three vectors a, b, and c are linearly independent then the vectors can
not be coplanar but must exist in 3-space. Example 3 shows that any other
vector in 3-space can be expressed as a linear combination of these vectors
a, b and c.

The vectors a, b and c are said to form a basis for V3.

/3 E F I N I T i o N Any three linearly independent vectors a, b, and Cform a basis for V3.

If d = ma + kb+ pc, then the scalars m, k, and p are called the
components of d in the basis (a,b,c}.

The most important 3-space basis consists of the unit vectors i = (1,0,0),

j= (0,1,0), and k = (0,0,1) that you met in chapter 1. You will prove i,

j and k form a basis for V3 in Example 4.

Example 4 a) Prove that the vectors i = (1,0) and j =(0,1) form a basis for V2.

b) Prove that the vectors i = (1,0,0), j = (0,1,0), and k = (0,0,1) form a
basis for %/3.

Solution a) Vectors i and j form a basis for V21f they are linearly independent.
Hence, you must prove that m i + tj = 0 implies that m = t = 0.

Suppose mi+tj=0
Thus m(1,0) + t(0,1) = (0,0)
or (m,O) + (0,t) = (0,0)
or (m+0,0+t)=(0,0)
Equating components you obtain m = 0 and t = 0. Hence, i and j
form a basis for V2.

b) Vectors i, j, and k form a basis for V if they are linearly
independent. Hence, you must prove that rn i + tj + pk =0 implies
that m = t = p = 0. Suppose ml + tj + pk = 0

Thus m(1,0,0) + t(0,1,0)+ p(0,O,i) = (0,0,0)
or (m,0,0) + (0,t,0) + (0,O,p) = (0,0,0)
or (m+0+0,O+t+O,O+0+p)=(0,0,O)
or (m,t,p) = (0,0,0)

Equating components you obtain m = 0, t = 0, and p = 0. Hence, i, j,
and k form a basis for V3. •
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In Search oi Vectors in Spaces
with Dimension Higher than Three

Vectors in 2-space can be represented geometrically by directed line
segments or algebraically by ordered pairs. The set of such vectors is called
"2. Vectors in 3-space can be represented geometrically by directed line
segments or algebraically by ordered 3-tuples. The set of such vectors is
called '/3.

Are there also sets of vectors V4 V5 '/6, and so on?

In that part of Finite Mathematics called matrices you will find that ordered
4-tuples, ordered 5-tuples etc. are used to represent such things as the
inventory of a factory or the wins of various teams.

.
City

.Monitors .Printers Disk
.Drives Keyboards

Weston 10 12 25 15

Guelph 20 24 44 25

Kingston 12 15 28 10

City of Games Games Games Games Points Points
Team Played Won Lost Tied For Against
Toronto 1 1 0 0 21 20

Ottawa 1 1 0 0 20 11

Winnipeg 1 0 1 0 11 20

Hamilton 1 0 1 0 20 21

Each set of ordered n-tuples, n kJ, makes up the set of vectors V provided
that an addition rule can be defined so that addition has all of the
properties held by '/2 and by '/3.When a set of ordered n-tuples has these
properties V is called an n-dimensional vector space. There is no readily
available geometric model for vectors of more than three dimensions. (The
corner of a room provides a model for three mutually perpendicular axes.
Can you imagine four mutually perpendicular axes?) Nevertheless, ordered
n-tuples can exhibit all the other properties of vectors—all you lose is the
geometric model.
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I'r)Ik'r!it' ol an ,i—di,ncnsioi,aI iech'r c/'act'

Definition of addition

If a= (a1,a2,a3,.. .,a) andb= (b1,b2,b3,.. .,b) then
a + b = (a1 + b1,a2 + b2,a3 + b3,. . .,a + b)
Properties of addition

V, is closed: a, b V,, implies (a +b) €V,,
Addition is associative: (a + b) + c = a + (b +c)
A neutral element 0 EV,, exists such that a + 0= 0 + a for all a V
Each a V. has an inverse —a such that a + (—a) = (—a) + a = 0

Definition of scalar multiplication

If k is a scalar and a = (a1,a2,a3,. . .,a) then ka = (ka1,ka2,ka3,.. .,ka)

Properties of scalar multiplication

ka V
(km)a = k(ma) [m is a scalar.]

k(a + b)= ka+ kb
(k + m)a = ka + ma

The linear dependence and linear independence of vectors in V,,can be
defined in an manner similar to that for V2 and V3.

k vectors a1, a2, a3,. . ,a, are linearly dependent if and only if k real
numbers exist, m1, m2, m3,. .,m,, not all zero, such that

ma1 = 0

k vectors a1, a2, a3,. . are linearly independent if they are not linearly
dependent.

If the vectors are linearly independent, then ma1 = 0 implies
= m2 = m3 = . . = m = 0.

Any k linearly independent vectors in a space of k dimensions form
a basis for Vk.

Activity

Find applications of vector spaces of dimension higher than three.
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2.3 Exercises

1. Vectors s, t,and rare not coplanar, and
ws + xt + zr = 0. What, if anything, is
true about the scalars w, x, and z?

2. x 9' y,and z does riot lie in the plane of
x and y. Which of a, b, c, andd
are linearly dependent with x and y?
a=3x+5y b=4a+3x
c=3x+5z d=a—b

3. Vectors a and b are linearly independent.
Scalars x,y, m, and k are such that
c = xa +yb and d = ma + kc. Prove

that a, b, c, and d are coplanar.

4. If a, b, and c ae linearly independent,
then prove that u = a + 2b + c,
v=a+3b—2c,andw=a+b +4c
are linearly dependent.

5. Prove that a= (4,1,2), b = (—1,0,3),
and d = (3,1,4) are linearly independent.

6. Determine whether or not the three vectors

in each of the following are linearly
dependent. In each case state the geometric
significance of the result.

a) (0,1,3), (—3,5,2), and (—6,11,7)
b) (1,2,3), (—3,0,4), and (—1,4,6)
c) (4,1,8),(—2,1,0),and(0,3,16)
d) (1,2,4), (2,—3,—i), and (—l,—9,—13)

e) (3,5,1), (2,—2,—2), and (—4,—4,0)

7. Given the vectors a = (2,—5) and b = (3,1).

a) Prove a and b form a basis for V2.
b) Express each of the following vectors as

a linear combination of a and b.
c = (7,—9) d = (—2,—29) e = (6,—15)

8. Which of the following pairs of vectors
form a basis for V2?

a) (3,4), (2,3) c) (4,—6), (6,—9)

b) (1,—3), (4, 2)

9. Given the vectors a = (4,1,0), 1, = (2,—3,4),
and c = (6,1,4).
a) Prove the vectors a, b, and c

form a basis for V3.
b) Express each of the following vectors as

a linear combination of a, b, and c.
d= (—8,—4,—8)e= (18,13,4)
f= (14,6,4).

10. If ma+ kb + PC = 0, then either a, b,
and c are coplanar or m = k = p = 0. Prove.

11. Vectors a, band care linearly
independent. Vectors d, b and c are not
coplanar.
d=rna+kb+pc*0.
e=rb+tc*0
Prove that d and e are linearly
independent
a) using a geometric argument
b) using an algebraic argument.

12. Given vectors a = (w + 1,3w + 1), and
b=(2,w+2).
a) If (a,b) is not a basis for V2 find the

value(s) for the scalar w.
b) If Ca,b} is a basis for v2 find the value(s)

for the scalar w.

13. Given vectors a = (m,0,0), b = (0,m,1),
and c =(0,l,m).
a) If (a,b,c) is not a basis for V3 find the

value(s) for the scalar m.

b) If {a,b,c} is a basis for V3 find the
value(s) for the scalar m.

14. a) State an algebraic condition for four
vectors a, b, c, and d to be linearly
dependent.

b) The three vectors a, b, and c form a
basis for V3, and dis any other 3-space
vector. Prove that a, b, c, and d are
linearly dependent.



MAKING
The Prisoners' Dilemma—a Game

The game known as the Prisoners' Dilemma was introduced in 1950 by the
Canadian-born mathematician Albert W. Tucker. The game involves the
scenario of two suspects in a crime who are prevented from
communicating with each other. Each is given one of two choices.

C )-()pcraliun maintain that both are innocent
N: n no-()pcrdti()t1 accuse the other of having committed the crime alone

It is usually in the individual's self-interest to accuse the other. Yet when
both accuse, they reach a bad outcome. What is good for the prisoners
as a pair, is to maintain that both are innocent.

This simple model can be used for a crucial international problem—the
arms race between the USA and the USSR. Each of these two superpowers
can independently select one of two policies.

C cu-)pcraliwl disarm, or at least agree to a partial ban on armaments
N: rmt1o-()I)er1lI()n: heavily arm in preparation for any war contingency

Here, as in the original game of Prisoners' Dilemma, there are four possible
outcomes, as indicated by the four ordered pairs
(USA's choice, USSR's choice) that follow.

(C,C) Both the USA and the USSR co-operate by choosing to disarm. Most
people would see this as the most preferred outcome, even though
there are certain risks.

N, N) Both the USA and the USSR refuse to co-operate by deciding to
arm. From a global standpoint, most people would agree that this
is the worst possible outcome.

(N,C) The USA decides not to co-operate and arm while the USSR elects
to co-operate and disarm. This unilateral disarmament by the USSR
would be the one preferred most of all by the USA and the one least
preferred by the USSR.

(C. N) The USSR decides to arm while the USA elects to disarm. This
would be the worst possible' outcome for the USA and the best'
for the USSR.

The following matrix models this game.

To consider this game mathematically it is customary to assign a payoff
from 0 to 5 for each event. Here
(0,5) signifies a payoff of 0 for the USA and a payoff of 5 for the USSR.

USSR
C N

C both disarm (4,4) favours USSR (0,5)
USA

N favours USA (5,0) arms race (2,2)
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Should the USA select strategy C or strategy N? The USA can see what
happens if the USSR selects C. The USA will receive a payoff of 4 for
co-operating by disarming but a payoff of 5 for arming. Thus, the USA
will get a better payoff by arming.

Now if the USSR selects strategy N, that is, the USSR decides to arm, the
USA will receive 0 for disarming, and 2 for arming. Again the USA has the
better payoff if it chooses to arm.

In either case, the USA gets a better payoff by arming than by disarming.

The same argument will lead the USSR to decide upon N, that is, no
co-operation by arming. Thus, when each nation attempts to maximize its
own payoff independently, the pair is driven into the outcome (N,N) with
the payoff (2,2). The best payoff, (4,4), appears unattainable when the
game is played in an atmosphere of nonco-operation.

Even if the USA and the USSR agree in advance to pursue together the
globally optimal solution (C,C), this outcomes is fraught with problems. If
either the USA or the USSR alone reneges on the agreement and secretly
arms, it will benefit. Each country would be tempted to go back on its
word and select N.

In real life, people, and sometimes nations, do manage to avoid the
nonco-operative outcome in the game of Prisoner's Dilemma. The game is
usually played within a larger context, where other incentives have their
part to play. Also, the game is usually played on a repeating basis, so that
elements such as reputation and trust also play a role. Players realize the
mutual advantages in co-operation. Nations can also resort to other helpful
measures, such as better communication, and more reliable inspection
procedures.
The game of Prisoners' Dilemma pinpoints the dynamics behind a
frequently occurring paradox. The nonco-operative outcome is not as
satisfactory as a co-operative solution in which one is ready to allow one's
own selfish interests to take second place.



90 Chapter Two

2.4 Points of Division of a Line Segment

When two directed line segments PQ and QR are linearly dependent, then
the points P, Q, and R lie in a straight line. In this situation any one point
divides the line segment joining the other two points into some ratio.
Vectors can be used to find a special relationship among these points.

First recall the following about points of division of a line segment.

In the diagram, point Q divides PR internally in the ratio 2 : 3.
Point M divides XV externally in the ratio 5 :2.
Point K divides AB externally in the ratio 2: 5.

2Q R
2

2
A

.- B
5If direction is taken into account, as with vectors, internal division can be

distinguished from external division by using negative signs.
Thus, if the direction from point X to point Y is taken to be positive,
the point M divides XV externally in the ratio 5: (—2).
Similarily, if the direction from point A to point B is taken to be positive,
the point K divides AB externally in the ratio (—2): 5.

By convention the first term of the ratio is associated with the first point
mentioned, that is, the division is from the first point mentioned to the
dividing point, then from the dividing point to the second point
mentioned. Observe that the point of division is closer to the point
associated with the smaller term of the ratio.

Example 1 If point D divides the line segment PR internally in the ratio 2: 3, and 0 is
any fixed point, then express OD in terms of OP and OR.

Solution I The points are related as in the figure.

The key to solving this problem is to write an equation relating any two
vectors along line PR and then to replace those vectors with position
vectors by subtraction.

From the diagram PD = PR

But, PD = OD — OP. and PR = OR — OP

Substituting in Q gives

OD-OP=? (OR-OF)

OD=OR—OP+OP, hence,OD=OR+OP. U
5 5 5 5

23 H
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Solution 2 From the figure, replacing OD by the longer route OP + PD,
OD = OP + PD

But PD=PR,andPR=—OP+OR
5

Thus OD=OP+PD=+
=OP+(-OP+OR)

= OP — OP + OR
5 5

Thus D=.OP+OR,asbefore. U
5 5

Observe in Example 1,

1. the number 2 in the ratio 2 : 3 is connected to the point P in the diagram
but multiplies OR in the equation

2. the number 3 in the ratio 2: 3 is connected to the point R in the diagram
but multiplies OP in the equation

3. the sum of the multipliers of OP and OR, namely, + = 1

4. the denominator 5 = 2 + 3.

Do a few more examples like Example 1 to see if these patterns continue.

Example 2 Ifpoint D divides the line segment PR externally in the ratio 5 : 3, and 0 is
any fixed point, then express OD in terms of OP and OR.

Soltitioii The points are related as in the figure. Again, the key is to write an
equation relating any two vectors along PR. From the figure,

5

Usingsubtraction of position vectors for DR and DP gives

OR-OD=(OP-OD)

5 5

OR-OP=-OD _____________________

HencOD=OR-OP. U
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Example 2 shows the same patterns as Example 1, if the ratio is considered
as 5 : (—3),
1. the number 5 in the ratio 5 : (—3) is connected to the point P in the

diagram but multiplies OR in the equation.
2. the number 3 in the ratio 5 : (—3) is connected to the point R in the

diagram but multiplies OP in the equation.

3. the sum of the multipliers of OP and OR, namely,—- + = 1.
4. the denominator 2 = 5 + (—3).

It appears that the point D that divides segment PR in the ratio m : k

satisfies the following relationship. OD = k OP +
m

OR
m+k m+k

You will prove this in the following argument.

Proof of Internal/External Division Property

Given point D divides the line segment PR in the ratio m : k. For internal
division m and k are positive. For external division the smaller of m and k
is negative. If 0 is any fixed point, prove that

OD= k OP+ m OR
(m+k) (m+k)

Proof:
m

m k k
R P D

The diagrams for internal and external division indicate that

m+k
m

m+k
OD-OP= m OR- m

OP
m+k m+k
_____ m

m+k m+k

Thus, OD = k + m
m+k mi-k

Note: Using the notation OD = d, OP = p. and OR = r, the property
may be written

m+k m+k
You can now use these results as a short cut for doing Examples 1 and 2.
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Example 3 If point D divides the line segment PR as indicated, and 0 is any fixed
point, then express OD in terms of OP and OR.
a) internally in the ratio 2:3 b) externally in the ratio 5:3

Solution a) b)
D divides PR internally, 2: 3 D divides PR externally, 5 : (—3)

5

Herem=2,k=3,m+k=5 Herem=5,k=—3,m +k=2

Thus,OD=OP+OR ThusOD=—OP+OR
5 5 2 2

Example 4 Find the coordinates of the point D that divides the line segment joining
points P(1,2,3) and R(2,—4,3)
a) internally in the ratio 5:7 b) externally in the ratio 3 :2

Solution Let the fixed point 0 be (0,0,0), and D have coordinates (x,y,z).

Thus, OP = (1,2,3), OR = (2,—4,3), and OD = (x,y,z).
a) Herem=5,k=7,andm+k=12.

Thus OD = OP + OR, and
12 127— 5

(x,y,z)= (1,2,3) + (2,—4,3)

(7 1421\ (10 2015(x,y,z) = i —,——,— i + —,——,—
\12 12 12/ \12 12 12
(17 6 36

(x,y,z) —
\12 12 12

Thus, the point of division D has coordinates \12 2
b) Herem=3,k=—2,andm+k=1.

Thus OD = —20P + 30R

(x,y,z) = —2(1,2,3)+ 3(2,—4,3)

= (—2,—4,—6) + (6,—12,9)
= (4,—16,3)

The point dividing PR externally in the ratio 3:2 is (4,—16,3). •
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2.4 Exercises

1. Draw a diagram showing a point D
dividing the line segment PR as follows.
a) internally in the ratio 2: 5
b) externally in the ratio 2 : 5

2. Point D divides the line segment PR
internally in the ratio 4: 3, and 0 is any
fixed point. Express OD in terms of OP and
OR as follows.
a) using either method of Example 1
b) using the point of division formula

3. In each of the following, find the vector OD
such that point D divides the line segment
PR internally in the indicated ratio, where
o is any fixed point.
a) 3:5 b) 4:1 c) 7:2 d) 6:11 e) 1:1

4. Point D divides the line segment PR
externally in the ratio 4: 3, and 0 is any
fixed point. Express OD in terms of OP and
OR as follows.
a) using the method of Example 2
b) using the point of division formula

5. In each of the following, find the vector OD
such that point D divides the line segment
PR externally in the indicated ratio, where
O is any fixed point.
a) 3:5 b) 4:1 c) 7:2 d) 6:11 e) 1:2

6. The point A divides the segment PQ
internally in the ratio 2: 3. The point B
divides AQ externally in the ratio3: 4. If 0
is any fixed point, then express OB in terms
of OP and OQ.

7. Point D divides segment PR in the ratio
m k. Describe the position of the point D
with respect to points P and R in each of
the following cases.
a) m O.k 0, m k
b) m0,k0,mIlkI
c) k=0

8. Find the coordinates of the point D that
divides the line segment joining P(7,8) and
R(—4,5) internally in the ratio 3 : 7.

9. Repeat question 8 for the following ratios.
a) 2:5, internally d) 11:3, externally
b) 7 : 6, internally e) 3:11, externally
c) 1:1 f) 1:2, externally

10. Find the coordinates of the point D that
divides the line segment joining P(3,2, 1)
and R(5,6,3) internally in the ratio 5 : 7.

11. Repeat question 10 for the following ratios.
a) 5 :2, internally d) 3: 13, externally
b) 9:7, internally e) 3:2, externally
c) 1:1 f) 2:1, externally

12. Point Q lies on the line PR. 0 is any point

such that OQ = sOP + OR.
11

a) Find the value of s.
b) Into what ratio does the point Q divide

the segment PR?

13. The point Q divides the segment PR
internally in the ratio 2:1. The point A
divides the segment PQ externally in the
ratio 6: 5. The point T divides PA internally
in the ratio 2 : 3. If 0 is any point, then
express OT in terms of OA and OR.

14. Given the triangle ABC with vertices A(3,8),
B(—1,—6), and C(7,4). D, E and F are the
midpoints of sides BC, AC, and AB
respectively.
a) Express OD, OE, and OF as

ordered pairs.
b) Find the coordinates of the point K

dividing the median AD internally in
the ratio 2: 1.

c) Find the coordinates of the point M
dividing the median BE internally in
the ratio 2: 1.

d) Find the coordinates of the point N
dividing the median CF internally in
the ratio 2: 1.

e) Use your results of b), c), and d) to draw
conclusions about the intersection of
the medians AD, BE, and CF.
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In Search of a Solution for a System with
Three Variables: Matrices

In an In Search of on page 73 you learned the elimination method of
solving a linear system. Here you will learn to solve the same system using
equivalent matrices.

Problem

Solve the linear system
3x— y+2z= —1
5x+3y+ z= 17

x—2y—3z= ii
Solution

The method of matrices reduces the amount of writing that you must do by
concentrating only on the coefficients in the three equations. Since the
values of the variables do not change under the operations used in the
method of elimination, only the coefficients are recorded in an array called
a matrix. The position of each coefficient in the matrix corresponds to its
position in the linear system.

Thus the above linear system is written in matrix form as
[3 —1 2 11 This matrix is called the augmented matrix of the

5 3 1 17 I system. The name indicates that it includes the

Li —2 —3 ii] [3 —1 2
coefficient matrix 5 3 1

Li —2 —3
A matrix can be replaced by an equivalent matrix with zeros in certain
positions by the multiplication of rows by numbers, to make elements
equal, and then adding or subtracting rows.

First get 0's in the first position in row and in row
[3 —1 2 —i

5xrow®—3xrow lo —14 7 —56
row—3xrow Lo 5 11 —34
Now get a 0 in the second position of row

[3 —1 2 —1

[o
—14 7 —56

5xrow®+14xrow o o 189 756

From row : 189z = —756 thus z = —4.

From row ©: —14y + 7z = —56; using z = —4, y = 2.
From row : 3x —y + 2z = —1; using z = —4 andy = 2, x = 3.

Therefore, the solution is (x,y,z) = (3,2,—4).
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Note I These matrices are known as equivalent matrices because the
solution of each is the same as the solution of the original system.

2 The final matrix

[3 —1 2 —1

10 —14 7 —56

Lo 0 189 —756
is called the reduced matrix for the system; that is, when a matrix
corresponding to a linear system of three equations in three
variables has the formabcd0 e fg
OOh i

with the triangle of zeros on the left, the matrix is in row-reduced
form. The values of a, b, c, d, e, f,g, h, and i are not unique because
the row reduced form can be reached by different row operations.
Nevertheless the solutions are the same.

Two special cases can occur.

(tlSt' / The last row is
000i
where i = 0.
Then Oz = 0 has an infinity of solutions. Hence an infinite number of (x,y,z)
exist solving the system.

Here is an example of such a matrix in reduced form.
[1 2 0 3
10 1 —1 4
Lo 0 0 0

The last row is
000i
where i * 0.
Then Oz = i has no solution. Hence no (x,y,z) exists solving the system.

Here is an example of such a matrix in reduced form.12 03
0 1 —1 400 05

Activities

Solve the following linear systems using matrices.

a) x+2y—z=2
2x —3y + z = —1
4x + y + 2z = 12

b) 2x—3y+4z=—8
3x + 4y + 2z = 13
5x + 2y — 3z = 25

c) 2x+3y—z=12
3x — 2y + 3z = 1

x + 8y — 5z = 23

d) 2x+3y—z=12
3x — 2y + 3z = 1

x + 8y — 5z = 1
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2.5 Collinear Points and Coplanar Points

In 3-space

1. two distinct points P and D are always collinear, (figure 1)

2. three distinct points F, D, and R are usually not collinear but will
always lie in the same plane, (figure 2)

3. four distinct points P, D, R, and S will usually not be coplanar (figure 3).

figure 2

In this section you will make use of linear dependence of vectors to
determine whether or not three points are collinear and whether or not
four points are coplanar.

(lfiiIi.l !iIi I'

PROPERTY

In the diagram, points P. D, and R lie in the same straight line. Thus,
vectors PD and DR are collinear. Hence, PD and DR are linearly dependent.

Similarily, PD and PR are linearly dependent, and also DR and PR are
linearly dependent.
Intuitively you should understand that line segment PD parallel to line
segment DR with common point D implies that points P. D, and R are
collinear points. This leads to the following property.

If any two of the vectors, PD, PR, and DR are linearly dependent, then
points F, D, and R are collinear.

figure 1 figure 3

S

p

F 0
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Example 1

Sot ution

Example 2

Solution

Prove that the points P(3,2,—1), D(5,4,1), and R(—3,—4,—7) are collinear.

PD = OD — OP = (5,4,1) — (3,2,—i) = (2,2,2).
DR = OR — OD (—3,—4,—7) — (5,4,1) = (—8,—8,—8).

But DR = —4(2,2,2)—-—4PD.
Therefore, PD and DR are linearly dependent.
Thus, points F, D, and R are collinear. •

In section 2.4 you learned another fact about three collinear points F, D,
and R. If the point D divides the segment PR in the ratio m : k then

m+k m+k

Note: The sum of the coefficients of OP and OR, that is,
k + m m+k1m+k m+k m+k

The converse of this result is also true, as the following example shows.

a) If OD = OP + OR, prove that P, D, and R are collinear points.

b) Draw a diagram showing the relationship among the points P. D,
and R.

a) You will need to show that two of the vectors represented by the
directed line segments PD, DR, or PR are linearly dependent.
Now PD = OD - OP 0?

=—OP+—OR-OP
5 5=;-

Thus, PD = PR
5

Therefore, points F, D, and R are collinear.

b) Since PD = PR, the point D is positioned the distance from P to R as

shown in the diagram.

I 3 11— 2 —
P R

The following example proves the result of Example 2 is true for any three
collinear points.

0
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Example 3 Given that points P. D, and R have position vectors, with respect to the

origin O,of p. d, and r respectively,such that
d = sp + tr where s + t 1, prove that P. D, and R are collinear points.

Solution You will need to show that two of the directed line segments PD, DR. orPR
are linearly dependent. 0?
Now PD=d-p

siicest PR
S 1- t 0

= t(r — p)
Thus, PD=tPR

Therefore, points F, D, and R are collinear. U

A P E A T The points P,D, and R are collinear if scalars s and t exist such that
OD=sOP+tOR,wheres+t= 1.

This property can be described as the condition for three vectors with tails at a
fixed point 0 to have their tips in a line.

Example 4 a) A, B, and Care collinear points such that OB =pOA + (3 — 2p) OC. Find
the value of p.

b) State the ratio into which B dividesAC.

Solution a) Since A, B, and Care collinear points and OB = pOA + (3 — 2p) OC
then p + (3 — 2p) = 1

Therefore, p = 2.

b) ThusOB=20A—1OC
Hence B dividesAC externally in the ratio 1: 2 U

( )It1iit1! Pi;iLs

Suppose you have four points F, Q, R, and S such that PQ, PR, and PS are

linearly dependent. What can you say about the four points? Since PQ, PR,
and PS are linearly dependent, these three vectors must be coplanar. Hence
the points P, Q, R, and S must lie in the same plane. Because the vectors QR,
QS, and RS will also be in this plane, you can use the following property to
prove that four points are coplanar.

R P E R T For the four points F, Q, R, S to be coplanar, three vectors (chosen with a
common origin) must be linearly dependent.
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Example 5 Prove that the four points P(1,0,2), D(3,2,0), R(4,1,2), and S(1,4,—4) are
coplanar.

Solution You must select three of the vectors and show that they are
linearly dependent. Suppose you choose the vectors PD, PR, and PS, where
PD = OD — OP = (2,2,—2)
PR = OR — OP = (3,1,0)
PS = OS — OP = (0,4,—6).

You need to find m, k, and p. not all 0, such that
mPD + kPR + pPS = 0

m(2,2,—2) +k(3,1,0) +p(O,4,—6) = (0,0,0)
(2m,2m,—2ni) + (3k,k,0) + (O,4p,—6p)=(0,0,0)
(2m + 3k,2m + k + 4p,—2m —op) = (0,0,0)

Thus 2m+3k =0
2m+ k+4p=0 ©

—2m —6p=0 ©
You can solve this system by the method of elimination or by the use of
matrices as described on page 73 and page 95 respectively. Matrices will
be used here.

The augmented matrix for this system of three equations is[23 00121 40
[—2 0 —6 0[23 00

row@—rowaj 0 2 —4 0
row ©+ row© [ 0 3 —6 0

[23 00
I 0 2 —4 0

3xrowaj—2xrow© L 0 0 0 0
From row ®: Op = 0
Hence, p can be any real number.
From row ©: 2k — = 0, or

k =
From row ©: 2m + 3k = 0, or

2m + 3(2p) = 0 , or
m = —3p

Thus, m,k, andp exist, for example,p=1, m = —3, and k = 2 such that
mPD + kPR + pPS = 0. Thus, vectors PD, PR, and PS are linearly dependent.

Hence, points P, D, R, and S are coplanar. •



2.5 Collinear Points and Coplanar Points 101

2.5 Exercises

1. a) State a vector condition for three points
P, Q, and R to be collinear.

b) State a vector condition for three points
A, B, and C to be collinear.

2. Prove that the points A(2,3), B(—6,5), and
C(6,2) are collinear.

3. Prove that the points A(2,3), B(—6,5), and
C(—4,6) are not collinear.

4. Prove that the points P(8,2,—4), Q(7,O,—7),
and R(1O,6,2) are collinear.

5. Prove that the points P(8,2,—4), Q(7,O,—7),
and R(1O,6,O) are not collinear.

6. In each of the following decide whether or
not the three points are collinear.
a) P(2,O,3), Q(4,1,6), R(6,2,9)
b) X(4,5,6), Y(12,1,—2),Z(O,14,20)

c) A(8,6), B(—1,—7), C(O,—25)
d) D(7,11), E(—3,8), F(—23,2)

7. For each of the following explain why the
points P. D, and R are collinear, where
OP = p, OD = d, and OR = r. In each case
state the ratio into which point D divides
segment PR. 0 is any point.

b) d=Zp+nr

c) d=p+sr

- 1-j. 4.
c) d=—p+r
d) d=8p—7r

10. a) State a vector condition for four points
P, D, R, and S to be coplanar.

b) State a vector condition for four points
A, B, C, andD to be coplanar.

11. Prove that the points P(4,O,3), D(6,3,2),
R(3,2,7), and S(5,12,13) are coplanar.

12. Prove that the points P(4,O,3), D(6,3,2),
R(3,2,7),and 5(5,7,14) are not coplanar.

13. In each of the following decide whether or
not the four points are coplanar.
a) P(2,O,3), Q(4,1,—6), R(14,3,—3),

S(— 1 6,—3,— 12)

b) W(3,1,2), X(3,2,—1), Y(O,6,4), Z(—3,12,3)
c) A(5,1,3), B(4,3,O), C(7,1,8),D(5,2,6)
d) K(1,6,3), L(—2,—-4,—1), M(3,9,4),

N(—3,O,1)

14. A,B, andC are points such that OA = a,
OB = b, OC = c. Scalars m, k, and p exist
wherern * 0 such that m + k + p =0 and
ma + kb + PC = 0. Prove that A, B, and C
are collinear points.

15. 0, A, B, C, andZ are five points in 3-space
such that OA= a, OB = b, OC = C, and
OZ = —5a + 2b + 3C.

a) ExpressAB, AC, and AZ in terms of a,

b, and c.

b) Prove that points A, B, C, and Z are
coplanar.

16. You are given points 0, F, D, R, and A such

that OP = 2OA + OR and OA = kOD + mOR.
2

If points F, D, and R are collinear, then
prove that 4k + 4m = 1.

17. You are given points 0, P, D, and R such

that mOD — kOP + (k — m) OR = 0. Prove
that the points F, D, and R are collinear.

18. A, B, C, D, andE are five points in 3-space

such that AD = AD + (FC — EB). Prove that

the three points B, C, and D are collinear.

- 1- 2—ka) d=p+r
b)

8. Points P, D, and R are collinear and 0 is any

point such that OD = OP + kOR. Find the

value of k.

9. In each of the following, points F, D, and R
are collinear. The position vectors of F, D,
and R are p, d, and r respectively. Find
the values of the scalars.

a) d=mp—4r
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2.6 Geometric Proofs Using
Linear Independence of Vectors

In your study of geometry you have proved geometric facts using the
theorems of Euclidean geometry such as those on congruent triangles,
angles in triangles, parallel lines and so on. In this section you will use the
linear independence of vectors to prove some geometric facts involved
with the division of segments internally or externally. The property of
linear independence that you will use is the following.

If u and v are linearly independent, and mu + kv = 0, then m = k = 0.

In chapter 5 you will have the opportunity of doing the problems of this
section by using vector equations of lines.

Example 1 Prove that the opposite sides of a parallelogram are congruent.

Solution Given: ABIIDC and ADIIBC A ___________
Prove: AB DC and AD BC

\ku
B -- C

my

You must first translate the 'Given' and 'Prove' into vector information.

If AB = u, and AD = v, then the 'Given: ABIIDC andADIIBC' implies that
m exist such that DC = ku, and BC = my.

The 'Prove: AB DC and AD BC' implies that you must show that
k = m = 1.

Starting at point A and moving around the parallelogram gives
u +mv — ku — V = 0

or (1—k)u+(m—1)v=O
But u and v are not parallel, and so are linearly independent.
Thus, 1 — k = 0, and m — 1 = 0.
Hence, k = m = 1, as required. U

Example 1 implies that you may use the following or equivalent figure for
problems involving a parallelogram.

:
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Example 2 Prove that the diagonals of a parallelogram bisect each other.

Solution Given: ABCD is a parallelogram with diagonals intersecting atE.
Prove: AE EC, and BE ED

Proof: As in the diagram, let AE = p, and BE = r, then EC = kp, and
ED = rn r.

(These statements are not needed if the facts are clearly shown on the
diagram.)

Youmustshowthatm=k= 1.
In /AEB,u = p -r

A________________
LnACED,u=-mr+kp
Thus, p — r = —m r + kp kp
or(1—k)p+(—1+m)r=O r E

Since p and r are not parallel B C
— k = 0, and—i + m = 0

Thus, k = m = 1, as required. U

Example 1 and Example 2 indicate a method of solving problems
involving parallel or collinear segments where the ratio between the
lengths of some segments is required to be found.

Step 1 Express parallel or collinear segments as u and ku, v and my,
etc. (If the ratio of the lengths of some segments is known, then use
the terms of the ratio as scalar multipliers.)

Step 2 a) Write a vector equation involving at least two linearly
independent vectors and the unknown scalars of step 1.

b) If three linearly independent vectors appear in a), write one
more equation involving the three vectors.

c) Tf four linearly independent vectors appear in a), write two
more equations involving the four vectors.

Step 3 Use the vector equations from step 2 to eliminate all but two

linearly independent vectors, say x and y.

Step 4 Solve from the equation in step 3 for the required scalars k and m.
First, write the equation in the form Ax + By = 0, then use the
fact that A = B = 0.
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Example 3 In parallelogram ABCD, E divides AD in the ratio 2: 3. BE and AC intersect
at F. Find the ratio into which F divides AC.

Solution

A

C

Step 1

LetAE = 2v, and ED = 3v
AF = s and FC = ks
BF= tandFE=mt.
You must solve for the scalars k and m.

Step 2

InAAFE:2v=s+pnt G3

InABFC:5v=t+ks ai

Step3
Eliminate vector v from 1D andJ.
From: lOv=5s+5njt
Fromaj: lOv=2t-t-2ks
Thus 5s+5mt=2t+2Jcs
or (5 —2k)s+(5m — 2)t=O

Step 4
Since s
5 — 2k = 0 and 5m — 2 = 0

5 2Hence k = —, and m = —.
2 5

5 . 5Using k = — gives FC = — s

soAF:FC=IsI:Hs= i: or 2:5
2 2

Thus, F divides segment AC in the ratio 2: 5. I

5v
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2.6 Exercises

Use vector methods to solve the following
problems.

1. OBCD is a parallelogram. E is the midpoint
of side OD. Segments OC and BE intersect at
point F. Find the ratio into which OC
divides BE.

2. OBCD is a parallelogram. E is the point that
divides side OD in the ratio 2: 5. Segments
OC and BE intersect at point F. Find the
ratio into which OC divides BE.

3. a) In IOAB, medians AD and BE intersect
at point G. Find the ratios into which G
divides AD and BE.

b) Show the medians of a triangle trisect
each other.

4. In AOBC, E is the midpoint of side OB.
Point F is on side OC such that segment EF
is parallel to side BC. Into what ratio does F
divide side OC?

5. In AOBC, E is the point that divides side OB
into the ratio 1:2. Point F is on side OC
such that segment EF is parallel to side BC.
Into what ratio does F divide side OC?

6. In L,.OBC, E is the point that divides side OB
into the ratio 1: k, k * 0. Point F is on side
OC such that segment EF is parallel to side
BC. Into what ratio does F divide side OC?

7. In LABC, D divides AB in the ratio 1:2 and
E divides AC in the ratio 1:4. BE and CD
intersect at point F. Find the ratios into
which F divides each of BE and CD.

8. In parallelogram PQRS, A divides PQ in the
ratio 2: 5, and B divides SR in the ratio 3 :2.
Segments PR and AB intersect at C. Find the
ratio into which C divides segment PR.

9. PQRSis a trapezoid with PQ parallel to SR.
PR and QS intersect at point A. If A divides
segment QS in the ratio 2: 3, then find the
ratio into which A divides PR.

10. ABCD is a parallelogram. E is the point that
divides side AD in the ratio 1: k, where
k 0. Segments AC and BE intersect at
point F. Find the ratio into which point F
divides AC.

11. Let M be the midpoint of median AD of
LABC. BM extended and AC intersect at K.
Find the ratio into which K divides AC.

12. ABCD is a trapezoid in which AD is parallel
to BC. P and V divide AB and DC
respectively in the same ratio. Q is the point
on diagonal AC such that PQ is parallel to
BC. Prove that points P. Q, and Y are
collinear.

13. In a tetrahedron, prove that the line
segments joining a vertex to the centroid of
the opposite face intersect at a point that
divides the line segments in the ratio 1: 3.
(The centroid of a triangle is the point of
intersection of the medians. See also
question 3.)

14. Show that the point found in question 13 is
the same as the point of intersection of the
line segments joining the midpoints of
opposite edges of a tetrahedron.

15. The box shown, called aparallelepiped, is
made up of three pairs of congruent
parallelograms. Prove that the diagonals BH
and EC intersect, and determine where the
point of intersection lies.

A

M

D

B

H

F G
16. In the box shown, let M be the midpoint of

AB. Prove that MG and PD do not intersect.
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Summary
• Two vectors a and b are collinear or parallel if they can be represented by

parallel directed line segments. The relationship is written alib.

• Two non-zero vectors a and b are linearly dependent if and only if alib.

• The zero vector 0 is linearly dependent with every vector.

• Two vectors that are not linearly dependent are linearly independent.

• Three vectors are coplanar if they can be represented by directed line
segments parallel to the same plane.

• Three vectors are linearly dependent if and only if they are coplanar.

• Three vectors that are not linearly dependent are linearly independent.

I I)/HIt;/ 1 II!I'' 1

two vectors: ;, -; three vectors: a, b, C

geometric
condition

a, b,care coplanar

algebraic 1. m, k exist, not both 0,
conditions such that

ma+kb=0, or
2. Ii = sa, for some s

I IiiI''iiIii 4 / i 1 Iiic 1 1,

1. m, k, p exist, not all 0,
such that
ma+kb+pc=0, or

2. at least one is a linear
combination of the other
two; for example
c=sa+tb s,tEIJ

geometric a I'
condition

a, b,c are not coplanar

algebraic 1. If ma + kb= 0 then If ma+ kb+pc= 0 then
conditions m=k=0, or m=k=p=0

2. no s exists such that
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Bici.c V'cloi.c

In V2 (the set of 2-space vectors), if a and b are linearly independent, then
any other vector in V2 can be expressed as a linear combination of a and b.

The vectors aandbform a basis for V2. In particular, the unit vectors
i = (1,0) and j = (0,1) form a basis in V2.

In V3 (the set of 3-space vectors), if a, b, and c are linearly independent,
then any other vector in V3 can be expressed as a linear combination of a,

1,, and c.

The vectors a, b, and c form a basis for V3.In particular, the unit vectors
i = (1,0,0), j = (0,1,0), and k = (0,0,1) form a basis in V3.

I car ['ciii I.c

1. If any two of the vectors, PD, PR, and DR are linearly dependent, then
points F, D, and R are collinear.

2. If OD = sOP + tOR, where s + t = 1, then F, D, and R are collinear points.
3. If point D divides the line segment PR in the ratio m : k, and 0 is any

fixed point, then

m+k m+k
For internal division m and k are positive. For external division the
smaller of m and k is negative.

jiar Pciii Ic

For the four points P. Q, R, S to be coplanar, three vectors (chosen with a
common origin) must be linearly dependent.

L'siiiq %'cclots iii Eiic1iIcaii Gc'iiiclrv

A method of solving problems involving parallel or collinear segments
where the ratio between the lengths of some segments is required can be
found on page 103.
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Inventory
Answer the following by filling in the blanks.

1. a and b are linearly dependent. Thus, geometrically, a and Ii are
_____ anda scalar k exists such that b = _____, and scalars s and t
exist such that sa + _____ = 0.

2. a, b, and c are linearly dependent. Thus, geometrically, a, b, and
c are , and at least one of a, b, and c can be written as a
linear _____ of the other two; for example, c = _____. Also, scalars m,
k, and p exist, not all , such that _____ = 0.

3. If a and b are not collinear then a and b are linearly

4. If a, b and c are not coplanar, then a, b, and c are linearly

5. a) If a and b are linearly independent and ma + kb = 0, then
___ and m = ___

b) If a, b,and C are linearly independent and
ma+kb+pc=0,thenk= ,m= ,andp=

6. a) Vectors (3,5) and _____are linearly dependent.
b) Vectors (3,5) and _____are linearly independent.
c) Vectors (2,3,1) and _____ are linearly dependent.
d) Vectors (2,3,1) and _____are linearly independent.

7. Ifm(1,2)+k(3,4)=0,thenm+3k= ,and ____= ____

8. Ifa=kb,thenaandbare ____

9. Ifscalarsa, b, and c exist, not all 0, such that ax + by + cz = 0, then
x,y,and zare

10. a) Point Q divides segment PR internally in the ratio 5:7. Thus,
OQ= ___ OP+ ___ OR.

b) Point Q divides segment PR externally in the ratio 5:7. Thus,
OQ= OP+ ___ OR.

11. a) AB and AC are linearly dependent. Thus, A, B, and Care____
b) PQ, PR, and PS are linearly dependent. Thus, F, Q, R, and S are ____

12. In 2-space every vector is a linear combination of each pair of____
vectors.

13. To form a basis in V2you need _____ vectors that are linearly

14. To form a basis in V3 you need _____ vectors that are linearly
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Review Exercises

1. a and b are linearly dependent vectors.
a) What is the geometric relationship

between a and b?
b) State two algebraic equations that are

true relating a and b.
c) What conditions, if any. are imposed

on the scalars in the equations in b)?

2. Vectors a, b, and c are linearly
dependent.
a) What is the geometric relationship

among a, b, and C?
b) State two algebraic equations that are

true relating a, b, and c.
c) What conditions, if any, are imposed

on the scalars in the equations in b)?

3. k andt are linearly independent vectors
and ak + b t = 0. What conclusion can
you draw about the scalars a and b?

4. Vectors a,b, and c are not coplanar, and
sa + tb + rc = 0. What, if anything, is
true about the scalars s, t, and r?

5. Given that aIb, and b' c, and d = 4a,
which of the following vectors are linearly
dependent with a?
a) 2a b) —8b c) 2c d) —7d

6. Vectors p and q are linearly independent.

x = 3p, y = —2q, z = 1q, w = 3y

a) Which of x, y, z, and w are not
parallel?

b) Which among the vectors x, p,q, and
z are linearly dependent with w?

7. Vectors x, y, and z are linearly
independent. Which of a, b, c, andd
are linearly dependent with x and y?
a=4x+5y, b=4a+3x
c=3x+7z, d=7a+2b

8. Vectors a and bare not collinear; Cis not
coplanar with a and b. Which of the
following vectors are coplanar with a and b?

z=5a+3b, y=2a+4c,
h=a+2b, w=3z+4h

9. Given a = (3,5).
a) Write three vectors linearly dependent

with a.
b) Write one vector linearly independent

with a.

10. Given b = (7,1,--2).
a) Write three vectors collinear with!,.
b) Write two vectors linearly independent

withb.

11. Vectors a andh are linearly independent.
Vectors c and d are such that
c=2a+ 5bandd=3a—2c.
a) Use a geometric argument to show that

c and d lie in the plane of a and b.
b) Use an algebraic argument to show that

c and d lie in the plane of a and b.

12. Which of the following pairs of vectors are
linearly dependent? Justify your answer.
a) (2,5), (5,2)
b) (-3,2),(1.5,--1)
c) (3,1,2), (9,3,6)
d) (4,2,1), (2,1,1)

13. Express the vectorv=(1I,—2) as a linear

combination of a = (1,—2) and b = (2,1).

14. Express the vector v = (—5,16,5) as a linear
combination of a = (1,2,3), b = (4,0,1),
and c = (—1,4,0).

15. Establish whether or not the vectors (2,1,0),

(3,1,1,), and (1,0,2) are coplanar.

16. Scalars m and k exist, neither equal to 0,
such that ma + kb = 0. Are a and b
necessarily linearly dependent?
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17. a) GiventhreepointsA,B,Csuchthat
AB = 6BC. Explain why you can say that
pointsA, B, andC lie along the same line.

b) Given four points A, B, C, and D such
that AB = 2AC + 4BD. Explain whyyou
can say the four points are coplanar.

18. a) Vectors a and b are basis vectors for
V2. Explain what this means.

b) Vectors a, b, and c are basis vectors
for V3. Explain what this means.

19. Determine whether or not the three vectors
in each of the following are linearly
dependent. In each case state the geometric
significance of the result.

a) (6,0,2), (—3,1,1), and (—1,1,2)
b) (1,2,3),(6,11,4),and(O,1,i4)

c) (4,1,9), (—3,1,1), and (6,3,29)

20. Given the vectors a = (—2,3) and b = (3,5).
a) Prove the two vectors form a basis

for V2.

b) Express the vector (—2,22) as a linear
combination of a and b.

21. Given thevectorsa =(0,i,5),b=(2,i,—4)
and c = (6,4,0)
a) Prove the three vectors form a basis

for V3.

b) Express the vector (1 1,9,—i) as a linear
combination of a, b, and c.

22. The vectors a = (—4,—1,0), b = (—1,5,1),
and c = (5,17,k) are linearly dependent.
Find the value of k.

23. In each of the following, find the vector OQ
such that point Q divides the line segment
PR internally in the indicated ratio, where
0 is any fixed point.
a) 11:5

b) 5:7
c) 7:1

d) 6:11

24. In each of the following, find the vector OT
such that point T divides the line segment
AB externally in the indicated ratio, where
o is any fixed point.
a) 1:5 b) 7:3 c) 4:9

25. The point A divides the segment PQ
externally in the ratio 4: 5. Thepoint B
divides AQ internally in the ratio 3:2. If 0
is any fixed point, then express OB in terms
of OP and OQ.

26. Find the coordinates of the points that
divide the line segment joining points
P(2,5,8) and R(—4,i,5) in the indicated
ratios.
a) 3:1, internally
b) 4: 7, externally

27. The point Q divides the line segment PR
externally in the ratio 1: 2. The point A
divides the segment PQ internally in the
ratio 4: 3. The point T divides PA externally
in the ratio 5 : 6. If 0 is any point, then
express OT in terms of OA and OR.

28. a) State a vector condition for three points
F, Q, and R to be collinear.

b) State a vector condition for four points
A, B, C, and D to be coplanar.

29. In each of the following decide whether or
not the three points are collinear.
a) A(0,3,2), B(1,5,4), C(3,9,8).
b) P(4,1,6), Q(—2,1,—5), R(0,1,2)

30. In each of the following decide whether or
not the four points are coplanar.
a) A(1,4,—5), B(2,12,—8), C(4,6,—4),

D(5,3,—2)
b) P(3,2,i), Q(0,2,—1), R(1,0,4), S(0,—2,1)

31. If 0 is any point, then explain why the
points F, Q, and R are collinear where

OQ=5 OP+ OR.
7 7

State the ratio into which point Q
divides segment PR.
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32. Points P. Q, andR are coffinear and 0 is any
point such that OQ = 2m0P + ROR, and
4m + 3k = 5. Find the values of k and m.

33. a and b are linearly independent. 0,A, B,
and Care points such that OA = a, OB = b,

and OC = 6a — 5b. Prove that points A, B,
and C are collinear.

34. 0, A, B, C, and Z are five points in
3-space such that OA = a, OB = b, OC = c,

and OZ = 4a + 4b — 7c.

a) ExpressAB, AC, and AZ in terms of a,
b, and c.

b) Prove that points A, B, C, and Z are
coplanar.

Use vector methods to solve problems 35—39.

35. ABCD is a parallelogram. E is the point that
divides side AD in the ratio 4: 7. Segments
AC and BE intersect at point F. Find the
ratio into which AC divides BE.

36. In a parallelogram ABCD, H is the midpoint
of AD, and E divides BC in the ratio 3 :2. If
BH and AE intersect at M, find the ratio
AM:ME.

37. In LABC, E is the point that divides side AB
into the ratio 3 :2. Point F is on side AC
such that segment EF is parallel to side BC.
Into what ratio does F divide side AC?

38. In AABC, D divides AB in the ratio 3 :2 and
E divides AC in the ratio 5:4. BE and CD
intersect at point F. Find the ratios into
which F divides each of BE and CD.

39. In parallelogram PQRS, A divides PQ in the
ratio 2:1, and B divides SR in the ratio 3 :4.
Segments PR and AB intersect at C. Find the
ratio into which C divides segment PR.

40. Vector cis a linear combination of the
vectorsb and d, and c * 0. Vectors a,
b, and dare linearly independent. Prove
that a and d cannot be linearly dependent.

41. Vectors a, b, and care linearly
independent. 0, A, B, C, and Z are points
such that OA= a, OB b, OC = c, and
0Z = —4a + 2b + 3c.

a) ExpressAB, AC, and AZ in terms of a,
b, and c.

b) Prove that AB, AC, and AZ are linearly
dependent.

c) Draw conclusions about the geometric
relationship among the points A, B, C,
and Z.

42. The position vectors ofA and B are
i —2] + k and 51 + 4]— 7k
respectively. The point P lies between A
and B and is such that AP = 2PB. Find the
position vector of P.
(83 H)

43. The position vectors of A, B and C are

21— j+ 3k, 12i + 4]— 7k and
61+ j —k respectively. Given that
AC = )LAB, find the value of ,L
(87 SMS)

44. R is a point on the line PQ where P has
coordinates (2,7) and Q has coordinates
(—2,3). If R divides PQ in the ratio 3 : —2
then the coordinates of R are
A. (—10,—5) B. (10,—5) C. (—2,—i)
D. (2,1) E. (10,16)
(79S)

45. With respect to the standard basis of II the
vectorsa,b andc are defined bya = (1,2,3),
b = (0,1,3), c = (,0,1) where Fl. Which
of the following statements is true?
A. a and b are linearly dependent.
B. a and c are linearly dependent.
C. a, b and c are linearly dependent for all

values of ,.
D. a and b form a basis of III.
E. a,bandcformabasisofP3ifA= 1.
(8! H)
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CHAPTER THREE

The Multiplication of
Vectors
Problem

a) Given the points A(1,3,—1), B(2,—5,3), and C(4,—1,6), you are asked to
find the angle BAC or 0. Note that, although the diagram may help, it
does not lend itself to discovering a simple solution through
elementary trigonometry.

B

There is a way to proceed, as follows.

1. Calculate the lengths of AB, AC, and BC, that is, the lengths of the sides
of the triangles ABC.

2. Use the cosine law (see page 542) in the triangle ABC to find
the angle BAC.

However, this involves a lot of arithmetic. You shall see that by defining
an operation called the dot product of vectors, a remarkably short and
elegant method of calculating this angle can be devised.

b) Now consider the plane defined by the points A, B and C. You are
asked to determine a direction, or a vector v, that is perpendicular to
the plane ABC. This means finding a vector that is perpendicular to
every line in the plane ABC. It can be shown that it is sufficient to find
a vector perpendicular to two linearly independent vectors coplanar
with ABC. However, the task is still not simple. You will see that the
cross product of vectors provides a simple way of determining such a
vector v.

C

y

A
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c) You are now asked to calculate the angle between AB and the xy-plane.
Recall from chapter 1, the In Search of on page 17, that the angle
between a line and a plane is the smallest angle that can be defined
between the line and a line in the plane. (It turns out to be the angle
between the line and its 'perpendicular projection' in the plane.) Let
this angle be 4). Once again, note that finding 4) is not obvious, even
with a diagram. You will see that the simplest way to determine this
angle is by using the dot product between the vector AB and a vector
that is perpendicular to the xy-plane (called a normal vector to the plane).
In the diagram k is such a vector.

d) A more challenging task to undertake with ordinary trigonometry
would be to calculate the angle between two planes, such as ABC and
the xy-plane. This can be accomplished by finding a normal to each
plane with the cross product, then calculating the angle a between the
normals.

The types of problem described in c) and d) will be investigated further in
chapter 6. Once you have learned to multiply vectors, you will appreciate
that vector analysis is a very powerful tool that brings 3-space geometric
problems to a level hardly more difficult than problems in 2-space. You
will be using products of vectors extensively in the rest of your work on
vectors in this book.
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3.1 Projections and Components
Before investigating the products of vectors, you need to know how a
vector can be projected onto another. This projection will depend on the
angle between the vectors.

The 4 nIe h'titeon Tue Ve lois

is defined as the angle 0between the vectors when they are drawn with a
common tail. Note that 00 0 1800.

Example 1 What is the angle between the vectors u and v shown?

Solution Draw the vectors again so that they have a common tail.

/<oV;
The angle between u and v is 180° — 130° = 500. •
PfOICc lions

Given the vectors a = OA and b = OB such that 0 is the angle between a
andb. A

B'

a

/0.H
0 A' B

Let A' be the foot of the perpendicular from A to OB,
and B' be the foot of the perpendicular from B to OA.
Then the vector OA' is known as the orthogonal projection,
or projection, of a on b, and
the vector OB' is known as the orthogonal projection,
or projection, of b on a.
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Note: The projection of a onb is parallel tob, and
the projection of b on a is parallel to a.

NowIOA'l= HOAI cosOl= hal cosOl.

If 0 < 900 it should be clear that the direction of vector DA' is the same as
the direction of b. In the case when 0> 90°, the diagram is as shown.

.....:..
B

If you now draw a perpendicular to OB from A, you find that OB needs to
be extended beyond 0. (This extension is described by saying that "BO is
produced".)

Now OA' is still parallel to b, but is in the opposite direction.

The fact that cos 0 is negative in this case is critical in the definition that
follows.

To ensure that the projection of a on b is a vector, you will need a unit

vector in the direction of b, namely e, = b.
Ibi

E F I N I - N
The projection of a on i, is the vector
- alcos0bp = al cos 0 eb =

bI

Observe that this definition does give the correct direction for OA'.

If 0 < 90°, then cos 0> 0, andOA' has the direction of b, but
if 0> 90°, then cos 0 < 0, and OA' has the direction opposite to b.

Note: The projection of a on b does not depend on the length of b. For
example, the projection of a on 3b (which has the same direction
as b), is

alcosO 3blac05Ob4
13b1 bI

Alternatively, recall from section 1.8 that =
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Example 2 The angle between vectors u and v is 0,where 0> 900. Find an expression for

a) the projection of von u,
b) the projection of 3v on u.

Draw each projection.

A

So jtiOiI a) Draw the vectors with a common tail so that OA = U, OB = V.

Let the projection of v on u be OB'.
B' is the intersection of AD produced and the perpendicular to u
from B.

A

The required projection is OB' = lvi cos 0 e.

(Notice that since 0> 90°, OB' will have a direction opposite that of OA.
This is confirmed by the diagram.)

b) Let the projection of 3v on u be DC'.

A

C,

Thus,OC'=l3vlcos0e=3(JvlcosOe)=3OB' •
( )I1IJ'UiI'1I (S

In the definition of the orthogonal projection of a on b, the scalar
c = al cos 0 which multiplies the unit vector eb is called the
component of a on b, or component of a in the direction of b.

Example 3 Vectors u and v make an angle of 120° with each other. If ui =6and
vl = 5, calculate the projection of u on v, and the component of u on v.
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So1

i2O0
If the unit vector in the direction of v is e1.,
then the projection of u on vis

p = ui cos 1200 = 6(—0.5) e1, = —3e,.

Thus the component of u in the direction of v is —3. •

Note: The length of v is irrelevant, since there is only one unit vector in
the direction of v.

Example 4 The angle 0 between vectors u = (—2,6) and v = (3,4) is such that
cos 0 = 0.5692. Find each of the following, correct to 3 significant digits.

a) the component of u onv
b) the projection of u on v

Solution a) Let the component of u on vbec.
Then c = ui cos 0 = oJ(_2)2 + 62(0.5692)

= /iö(0.5692) = 3.599... or 3.60,
correct to 3 significant digits.

b) Let the projection of u on v be p.
Then p = ce,

where the unit vector in the direction of v,

= V = '
(3,4) = (3,4) = (0.6,0.8)

vi ,J3242 5

sop = (3.60)(0.6,0.8) = (2.16,2.88). U

Note: p is parallel to v.

You will see from the following example that the definition of component
in this section agrees with the previous meaning given to the term.
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w = OP = (3,—5) is the position vector of the point (3,—5).
Draw a perpendicular from P to A on the x-axis, and

to B on the y-axis.

Now the length of OAis 3, and since OA is in the same direction as i,
the projection of (3,—5)on us 3 i, and
the component of (3,—5) on i is 3.

The length of OB is 5, but since OB and jare in opposite directions,

the projection of (3,—5)on us —5j,and

the component of (3,—5) on j is —5. U

1 lteriuititt' Solution

Recall that in section 1.9, you learned that (3,—5) = 3 i — 5j.
Thus,

i and —5j are the projections of (3,—5) onto i and j respectively;
3 and —5 are the components of (3,—5) on i and j respectively.

Resolution of a Vector

The components in Example 5 are sometimes called
rectangular components, because they refer to
mutually orthogonal directions.

Writing a vector in terms of its projections on mutually orthogonal
directions is called resolving the vector in those directions.

Thus, in Example 5,by writing w = 3 i — 5j, you are resolving w in the
directions of i and j.

You can also say that you are resolving a vector when you express that
vector as a linear combination of an orthonormal basis.
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Example 5 Find the projections and components of the vector w = (3,—5) in the
direction of i, and in the direction off.

Solution y

A
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The word 'resolution' is not necessarily confined to cases of mutually
orthogonal directions. In this book, however, it shall always refer to
mutually orthogonal directions in order to avoid confusion. It is
unfortunate that the vocabulary pertaining to the ideas of this section is
not standardized in all books on vectors. Some books refer to our
projections as 'components', and consider 'projections' to be lengths, that
is, positive scalars.
You must beware of this.

Example 6 Resolve the vector v = (2,3,—5) in the directions of i, j, and k.

Solution From section 1.9, (2,3,—5) = 21+ 3j— 5k. U
Note: 2i, 3j, —5k are the projections of v, and 2, 3, —5 are the

components of v in the required directions.

Notice also that, if v = OF, the projection of v in the direction of i is OA
where PA is perpendicular to the x-axis, as shown in the diagram.
Similarly, the projections of v in the directions off and k are OB and OC
respectively.

k

B

s u M M A R y The projection of a on b is the vector

lalcosobp=IalcosOeb= -

The scalar c = al cosO that multiplies the unit vector e,, is called the
component of a on b, or the component of a in the direction of b.

Writing v =xi + yj + zk is called resolving yin the directions of i, f, and k.

(x, y, and z are the components of v,and xi, yf, and zk are the
projections of v in the directions of i, j, and k respectively.)
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3.1 Exercises

1. State the angle between the following pairs
of vectors.

a) b) —c)U
u =2v

2. Given that the following vectors are in V2.
and that 0 is the angle between each vector
andi, find the component of each vector
on land j (correct to 3 decimal places).

a) IaI=5,0=40°
b) ibi=7,0= 1100 V

c) ici=13,0=90°.

3. Vectorsu and vmake an angle of 68°
with each other. If IuI= 4 and ivi= 3, find
the following.
a) the component of uon v and the

projection of u onv
b) the component of v on u and the

projection of v on u

4. Calculate the component of ion v, given
that the angle between i and v is 110°.

5. State the projections and the components of
the following in the directions of i and j.

a) (2,—3) b) (1,0) c) 3(—5,1)

6. State the projections and the components of
the following vectors in the directions of

i,j,andk.
a) (1,—4,1) b) (2,0,3) c) —2(1,1,0)

7. Resolve the following vectors on I, j, k.
u = (4,5,0) v = (—2,—3,1)

8. Givenv=ai+bj+ck,statethe
following.
a) the component of v oni
b) the projection of v on j

c) the projection of v on —k

9. Calculate the component of the following
on V = (1,1).

a) i b) j
10. If the angle between u andy is 0, show

that ui (the component of v onu)
= vi (the component of u on v).

11. Find the following.
a) the component of (2,—5) on i
b) the component of ion (2,—5)
c) the projection of (—3,4)onj
d) the projection off on (—3,4)

12. The component of u in the direction of v
is zero, where v* 0. What can you deduce
about u and/or v?

13. Given two non-zero vectors uand v, what
can you deduce aboutu andy where
a) the component of u on v is equal to

the component of v onu?
b) the projection of uon v is equal to the

projection of v on U?

14. The vector i is resolved into two equal
rectangular components. What are they?

15. The vector (4,5) has components a and 2a
when resolved along two perpendicular
lines. Calculate the value of a.

16. The vectors u = (i,/) and v = (—2V,6)
make an angle of 60° with each other. Find
each of the following.
a) the component of u onv
b) the projection of u on v

17. The projection of v = ai + bj + ck on a
plane U is defined to be the vector p,
where p is parallel to 11 and v — p is
perpendicular to U.
If v= 51— 12j+ 2k, calculate
a) the component of v on the xy-plane
b) the projection of v on the yz-plane.
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3.2 The Dot Product
So far you have learned to add and subtract vectors. You have seen that it is
possible to multiply a vector u by a real number (scalar) to obtain a vector
parallel to vector u. All of these operations produce another vector.

You are now ready to find Out how to multiply vectors. There are actually
two kinds of vector products, symbolized by u.v and u x v. The first
product, u v, is a scalar, while the second, u x v, is a vector.

The product u• v is called the 'dot' product, or 'scalar' product of two
vectors. The dot product takes two vectors, u and v V. and returns a real
number, as follows, where 0 is the angle between u and v.

BE F/NI TI ON u.v=IuIjvIcosO,O° 0 1800

V/

Note: You must use a dot (.) when writing out this product..

Geometrically, you can see that the dot product is the product of the length of
one vector with the component of the other vector along the first. The result
u • v is indeed a scalar. (Be careful about this!)

7O -

7cos U

u •' = ul(Iv Icose) u •v = v(Iu Icose)

If the component of one of the vectors is directed opposite the other vector,
the dot product will be negative. If you look back at the definition, you
will note that this occurs when the angle 0 is greater than 900; indeed, in
that case, the cosine of 0 is negative.

The dot product has some very interesting and powerful applications,
particularly in trigonometry, which you will be discovering in the next
sections.
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Example 1 Find u•v ifu = 3, lvi = 5,0 = 400, and draw a diagram showing U and

Solution u.v=IuiivcosO
= (3)(5) cos 40
=(15)(0.7660...)

11.5

(Notice that you do not know the precise direction of the vectors here; you
merely know that they are at 400 to each other. However, you still have
enough information to find the dot product.)

Example 2 Find the dot product of the following vectors by measuring the component
of the first vector along the second vector, and by measuring the second
vector. Use the centimetre as unit.

/1 __
rs=2x2.5=5 p.q=—2x3=—6 I

Note: You are measuring 1uI cos 0) and lvi, etc.

Butlulcos vo=ulvlcos 0.
The following example should assist you in discovering some useful
properties of the dot product.

Example 3 Calculate the following dot products

a) w.w,wherewI= 12.
b) i.k

/400
V .

/ b)

r

r•s pqU V

Solution a)

qV

4

b) c)

u.v= 1 x4=4

2 3
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Solution a) ww= 12x l2xcos0°= 122= 144.

The dot product of a vector with itself is the square of its length.

b) i.k = 1 x 1 x cos 900 = 0.

The dot product of two perpendicular vectors is zero.
x

In the exercises, you will be proving these and other properties.
The next example should also lead you to the discovery of a property.

Example 4 Givenu = (1,0), v = (—i,fi), calculate the following dot products.

a) u•v b) (6u).(2v)

Solution a) IuI=[i+02=1
= I(i)+ /= 2.

then tan 0 = = —J, giving 0 = 120°.

Thus uv = (1)(2) cos 120° = (2)(—O.5) = —1.

b) 16u1=1611u1= (6)(1)=6

12v1=1211v1= (2)(2)=4

The angle between u and v
is the same as the angle between
6u and 2v, namely 120°.
Thus (6u).(2v) = (6)(4) cos 120° = —12. U

Notice that the results obtained in this example indicate that

(6u). (2v) = (6 x 2)(u. v), which illustrates the following property.

For any vectors u, v,and scalars m, n

(m u).(n v) = (mn)(u.v)

In the next section, you will also discover an alternative method of finding
the dot product of two vectors expressed in component form; it will allow
you to do a question like Example 4 above more quickly.

The dot product of vectors u and v, having an angle 0 between them
when drawn with a common tail, is the scalar

u.v=IuIIvIcosO (0°0 180°)

The dot product equals:
(length of one vector) (component of the other vector along the first)

PROPERTY

PROPERTY

z

k I
y

U

If 0 is the angle between u and v,

y

x
U

2v
PROPERTY

SUMMARY



124 ChapterThree

3.2 Exercises

1. Calculate the dot product of the following
pairs of vectors correct to 3 significant
digits, given that 0 is the angle between
them.

a) uI—4,IvI=6,0=60°
b) wI=7jt1= 3,0= 27°

c) IaI=6,(bI=7.5,0=90°
d) IcI=8,IdI=4,0=O°
e) IeI= 12,IfI= 15,0=91°

2. Calculate (approximately) the dot products
of the following vectors by measurement of
lengths and projections, using the
centimetre as a unit.a)

3. Calculate the following dot products.

a) j.i b) ii c) k.(—k)

4. Given that u, v, w are vectors, and m, n t,
state which of the following are vectors,
and which are scalars.
a) 2v f) u.(v+w)
b) L2hhI

c) v(rn—n)
d) rn(u+v)
e) u.v

5. Prove that the dot product of two unit
vectors is equal to the cosine of the angle
between them.

6. Prove that the dot product of a vector with
itself is equal to the square of its length.

7. Prove that the dot product of two
perpendicular vectors is zero.

8. Given vectors u, v at an angle 0 to each
other, and scalar m, prove that
(m u). v = m(u. v) in the following cases.
a) m is positive and 0 is acute
b) m is negative and 0 is acute
c) m is positive and 0 is obtuse
d) m is negative and 0 is obtuse

9. Using the results of question 8, prove that,
if nis another scalar,

(m u). (n v) = (mn) u • v.

10. If u. v = 0, is the angle between u and v
necessarily 90°?

11. ABC is an equilateral triangle whose sides
have length 10 units. Calculate the
following.
a) AB.AC b) AB.BC

12. Given that p1 = 10 and lql = 3, calculate
the angle 0 between the vectors p and q in
the following cases. Give your answers to
the nearest degree.

a) p.q = 30 b) p.q = —5 c) p.q = 0

13. Given any three vectors ii,V. w, which of
the following expressions are meaningful?
Justify your answers.
a) u+(v.w)
b) (u+v).w
c) u•v•w

14. a) Given that vectors a and 1' of V2make
angles of 45° and 600 respectively with

i, where IaI= 4V°,andIbI= 8, find
the exact value of a• i and b. j

b) Use your result to part a) to comment on
the following.
If u .w =v. w, is it necessarily true
that u =

15. Prove that for any vectors u and v,

Iu.vIIuIIvI
When does the equality hold?

c)

d) u.(v.w)
e) (u.v)w
f) u(v.w)

g) v+u
h) v—u
i) —mu
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3.3 Properties of the Dot Product

,,nn,i,tativitv

By definition,u.v=iullvlcos 0.

Thus, v• u = iviiui cos 0, which is the same real number as u• V.

Hence, for any vectors u and v,
u •v = v.u, the dot product is commutative.

Distributivit v over -lddition

Look at the diagrams to help you see the results of the following
expressions. The vectors are drawn so that

u=OU,v=OV,w=OW,andv+w=OP.

x=u.(v+w) y= u•v+u•w
P

vi/H

QA —
-ü

A —

j____w1w
U

B U

y = OU.OV + OU. OW

=iOUi(OA) +iOU$(OB)
= (OU)(OA + OB)
= (OU)(OA + AC) = (OLT)(OC)

This indicates the following property.
For any vectors u, v and w, u.(v + w) = u.v + u.w

That is, the dot product is distributive over vector addition.

Draw u along the positive x-axis, that is, in the direction of i, with its
tail at (0,0).

Let v = (v1,v2) and w = (w1,w2), thus v + w = (v1 + w1,v2 +w2).

Now = ui (the component of von u)
= ui (the component of von i)= ui (v1)

and u•w = ui (the component of w on u)
= iul (the component ofw on z) = iui (w1) — __________

- - 0
therefore u•v + u•w = ui(vi) + iul(w1) =lui(vi + w1)

U

but u• (v + w) = ui (the component of [V + wI on u)
= iuI(the component of [v + WI Ofl i) =iui (v1 + w1)

Therefore, u •v + u • w = u . (v ÷ w) as required.

l1qebrai Proof 'f the I)itribuiiv,I v Proper!'

0
= OU.OP
= iOUi (component of OP on OU)
= (OU)(OC)
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There follows a summary of the major properties of the dot product. The
first two properties have been proved above. You have demonstrated
properties 3, 4 and 5 in the examples and problems of the last section.

PROPERTIES l.u.v=v•u ;omTl iti'.

2. u.(v+w)=u.v+u.w ;jri U V I
3. (ku).(rnv) = (k,n)(u.v)
4. uu=u
5. If u is perpendicular to v, then u•v = 0.

6. i. i = 1,1.1 = I, k.k = 1

7. j.j.j. i=j.k=k.j=k.i= ik=0
Property 6 follows from property 4 (recall that i, j, and k are unit vectors),
and property 7 follows from property 5.

NO TA TI ON Itisalsopossibletowritethedotproductu.uasu2.

Now you are ready to use these properties to find a formula
for calculating the dot product of vectors in component form.
Indeed, ifu=u1i+ u2jandv— v1i+ vj,
u • v = (u1 i + u2j).(v1 i + v2j)

=(uii).(v1i)+(uii).(v2j)+(u2j).(v1i)+(u2j).(v2j) opel

=(u1v1)(i.i)+(u1v2)(i.j)+(u2v1)(j.i)+(u2v2)(j.j) . )pw 3

= (u1v1)(I) + (uv2)(O) + (u2v1)(O) + (u2v2)(1) properties 6

= uIvI + u2v2

FORMULA Sou=(u1,u2)andv=(v,v2)=u.v=u1v1+u2v2

In the exercises, you will be demonstrating in a similar manner that in 'V

F o R M u L A
u = (u,u2,u3) and v = (v1,v2,v3) u.v = u1v1 + u2v2 + u3v3

Note: The result in each case is indeed a real number (or scalar) as
expected.

Now you can use these new formulas to redo Example 4 of section 3.2.

Example 1
Find the dot product in the following cases.

a) u = (1,0), v = (—1,ii) b) 6u = (6,0), 2v = (—2,2i3)

Solution a) u.v=(l)(—l)+(O)(J)=—l b) u.v=(6)(—2)+(0)(2f5=—12 •

Notice that the method is a lot quicker, if the vectors' components are
known. The fact that you now have two methods of calculating dot
products will help you to make more discoveries.
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Example 2 Find the angle 0 between u = (1,2,5) and v = (—1,—3,4).

Solution The definition of the dot product states u •v = lulivi cos 0.
This is an opportunity to useboth methods of calculating the dot product.

(1,2,5).(—1,--3,4) = (1,2,5)II(—1,—3,4)I_cos 0

(1)(—1) + (2)(—3) + (5)(4) = [i+ 22 + 52/j)2 + (_3)2 + 42 cos 0
—1 —6+20=Vcos0

ThuscosO=
13 =0.46547...sothatO=62°. U

.J(30 x 26)
(Recall that this is the angle between the vectors when they are drawn with a
common tail.)

Example 3 Find the value of x if (—2,0,—6). (1,3,x) = 10.

Solution The dot product is (—2)(1) + (0)(3) + (—6)(x)= 10
hence —2—6x= l0orx=—2. I

Example 4 If u = (3,—I), find a two-dimensional vector perpendicular to

Solution Let v = (x,y)be perpendicular to u.
Then (3,—1).(x,y) = 0

3x + (—y) = 0 or y = 3x.
If xis any real number, sayx = k, then y = 3k.

So v = (k,3k) is perpendicular to u, no matter what the value of k. For

instance, jfk = 2, then v = (2,6), which is perpendicular to u.

The formulas on page 126 calculate the dot product of vectors expressed

in components with the basis vectors i,j or i,j,k. Would similar

results hold for any basis? In the demonstration on page 126, you used
facts such as i• i = 1 and i.j = 0 (properties 6 and 7). If you were
usingany basis, this would not necessarilybe true, so the answer is NO.

The formulas stated are true because:

1. 1, j, k are unit vectors, and

2. i, j, k are mutually perpendicular or orthogonal.

A basis which has these two qualities is called an orthononnal basis.
Similar formulas for the calculation of the dot product would hold true
only in an orthonormal basis.

. M M A R
A basis of a vector space is orthonormal if
1. the basis vectors are all unit vectors
2. the basis vectors are all mutually perpendicular

In an orthonormal basis of V2. In an orthonormal basis of V3.

u =(u1,u2) andv = (v1,v2) u =(u1,u2u3) and v = (v1,v2v3)

u•v=u1v + u2v2 r u•v=u1v1 + u2v2+u3v3
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3.3 Exercises

1. Find the dot product u • v if
a) u = (1,2,4) v = (2,0,3)

b) u=(4,5) v=(2,—4)
c) u=(4,5) v=(—5,4)
d) u=(1,0,0) v=(6,17,—32)
e) u=(—l,3,4) v=(—2,2,—2)

What can you say about the vectors in
parts c) and e)?

2. If e is a unit vector, what is e e?

3. Use the component formula to calculate the
following in V3.
a) i.k b) 7.1

4. Find the value of t if the vectors
U = (3,t,—2) and V = (4,—1,5) are
perpendicular.

5. Find the angle between the following pairs
of vectors. Give your answers to the nearest
degree.
a)
b)
c) ______ ______
d)

6. Calculate k given that

a) (3,9).(k,—i)=0
b) (3,k,2).(0,5,4,) 6

7. a) Ca!culate the two values of k if
u.v= 3 whereu = (k,1,4) and
v = (k,2k,—3).

b) For each of the values of k found in a),
calculate the angle between u and v.

8. Calculate v v in the following cases.

a) v=(3,—2) c) v=(x,y,z)
b) v=(—1,4,3)

9. a) Find a vectorpperpendicular to the
vector q = (4,—5).

b) Normalize p.

10. Given the vectors u = (1,—3,2),
v = (—4,1,1), and w = (2,0,5), calculate the
following.
a) 2u•v
b) (u+v).w

c) —4(v.w)

d)
e) (2u—v).(2u+v)

11. If v * 0, prove that the angle between v
and —v is 180°.

12. For any vector v of V3. prove that

(v.i)i+ (v.j)j+ (v.k)k=v

13. p and q are unit vectors at an angle of 60°
with each other.
a) Calculate (p — 3q). (p — 3q).
b) Hence find the unit vector in the

direction of p — 3q.

14. u, v, andw are three distinct non-zeros
vectors. v I to both u and w.
a) If u. (v + w) = v• (u — w), prove that

w is perpendicular to (u + v).
b) If(u.v)w=(v.w)u,provethatullw.

15. The angle between the vectors a and b is

Owherecos U = . If a = (2,3,—i) and

b = (—1,k,1), find the possible values of k,
correct to 3 decimal places.

16. A triangle is such that its three sides
represent the vectors a, b,and c. By
expressing c in terms of a and b, prove
the cosine law. That is, prove that

c=Ia+Ib—2IaIIbIcosC,
where C is the angle between a and b.

17. The position vectors of points A, B, C
relative to the origin 0 are a, b, c
respectively. AB is perpendicular to OC and
BC is perpendicular to OA. Prove that OB
and AC are perpendicular.

a = (3,7)
a = (—5,0)

a=(—5,1)
a = (2,—3,l)

b = (2,1)
b = (0,1)

b=(1,2)
b = (5,0,—6)
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3.4 a.ppIications: The Dot Product and

Trigonometry
In this section you will use the dot product to prove some trigonometric
results. These proofs are very much neater than the proofs you have seen
before, due to the power of vector algebra.

I / iidinI ( '/fl/'IU'J/I\

You can use the dot product to create another formula to obtain the
component of a vector in the direction of another vector, Indeed, if the
angle between u andy is 0, then the component of u on v is u cos 0.

But ullvlcosO=u.v
Dividing each side by the scalar vJ gives

U.v
I uI cos 0 =—'—

V

Thus the component of u on v, c = u.
lvi

where e is the unit vector in the direction of v.

Thus, the projection of u on v, p = (u. es,) e

The following example matches Example 4 of section 3.1.

Example Given u = (—2,6) and v= (3,4), find the following.
a) the component of u on v b) the projection of u on v

Solution a) The unit vector e = = ______ (34) = 1 (3,4) = (0.6,0.8)
lvi /42 5

Thus the component of U on v is c = (—2,6). (0.6,0.8) = 3.6

b) The projection of u on '' is thus

p= (3.6)e= 3.6(0.6,0.8) = (2.16,2.88) •
Note: It is not necessary to know the angle between u and v, as in 3.1.

You will find other applications of the dot product in chapter 4, but some
of these are interesting and spectacular enough to be introduced now.

y
4

U

1
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,l F'tc'/ f tin' ( ii Litt iiinq (lie 1)e Prediict

In the figure, any vectors a and b are sketched
with their tails in common. C = a — b

The angle between a and b is 0. a
The vector c which 'closes the triangle' e

as shown is equal to a — b. Now b
c • c = (a — b). (a — b)

= a•a — a.b — b.a + b.b 3mg property 2

cl2 = al2 — 2a.b + b using properties 1 and 4

id2 = al2 + ib — 2IaIIbJ cos 0 using the definition
which is already the cosine law!

From this fast proof you might appreciate the power of the dot product,
and the vastness of the possible applications of vectors to mathematics. If
you look back at a traditional proof of the cosine law, you will see how
much more concise this one is.

Eindin Ceinpeiiiid ii,qle Ith'IiIitiL',

Another fundamental result in trigonometry is the set of compound angle
identities, that is, the formulas for the sine, cosine, and tangent of the sum
and difference of two angles (see page 542).

Finding an expression for, say, cos (A — B) in terms of trigonometrical
ratios of A or B only, by applying basic trigonometry, is a much longer
process.

Once again, the dot product of vectors will allow you to arrive at a result
remarkably quickly.
Consider two unit vectors u and v,
making angles A andB with the =0sA, sinA)
horizontal respectively, as shown. / '\

v = (cosB, sin B)

In component form, the vectors are u = (cosA,sin A) and v = (cos B,sin B).

Lul ,Icos2A + sin2 A = 1, as expected, and lvi = 1. Now

u.v=luiIvicosA—B)=(l)(1)cosA—B)=cosA—B)
but by using components
u. v = (cos A,sin A).(cos B,sin B) = cosA cos B + sinA sin B.
From ffj and 3, cos (A — B) = cos A cos B + sin A sin B!!

The speed and conciseness of this proof, compared to traditional proofs, is
even more striking than the comparison in the case of the cosine law.



3.4 Applications: The Dot Product and Trigonometry 131

3.4 Exercises

1. a) Calculate, to the nearest degree, the
angle between the vector v = (2,3,—5)
and the three coordinate axes.

b) What is the component of v on each of

i,j,andk?
2. Calculate, to the nearest degree, the angle

between PQ and i, if P and Qare the
following points.
a) P(2,1),Q(3,7)
b) P(—2,0),Q(4,5)
c) P(—2,—2,1),Q(4,3,2)
d) P(5,3,1),Q(1,—1,1)

3. Using the points of question 2, state the
component of PQ on i in each case.

4. Calculate the component of u on v, and
the component of v on u, in the
following cases.
a) u = (—3,5),v = (1,2)

b) u = (—1,1,1), v = (2,4,—5)

5. Show that the triangle ABC with vertices

A(2,2,2), B(—2,—4,0), C(0,—12,2) has an

obtuse angle at B.

6. Determine the angles of the triangle PQR in
the following cases, to the nearest degree.

a) P(3,—1), Q(4,4), R(—2,—3)
b) P(2,0,1), Q(5,1,—3), R(—4,2,7)

The next three questions match questions 7, 9,
and 13 of 3.1 Exercises. Use the dot product to
find the solutions here.

7. Resolve the following vectors on i, j,
and k.

u = (4,5,0) v= (—2,—3,i)

8. Calculate the projection of the following on
V = (1,1).

a)i b)j

9. Given two non-zero vectors u and v, what
can you deduce about u and v where
a) the component of u on v is equal to

the component of v onu?
b) the projection of uon v is equal to the

projection of v on U?

10. Given the vectors u = (2,10) and
v = (—3,—2), find each of the following,
correct to 3 significant digits.
a) the component of u onv
b) the projection of u on v

11. Resolve the vector v = (—2,3) onto the
vectors a = (1,1) and b = (—1,1).

12. Use the dot product to determine whether
or not the following points determine a
right-angled triangle.
a) A(2,1), B(6,5), C(3,0)
b) A(2,1), B(3,—1), C(6,5)
c) A(1,—1,5), B(2,3,—4), C(3,5,—3)

13. A circle of centre 0 has a diameter PR.
C is any other point on the circle.
a) If OR = r, state the vector OP in terms

of r.

b) If OC = c, express the vectors RC and
PCintermsofrandc.

c) Calculate the dot product RC.PC.
d) Hence deduce the value of an angle

inscribed in a semi-circle.

14. A fact about a circle is that any angle
inscribed in a given segment of a circle is
constant. A converse of this theorem can be
described as follows. If A, B, C, and Dare
four points such that 3ABD = IZACD,
then A, B, C, and D lie on a circle.
Use this fact to prove that the following
four points lie on a circle.
(Such points are called cyclic or concydlic).

A(—2,—2), B(— 1,5), C(6,4), D(7, 1).
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DEFINITION

3.5 The Cross Product

The second product of two vectors u andy is written uxv, and is called
the cross product or vector product of u and v.

The cross product is a regular binary operation, unlike the dot product
which gives you a scalar result. In other words,
the result of the cross product of two vectors is also a vector.

When writing this product, you must use a across' (x) as shown:

ux v = uIjv sin O)e

where 0 is the angle between the two vectors when they are drawn with a
common tail, and e is a unit vector perpendicular to both u and v chosen in
such a way that the triple u, v, e] forms a right-handed system.

(See chapter 1, section 2.
Using your right hand, the directions of u, v, and e are represented by
your thumb, your first finger and your second finger respectively.)

PROPERTY

Example 1

The diagram shows the direction of e and hence of u x v.

If u and v were interchanged, then e would be pointing in precisely the
opposite direction. (Again, check this with your right hand.) This
indicates that vxu = — uxv. This will be confirmed in the following
example.

Note: Since a three-dimensional system is required for its definition, the
cross product is meaningless in V2.

In each of the following, find the cross products, if possible.

a) TfIuj=4jvI=5,0=30°,finduxv.
b) If u = (2,5), v = (—1,1), find uxv.
c) Ifu=(2,5,O),v=(—l,1,O),findbothuxL'andvxu.

UxV
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So LltiOfl a) uxv= ul vi sin 0)e= (4x5xsin 30°)e= (20)(0.5)e= lOe

Note: The direction of e, and hence ofuxv, is not known, unless the exact
directions of u and.of v are known. In this example,
you do not have that information.

b) u x v is not defined in V2.so this vector product is impossible.

c) Iui=J22+52+02=,andivi=jJi)2+ 12+02=/i
You can obtain the angle 0 between u and v by using the dot product.

uv = ulivicos O,so cos 0= --4
_____ iuiIvi

(2,5,0).(—1,1,0)cos 0 =

= (2)(—l) + (5)(1) + (0)(0) = = 0.3939... 0 67°.

Thus uxv = u v sin Oe
= sin 67° e
= (/)(0.9191...)= 7e.

x

But vectors u and v are in the xy-plane, as the diagram shows.

The triple Lu, v,k] forms a right-handed system.
Thus, e = k, therefore u xv = 7k, or (0,0,7).

If; and V are interchanged, the second finger of your right hand points
in the opposite direction to the direction of k, namely in the direction of —k.

Thus vxu = i;i sin 0 (—k)
= sin 113° (—k)

=—7k. U

iiiel ri i / in U' rpr& Ia U ii I I lie (i's 1iLhli4Lt

Consider a parallelogram ABCD where AB =U andAD = V. Let H be the
foot of the perpendicular from D to AB.
If Ois the angle between u and v, then DH = lvi sin 0.
The area of this parallelogram is 0 C

(base) (height)

=iulvisin0)
= (AB)(DH)

IUXvI. A H B
U

In other words, the magnitude of u x v is the area of the parallelogram
whose sides are represented by the vectors u and v.

z

k

5Y
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Example 2 A parallelogramABCD is such that ABI = 6, IADI = 5, and 3BAD is 28°.
Calculate the area of the parallelogram, correct to 1 decimal place.

Solution The area of ABCD is
lABxADI = sin 28° = (6)(5)(O.4694...) = 14.1.

The following examples should help you to discover further properties of
the cross product.

Example 3 Calculate a) ix 1, b) ixi c) kxj

Solution a) ixi= (:1)(1)(sin O°)e= Oe= 0

Note: You cannot find a unique direction for e, because there are many
vectors perpendicular to i in V3. However, this is not important,
since the coefficient of this vector is 0. Thus the result is the zero
vector, 0, which is considered to have any direction.

R P E T The cross product of a vector with itself is the zero vector.

b) ixj= (1)(1)(sin90°)k=k
c) kxj= (1)(1)(sin 900)(_i) = _.j • fl[jF1t-haI1dd syst1n1

R P E R The cross product of any two distinct standard basis vectors of V3 gives
third standard basis vector).

Example 4 Calculate (31) x (4j).

Solution (3i)x(4j) = (3)(4)(sin 90°)k= 12k. •

Compare the result of this example to that of Example 3b).

° R o E R 1- y For any vectors u, V.andscalars m, n, (m u)x (n v) =(mn)uxv.

You might note that the vectors in the examples of this section were in one
of the major planes of V3. If they had not been, you would have had
difficulty in determining the direction of e. The method of the next
section will allow you to find the cross product of any two vectors of V3.

SUM MA A V Thecrossproductofvectorsuandvisthevectoruxv=juUvlsinO e,

where e is a unit vector perpendicular to u and v such that the triple

[u,v,e] forms a right-handed system.

The magnitude of u x v is the area of the parallelogram whose sides are
represented by the vectors u and v.

u x v is perpendicular to both u and v.
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3.5 Exercises

1. Calculate U X V for each of the following,
where u and v are vectors of V3. Specify
the direction as precisely as you can in each
case.

a) ui = 5,ivi = 2, and the angle between
uand v is 30°

b) ui= 12,IvI = 7,and the angle

betweenu and v isl 50°

c) iui=3,ivI=6,and=8
d) LuI=4,i=5,du7:10
e) u = (0,6,3) and v = (0,—1,5)

f) u = (0,—1,5) and v = (0,6,3)

2. Calculate

a) jxj
b) jxk
c) jxi.

3. A parallelogram ABCD is such that

ABI = 10, IADI = 4, and the angle BAD is 42°.
Calculate the area of the parallelogram,
correct to 1 decimal place.

4. AtriangleABC is such that ABI = 15,

IACI= 12, and AB.AC= —100. Calculate the
area of the triangle, correct to 1 decimal
place.

5. Given any three vectors u, v, and w of V3.
determine which of the following
expressions are meaningful.
a) ux(v.w) d) (uxv)w
b) ux(v+w) e) (uxv)xw

c) ux(v—w) f) (U.v)+(uXv)

6. Prove that the cross product of a vector
with itself is the zero vector.

7. Prove that, for any vectors u and v of V3,
uxv= —vxu.

8. Suppose m is any scalar, and [u,v,e] is
any right-handed system of vectors, where
e is a unit vector perpendicular to both u
and v. Prove that (m u)x v =m(uxv) in
the following cases.
a) m is positive b) m is negative

9. Using the results of question 8, prove that,
if nis another scalar,

(m u)x(n v)= (mn)(uxv)

10. Prove that uxv = 0 if and only ifu and
v are linearly dependent.

11. Consider the standard basis vectors i, k,
and the vector u = (1,1,0) of V3.

a) Explain why (ixu)xk = 0.

b) Does ix (u x k) = 0?
c) State whether or not the cross product

is associative.

12. Prove that, for any vectors u and v of 'Vs,

u.(uxv) = 0.

13. The standard basis vectors of V3are 1, j,

and k. Prove that the cross product of any

two distinct standard basis vectors in V
gives third standard basis vector).

(You may use a general argument, or treat

this case by case.)

14. Given that the vectors u and v of V make
an angle 0 with each other, prove the

following.

a) (u.u)(v.v)
— (u.v)2=luI2IvI2sin2O

b) IuxvI=/)(vv) — (u.v)2

15. a) Ifaxb = axc, does it necessarily
follow that b = C?

b) Ifaxb = axcanda•b = a•c, does
it necessarily follow that b = C?

16. Verifythat(i+j)XkiXk+JXk.
(This illustrates that the cross product is
distributive over vector addition.)
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Bridges

ING

Bridges have been in existence for a long time. The first people on earth
probably used a fallen tree to go from one side of a stream to the other.

In the 18th, 19th and the early 20th centuries much of the work done in
designing bridges was based on the success of previously constructed
bridges. If an earlier construction had no problems, bigger, larger, and
more elaborate versions of the old structures were erected. When a bridge
did fail, then engineers would locate the source of the problem and add
more safety features in future structures.

With the advent of the railroad in Canada and the United States in the
19th century much work was done developing strong truss
structures that would enable the construction of longer bridges. One
problem that had to be overcome was caused by the vibrations set off in a
bridge by a train passing over the bridge.

Designers were not always successful. In 1877 a bridge in Ashtabula,
Ohio, failed as a train passed over it. 90 people were killed. Two years
later, a train consisting of a locomotive and six passenger coaches fell
from a collapsing bridge into the Firth of Tay in Scotland, killing over 100
passengers. During the period from 1870 to 1890, truss bridges in the
United States failed at the rate of 25 per year. Something needed to be
done.
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In 1934, C.E. Inglis completed a long study called A Mathematical Treatise

on Vibrations in Railway Bridges. In this treatise he wrote, 'Mathematical
analysis is required to indicate the lines along which experiments should
proceed, and experiment, in its turn,is necessary to check the validity of

theoretical predictions and to prevent mathematics running off the scent

and barking, so to speak, up the wrong tree."

Nowadays one expects engineers to make use of mathematics in their

designs of bridges. Indeed, calculations and simulations based on

appropriate mathematical models form the basis of structural engineering.

The use of theory, rather than experiences to
design bridges, has been in

part motivated by the desire for safety, and to use new materials thatwill

cut costs and speed construction.

Theory has allowed designers of bridges to come closer to the limits of

safety while still maintaining a large margin of safety. But nevertheless,

designers still run the risk ofstructural failure, especially if they do not

take into account all physical situations.

One notable failure was Galloping Gertie'. Galloping Gertie was the

nickname given to a bridge in the United States built to cross the Puget

Sound in Tacoma, Washington.

From the time it opened on July 1, 1940, the bridge achieved a certain

popularity and notoriety due to itstendency to sway in the wind. People

would drive over the bridge just to get aroller coaster feeling. But all was

not well. Just a few months later, on November 7, 1940, the bridge

collapsed into the Puget Sound.

After the collapse of this bridge, newstudies were made to try to prevent
similar disasters. In the case of Gertie, thestatic analysis of the bridge had

been done correctly but proper attention had not been paid to

aerodynamical considerations.

Now mathematicians, computer scientists,and engineers act together with

architects to design bridges. Computersimulations of the design features

and workings of a bridge can be produced graphically on a computer

screen. These new bridges should be beautiful, functional bridges that do

not collapse.
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i6 Prope ties of the Cross Produ

In the examples and exercises of the last section, you proved the first four
of the following properties of the cross product.
For any vectors u, v, w and any scalar m,

PR OP ER TIE S XV= —vXU [not commutative]
2. uxu=O
3. ixj=k,jxk=i,kxi=j
4. (mu)xv=m(uxv)
5. ux (v + w) = uxv + uxw [distributive over

This last property will be proved later in this section. Before this can be
done, you need to investigate the following product.
I rip/c Scala, l'r,duc

The expression (ax b). c is known as a triple scalar product.

Note I (ax b). c is meaningful, since ax b and c are both vectors. Thus
the dot product can be obtained, giving a scalar as a final result.

2 "a x (b. c)" is meaningless. You cannot perform a cross product
with a vector and a scalar.

Consider aparallelepiped whose sides emanating from 0 are represented
by vectors a, b, and c, where a, b, c form a right-handed system. Let
the height of the parallelepiped be represented by the vector HC =h.

The volume V of the parallelepiped
can be calculated as follows. N
V = (base area) (height)

= (OAMB)(HC)
= lax blihi
= lax blllcicos 01

=l(axb).cl A

Since the vector ax b has the same direction ash (which is
perpendicular to the base), the angle between a x b and c is the same as
the angle between h andc, namely 0. Thus the dot product (axb). c is
equal, by definition, to lax blllcl cos 01. Furthermore, since [a,b,c] is a
right-handed system, the angle 0 is acute (00 < 0 90°), so cos 0 is positive.
Thus, the dot product is positive, and the absolute value signs of line 1D
are not required.

Therefore V = (ax b). c.
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Similarly, by using parallelogram OBNC instead of parallelogram OAMBas

a base, you can calculate the volume of the parallelepiped as
V= (bxc).a,
and since the dot product is commutative,

V= a.(bxc).

(Notice that Ib,c,a] or [a,b,cJ are both right-handed systems.)

Thus, V = (axb). c and V = a (b x c).
From this argument, the following property of triple scalar products can
be deduced.

PROPER T y axb.c=a.bxc
In other words, as long as the order of the vectors remains the same, the dot and
the cross of a triple scalar product can be interchanged!

Notice that brackets are not essential, since either expression is
meaningful only if the cross product is performed first.

Proof 0; he Distrihu ivity of over (property 5)

Consider r = ux (v + w) — uxv — uxw, whereu, v, andware any
vectors. Then

r.r=r.[ux(v+w)—uxv—uxw]
=r.ux+w) —.x— .x oi cdLcl S ui r ye

= rx u. (v + w) — rxu.v rx . :riple >ua al JR dt Ct ii upt ty

= rxuv + rxu.w — rxu.v — rxu.w aot oduct s us rio ye
= 0.

Thus r = 0, that is,
ux (v+w) —uxv—uxw=0, thus
ux(v+w) =uxv+uxw

which completes the proof.

Now by using the properties of the cross product listed at the beginning of
this section, you can find a formula for calculating the cross product of
vectors expressed in component form in the orthonormal basis i, j,k.

If U = (u1,u2,u3) and; = (v1,v2,v3),

uxv=(u1i±u2j+u3k)x(v1i+v2j+v3k)
= u1v1(ixi) + u1v2(ixj) + u1v3(ixk)

÷u2v1(jxi)+u2v2(jxj)+u2v3(jxk) JIl erte
+u3v1(kxi)+u3v2(kxj)+u3v3(kxk) IndD
=u1v2k—u1v3j—u2v1k+u2v3i+u3v1j—u3v2i JIUJUteS? tiu3

F 0 R M U L A uxv= (u2v3 — u3v2)i— (u1v3 — u3v1)j+ (uv2 — u2v1)k



140 Chapter Three

This is a particularly difficult formula to remember. It is easier to recall it
in the form of a 3 x 3 determinant.

The 3 x 3 determinant
a 1, c ej df de
d e f= —b +chi gi ghghz

where a 2 x 2 determinant, such as e f = eh — fg.gh
You will be learning more about determinants in chapter 7.

lfu=(u),u2,u3)andv= (v1,v2,v3)

FORMULA J k

2 3 _l 3
I 2 3 v2 v3 ]v1 v3 v1 v2

V1 V2 V3

Note: The result is indeed a vector.

Because u x v is perpendicular to both u and v, the cross product can be
used to find a vector perpendicular to two given vectors.

Example 1 In each of the following cases, use the cross product to find a vector
perpendicular to both u and v.

a) u=(2,5,0)andv=(—l,l,0)
b) u = (1,2,3) and v = (—2,5,6)

Solution ____ 7 -
a) uxv= (2,5,0)x(—1,l,O) = 2 5 0

—1 1 0
= i[(5)(0) — (0)(1)J — j[(2)(0) — (0)(—1)] + k[(2)(1) — (5)(—1)]
= 110

— 0] — j[0 — 01 + k[2 — (—5)1

=7k

Note: The result is indeed perpendicular to both u and v, which are in
the xy-plane.

(Compare this to the solution of Example I c) in the previous
section.)

__ jfk
b) uxv=(l,2,3)x(—2,5,6)= 1 2 3

—2 5 6
= i[(2)(6) — (3)(5)] —j[(1)(6) — (3)(—2)1 + k[(1)(5) — (2)(—2)]

= 7[l2 — '51 — j[6 —(—6)] + k[5 (—4)1

= (—3,--12,9) U
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Example 2 Given a = (2,1,1), b = (0,—1,1), and c = (—1,3,0), use both versions of the
triple scalar product to find the volume of the parallelepiped shown.A

Solution A volume must be positive. To avoid checking whether or not [a,b,cJ
forms a right-handed system, use the absolute value of the triple scalar
product.

The volume is eitherl(axb).cI orla.(bxc)I.__ jfk
NowaXb=(2,1,1)X(0,—1,1) 2 1 1

0 —1 1

= i(1 + 1)—j(2—0)+k(—2—0)
= 2i — 2j —2k

and sol(axb).cI=I(2,—2,—2).(—1,3,O)I=I—2 + (6) + 0 8.

Alternatively,__ __ ijk
bxc=(0,—1,1)x(—1,3,0)= 0 —1 1

—1 3 0
i(0—3)—j(0+ 1)+k(0— 1)

= —3 i — j — k

andsola.(bxc)I =l(2,1,1).(—3,--1,—1)I =1—6—1 — 11=8.

The same volume is obtained in both cases.

Example 3 Prove that ax b. c = 0 if and only if a, b, and c are linearly dependent.

Solution 1. Given ax b.c = 0, prove that a, b, care linearly dependent.
If a xb •c = 0 then ax b is perpendicular to c.
But ax b is also perpendicular to both a and b,
so a, b, and c are coplanar.

2. Given a, b, care linearly dependent, prove that ax b. c = 0.

If a, b, and c are coplanar,
ax!' is perpendicular to the plane of a and b,
and since c is in the plane of a and b,
c is also perpendicular to ax!'.
Henceaxb•c=0. •
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A right square pyramid ABCDT whose base has side 12 units and whose
height is 17 units is positioned in 3-space with coordinates A(6,6,0),
B(—6,6,0), C(—6,—6,0), D(6,—6,0), and T(0,0,17). Calculate the following,
giving your answers to the nearest degree.

a) the angle between the edge AT and the base ABCD
b) the angle between the planes ABT and ADT

Solution a) A normal vector to the base ABCD is k.

base

T

A

The diagram shows that you must find , the complement of the angle
0 between AT and k.
First calculate the angle 0.
AT = OT — OA = (0,0,17) — (6,6,0) = (—6,—6,17)
By the dot product

AT.k =ATHkJcos 0

(-6,-6,17).(0,0,1) = f)2 + (_6)2 + J72 (I)(cos 0)
17 = cos 0, or

cos0=1-=0.8947... 027°
19

Thus the required angle is 900 — 63°
b) In order to find the angle between the planes, first find the angle

between normal vectors to each plane.
A normal vector for plane ABT is ii TAX TB
A normal vector for plane ADT is n2 = TAX TD

(Note that, by the right-handed rule of the cross product, n1 points
outside the pyramid, but n2 points inside.)

Example 4

(00,17) T

(—6, B (—6,6,0)

(6—6,0) D

6

A (6,6,0)
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Now from a), TA = —AT = (6,6,—17). _______
Also, TB = OB — OT (—6,6,—17) and TD = OD — OT= (6,—6,—17)

___ ___ ij k
Thus, n1 = (6,6,—17)X(—6,6,—17) = 6 6 —17

—6 6 —17
= i(O) — j(—204) + k(72)
= (0,204,72) = 12(0,17,6)

___ ___ if k
Also n2 = (6,6,—17)X(6,—6,--17) = 6 6 —17

6 —6 —17
= i(—204) — j(0) - k(—72)
= (—204,0,—72) = —12(17,0,6)

Let the angle between n1 and n2 be a.

Then n1.n2 =1n111n21 cos a

12(0,17,6).[—12(17,0,6)] = 12[i + 62 12.1172 + 62 cos a

—144(36) = 144(./)2 cosa
cosa=—---=—O.1107... =a=96°.

325

This is the required angle between the planes. •

nl

OR

plane l1

plane 11

plane 112 plane 2

Observe from the diagrams that the angle a between two planes could be
either equal to the angle between two normals, or equal to the supplement of
this angle.

If the planes H and U2 are infinite mathematical planes, there are actually
two possible angles between them, a, and 180° —a.

However, if the two planes refer to real physical objects such as the
pyramid of Example 4, you must decide which of the two angles is
appropriate to describe the physical situation.

nl

CL
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I/u' l iiqle Iu'i i eel i Ti i e Vecle r

Ifyou are given two non-zero vectors u and v in component form, recall
(Example 2, section 3.3) that you can calculate the angle between them by
using the dot product.

The cross product, ux v = lullvsinO e, where 0 is the required angle
and e is a unit vector so that u, v, e form a right-handed system, can
also be used to calculate 0.

To find sin 0, you can equate the lengths of the above vectors.
Thus, u x vl = lull vlsin 0, since sin 0 is never negative
(because 0° 0 1800).

luxvHence, sin 0 =
lulIvI

However, this will produce two solutions for 0, in the range 0° 0 180°.
One solution is the angle between the vectors, and the other is the
supplement of this angle. You must select the correct angle.

The dot product is more useful than the cross product to determine the
angle between two vectors, because it produces only one solution (the
correct solution) in the range 0° 0 180°.

. M M A A The triple scalar product property
axb.c = a.bxc

If U = (u1,u2,u3) and v = (v1,v2,v3), then

ii k
u3 -iu1 u3 u1 u2uxv= =z —j

1 2 3 1,72 3 V1 V3 Vi V2
V1 V2 V3 - -

= (u2v3 — u3v2) i — (u1v3
— u3v1)j + (u1v2 — u2v1)k
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3.6 Exercises

1. Calculate uxv in the following cases.

a) u = I = (1,0,0) and v = j = (0,1,0)

b) u=(2,3,5)andv=(1,0,4)

c) u = (—1,8,--3) andy = (2,—2,—5)

d) u (1,—3,2) and v = (2,—6,4)

2. Find a unit vector perpendicular to both u
and v for the vectors given in question 1.

3. Simplify the following.
a) px(p+q)

b) (p+q)X(p+q)
c) p.qxp

d) px(q+r).q
4. Find the area of the parallelogram ABCD if

AB = (1,9,2), and AD= (—2,1,7).

5. Find the area of the triangle ABC in the
following cases.
a) AB = (1,2,—3),AC= (4,4,1)
b) the vertices areA(12,5,7), B(4,10,13),

and C(8,—3,—1).

6. Three sides of a parailelepiped_represent
the vectorsu = (3,2,1,), v = (—4,0,2), and
w = (5,1,—i). Calculate the volume of
parallelepiped.

7. The parallelepiped OAMBLCNK shown is
such that OA = (1,4,4), OB = (—1,2,1), and
OC = (6,—2,—3). Calculate the volume of the
pyramid OAMBC.
(Formula: the volume of a pyramid is one
third of the base area times the height.)

A M

/ B

L

8. In the pyramid OAMBC of question 7, show

that OM =(0,6,5). Then calculate the
following, giving your answers correct to
the nearest degree.
a) the angle between BC and the base

OAMB

b) the angle between MCand the base
OAMB

c) the angle between the planes MBCand

OAMB

d) the angle between the planes MBCand

MAC

9. IuI= 5,lvI= 6,luxv= 21. Determine
whether or not this information is
sufficient to find the angle 0between

u and v.

10. Given u= (4,—6,0), v = (2,1,1), and
w = (1,3,—5).

a) Calculate (uxv)xw and ux(vxw).
(These are known as triple vector
products).

b) Draw a conclusion about the
associativity of the cross product.

11. Confirm the result of 3.5 Exercises,
question 11, as follows. Given i = (1,0,0),
u = (1,1,0), and k = (0,0,1), show that
(ixu)xk = 0, but ix(uxk) * 0.

12. Prove that the three V3 vectors u, v, and w
are non-coplanar if and only if
u.vxw * 0.

13. Use the cross product to show that the
vectors a = (2,—1,3), b = (1,2,0), and
c = (1,—13,9) are coplanar (hence linearly
dependent).

14. Showthat(a+b) x (a—b)=bxa.

15. A(2,—1,4), B(3,1,—5), and C(1,1,1) are three
points in a plane fl. Use the cross product
to find a vector perpendicular
to the plane H.

C
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Summary
• The angle 0 between two vectors a and b is the angle formed when the

vectors are drawn with a common tail.
• The dot product of a and b is the scalar

a.b=IajIbIcosO
• The orthogonal projection of a on b is the vector

p =Ialcoso4 = al cos 0 eb = (a. eb) e,
Ibi

where eb is the unit vector in the direction of b.
• The component of a on b is the scalar coefficient of the Unit vector in

the projection,
- abC =aIcos 0 = a•eb=

Ibi
• Properties of the dot product

1. a.b = b.a
2. a.(b+c)=a.b+ac
3. (ka).b=k(a.b)
4. a.a=1a12
5. If a is perpendicular to b,then a b = 0.

6. ii= l,j.j= l,k.k= 1

7. i.j=j.i=j.k=k.j=k.i= i.k=0 — _____• In V2. a = (a1,a2) and • In V3. a = (a1,a2,a3) and

—
b = (b,,b2) b = (b1,b2,b3)

a.b=a1b2+a2b2 a.b=a1b1 +a2b2+a3b3
• Vectors that are all unit, and mutually perpendicular, are said to form an

orthonormal basis of the vector space.
• The cross product of vectors aand bis the vector

axb=IallblsinOe, —

where e is a unit vector perpendicular to a and b, such that the triple

[a,b,el forms a right-handed system.
• Properties of the cross product

1. axb=—bxa
2. axa=0
3. ixj=k,jxk=i,kxi=j
4. (ka)xb=k(axb)
5. ax(b+ c)=axb+axc
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• The triple scalar product property
axb.c = a.bxc

• If a = (a1,a2,a3) and b = (b1,b2,b3), thenjfk i
axb= a a a 1a2

a3 a1 a3 +a a2 where =cdfe.
I 2 b2 b3 lb1 b3 b b2 e d

b1 b2 b3

iiv ory
1. The angle between two vectors is defined as the angle between them

when they are drawn with a common

2. The projection of the vector (2,—3) on the x-axis is

3. The component of the vector (2,—3) on the y-axis is _____

4. writing the vectors (2,—3) as 2 i — 3j is called _____ the vector in the
directions of i and j.

5. The dot product combines two vectors to produce a

6. The cross product combines two vectors to produce a

7. The product is not defined in '2•

8. The dot product of u and v equals

(length of u) (component of on ).

9. The magnitude of the cross product of u and v equals the area of the
_____ whose adjacent sides represent the vectors and

10. The product is not commutative.

11. The dot product of a unit vector with itself equals

12. The cross product of a unit vector with itself equals

13. The dot product of two perpendicular vector equals

14. If the angle between two vectors is obtuse, then the dot product of
those two vectors is , and vice-versa.

15. The expression axb. c is known as a _____________

16. The expression axb• c is equal to ____

17. The product Ux v yields a vector that is _____ to both u and v.
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Review Exercises

1. State the projections and the components of
the following vectors in the directions of

i,jandk.
a) (6,—5,—3)

b) (—/,i,J)
c) —3(1,—1,2)

2. Given that the following vectors are in V2,
and that 0 is the angle between each vector
andi, find the component of each vector
on i and j. Express your answers correct
to 3 decimal places.

a) Ia=2,O=55°
b) Ib=4,0=i61°
c) IcI=5,O= 180°.

3. What can you deduce about u and/or v in
the following cases?
a) The component of uin the direction of

v is equal tolul.
b) The component of u in the direction of

v is equal to —IUI.

4. Calculate the dot product of the following
pairs of vectors, given that 0 is the angle
between them.

a) uI=7,IvI=1,O=35°
b) IwI=2,Itj=5,0=120°
c) IaI= 10,Ib= 10,0= 157°

5. In question 4, calculate the component of
the first vector on the second in each case.

6. ABCDEF is a regular hexagon whose sides
have length 2 units. Calculate the
following.
a) AB.BC
b) AF.FE
c) AF.BC

7. Find the dot product u.v if

a) u=(2,4) v=(0,3)

b) u=(—5,0,12) v=(3,—4,—2)

c) u=(2,7)
d) u=(1,2,5)

v= (21,—6)

v = (3,1,—i)

8. Find the value of k if the vectors
u = (—8,6,7) and v = (k,—1,2) are
perpendicular.

9. Prove that, for any vectors u and v,

a) (u+v).(u+v)
=1u12+ 2u.v+vI2

b) (u+v).(u_v)=Iu12_1v12

10. Apply the result of question 9 a) to two
perpendicular vectors u and v to prove
the theorem of Pythagoras.

11. Two adjacent sides of a rhombus represent
the vectors u and v. Using the result of
question 9 b), prove that the diagonals of a
rhombus are perpendicular.

12. a and b are unit vectors at an angle of
135° to each other. Use the dot product to
find an exact expression for the unit vector
in the direction of 2a — b. (See the table
of trigonometric ratios on page 543.)

13. Given the vectors u = (2,—i) and
v = (—2,—3), find each of the following.
a) the angle between u and v
b) the component of u onv
c) the projection of uon v
d) the component of v onu
e) the projection of von u

14. The angle between the vectors u and v is

0 where cos 0 = Ifu = (2,—1,1) and

v = (a,3,4), find the possible values of a.

d) AB•ED
e) AB.BD
f) AF.BE
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15. a) Provethatu=vifandonlyif
u.p= v.pfor every vector p.

b) Hence prove that in V2 it is sufficient to
verify this relationship for two linearly
independent vectors p' and P2.

c) How many vectors would be needed to
verify the relationship in V3?

16. Determine the angles of the triangle PQR in
the following cases.
a) P(—2,4), Q(7,—9), R(0,3)
b) P(5,4,1), Q(8,—1,---3), R(9,4,4)

17. OAB is a triangle with OA = a, OB = b.
M is the midpoint of OA, and N is the
midpoint of OB.
a) Express AN and BM in terms of a

and b.

b) If 1ANI= IBMI, prove that ai= ibi.

(This proves that if two medians of a
triangle are equal in length, then the
triangle is isosceles.)

18. OABC is a parallelogram with OA = a and
OC= c. Evaluate AC.AC + OB .OB in terms
of a and c to prove the following
theorem.
The sum of the squares of the diagonals of
a parallelogram equals the sum of the
squares of the sides.

19. Calculate u x v for each of the following,
where u and v are vectors of \V3.

a) ui = 3,IvI 2, and the angle between
uand vis 25°.

b) Lui= 4,Iv= 1, and the anglebetween
uandvis 1100.

c) Lui= 5,Iv=6,anduv= —5.
d) u = (9,—2,4) and v = (3,—1,0).

20. Find the two unit vectors that are
perpendicular to a = (1,6,8) and
b = (4,—2,—5).

21. Calculate the area of the triangle whose
vertices are P(10,—3,9), Q(—1,4,2), and
R(0,5,—6).

22. Ifa=(—1,3,6)andb=(—2,—2,5),
determine whether or not it is possible to
find the angle 0 between a and b by using
the cross product exclusively.

23. In each of the following, use the triple scalar

product (ax b).c to determine whether or
not the three vectors are linearly
dependent. _____ ______
a) (0,1,3), (—3,5,2), and (—6,11,7)

b) (1,2,3), (—3,0,4), and (—1,4,6)
c) (4,1,8),(—2,1,0),and(0,3,16)
d) (1,2,4), (2,—3,—i), and (—l,—9,—13)

e) (3,5,1), (2,—2,—1), and (—4,—4,0)

24. Choose specific vectors in V3 to show that
the cross product is not associative. That is,
show by counterexample that
ux(vxw)*(uxv) xw.

25. a) Find a vector p perpendicular to
q = (4,—1,—2) and perpendicular to
r= (0,3,1).

b) Normalize p.

26. Given a vector v * 0 and a scalar k, use
the dot product to calculate the angle

between v and kv in the following cases.

a) k>0 b) k<0

27. In question 26, discuss the case where

k = 0.

28. Given any three vectors p. q, r ofV3.
prove the following.
a) p.qxr=q.rxp=r.pxq(Thisis

known as the cyclic property of triple
scalar products.)

b) p.qxr—q.pxr.
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29. a) Show that (uxv) xw
is a linear combination of u and v.
That is, show that
(uxv) xw=ku+sv,
where k and s are scalars.

b) Show similarly that
ux (vxw)=mv+nw,
where m and n are scalars.

c) Using the results of parts a) and b),
describe the triples u, v, w for which
the cross product is associative.

30. Given the triangle PQR, whose Sides
represent the vectors p. q, and r as
shown on the diagram.

R

p
q

0 r P

33. Let i, j, k be unit vectors along the
coordinate axes of a three-dimensional
rectangular Cartesian coordinate system,
and let a, b, c be defined by the
equations
a=—i+j+k, b=i—j+k,
c = i + j — k.

a) Find the angle between the vectors a
and b, giving your answer in degrees,
correct to 1 decimal place.

b) Given that 0 is the origin and a, b, c
are the position vectors of the points A,
B, C respectively, find
i) the lengths of the sides of the

triangle OAB, leaving your answers
in surd form, and

ii) the magnitudes of its angles.
c) What are the lengths of the sides of the

triangle ABC and the magnitudes of its
angles?

d) Find the position vector of the
mid-point D of LBCI, and write down
the position vectors of the mid-points E,
F of LCAI and [AB] respectively. Hence
find the volume of the tetrahedron
ODEF.

e) By considering the ratio of the areas of
the triangles ABC and DEF, or
otherwise, prove that the volume of the

tetrahedron OABC is units3.
3

(S4 S)
34. In a rectangular Cartesian coordinate

system the points 0, A, B and C have
coordinates (0,0), (4,8), (4,—2) and (—8,—6)
respectively.
a) Show the points 0, A, B and C in a

sketch, taking cm as a unit.

b) Prove that OA and OB are
perpendicular.

c) Given OD = OB + OC, find the
coordinates of the point D.

a) Provethatp+q+rO.
b) Write and then simplify the relation

obtained by carrying out the cross
product of p with each side of the
relation in a).

c) Repeat step b) by using q, then r.
d) From your results, prove the sine law in

triangle PQR (see page 542).

31. The vertices of the triangle ABC have
position vectors a, b, and c respectively
from an origin 0. Prove that the area of ABC

is -Iaxb+bXc+ cxaI.
2

32. A plane contains the points A, B, andC
whose position vectors are a, b, and c
respectively. Prove that the vector
n = ax!' + bx c + cxa is normal to the
plane.



Chapter Review 151

d) The point C' lies on the line (AB) so that
OC' = aOC. Calculate the value of a.

e) i) Given that the point E lies on the
y-axis and OA .AE = 0, calculate the
coordinates of the point E.

ii) It is further given that
OF = OE — OA. Calculate the
coordinates of the point F.

f) Calculate
i) the area of the rectangle OAEF, and
ii) the area of the parallelogram OBDC.

(85 SMS)

35. The point 0 is the centre of the circle drawn
through the vertices of the triangle ABC.
With respect to the point 0 as origin the
position vectors of the points A, B and C are

a, b and c respectively, so that

laI=IbI=IcI. The points G andH

are such that OG = -'-(a + b + c) and

OH =a + b + c

i) ProvethatAG=1(b+c—2a)

ii) Prove that (AG) passes through the
midpoint L of [BC] and find the ratio
AG:GL.

iii) Deduce, from the result obtained in
part (ii), that the three medians of
triangle ABC, i.e. the lines joining a
vertex to the midpoint of the opposite
side, pass through G.

iv) Prove that (AH) is perpendicular to
(BC).

v) Deduce, from the result obtained in
part (iv), that the three perpendiculars,
from the vertices of triangle ABC to the
opposite sides, pass through H.

(85 H)

36. In a rectangular Cartesian coordinate
system the points A, B and C have
coordinates (—6,1), (—2,4) and (1,0)
respectively.

i) a) Given the column vector = (i
\q

find the values of p and q.
b) Given AB = DC, find the

coordinates of the point D.
c) Show that I, the midpoint of [A C],

is also the midpoint of [BD].
d) Show that ABCD is a square.

ii) Calculate the coordinates of the points
E and F such that

BE=!BIandCF=2CE.
4

iii) a) By finding the column vectors for
each of AF and PB show that

4
b) Continue the argument

AF = AC + CF = 2(IC + CE)

to confirm thatAp = PB.
4

(84 SMS)

37. Given that
— f2\ — f—i

2

and that
s = kp — (p.q)q, wherek

find
a) thevalueofpq,and
b) the value of the constant k such

that the directions of s and q are
at right angles.

(87 S)
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CHAPTER FOUR

Applications
of Vectors

You are in a small airplane in the town of Thessalon, Ontario, ready to fly
to Hearst, a distance of 400 km due north. The plane can fly at 200 km/h,
and so you would expect the trip to take two hours. However, the
200 km/h is the plane's airspeed, in other words, its speed relative to the air
around it. This is not necessarily the same as the plane's groundspeed.

Naturally, if there is a strong wind against you (known as a headwind),
you would expect the trip to take longer. Similarly, if there is a strong
wind behind you (known as a tailwind), your trip would be shorter.
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On this day, a wind is blowing at 50 km/h from the west, and your pilot
cannot simply head north. Indeed, if she points the plane due north, along
the line TH, the wind will blow the airplane along a line such as TC.
Clearly, in order to reach Hearst, she will need to point the airplane in a
direction to the west of line TH, parallel to a line such as TD. The plane
should then continue to fly partly 'sideways', as shown in the diagram,
and the wind will keep pushing it so that it remains over the line TH.

H (Hearst) H

D C

N / 0.

WE
S

west wind

T (Thessalon)
Her problem will be to determine the angle 0 between TH and TD. The
stronger the wind from the west, the greater angle 0 must be; the greater
the angle 0, the more her groundspeed will be reduced. She will also need
to determine this groundspeed, v, to estimate the time of arrival in Hearst.

To find these two numbers, 0 and v, she will use a mathematical model
that will be able to represent both the speed and the direction of the
airplane. Vectors provide an excellent model for this type of situation, and
for other problems in physics, as you shall see in this chapter.

T



154 Chapter Four

4.1 Forces as Vectors

Since a vector has magnitude and direction, and a force also has
magnitude and direction, the theory of vectors can be applied to forces.

In fact, the theory of vectors grew out of investigations on forces. (See the
introduction to chapter 1.)

The branch of physics called mechanics is divided into two main sections,
called statics and dynamics. The latter is a study of how objects change
their motion under the action of forces, while statics examines the
relationship of forces acting upon stationary (or other non-accelerating)
objects.

You will be taking an elementary look at statics of a particle in this
section. (A particle is the name used for an object small enough to be
considered as a point.)

Forces are measured in newtons (symbol N). In general, the gravitational
force on a mass of m kg is mg N, whereg is the acceleration due to
gravity. On earth,g 9.8 m/s2. Thus, the force due to gravity on a mass of
1 kg is about 9.8 N. Alternatively, a mass of 1 kg is said to weigh 9.8 N.

The fundamental reason which allows you to apply vector theory to forces
is that two forces can be combined in the same way that vectors are added.
In other words, if a particle is being acted upon by two forces P and Q as
shown, these will have the same effect on the particle as the force
R = P + Q.

particle

or

paicIe

R is called the resultant of P and Q.

This is also true for any number of forces. That is, the resultant of a number
of forces is the vector sum of those forces.

The effect will be to pull the particle in the direction of R, and thus
accelerate it, or increase its speed.

If the particle does not change its motion, or its state of rest, then the
particle remains in a state of equilibrium. The particle must then be acted
upon simultaneously by a force which counteracts or cancels the effect of
R. Consider the force S. acting in the opposite direction to that of R, but
with the same magnitude.
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You would then have the following situation:

cle
or

The particle is in equilibrium under the effect of P, Q, and S. or under the
effect of R and S.

S is called the equilibrant of R.
Conversely, R is called the equilibrant of S.

Note: S+R=OorS=—J?
P+Q+S=0

F F I N / 7 N Whenever a particle is in equilibrium, the vector sum of all forces acting
upon it is 0.

In the examples of this chapter, unless it is specified otherwise, all
magnitudes of forces will be calculated to 3 significant digits, and all
angles will be calculated to the nearest degree.

Example 1 A force of 20 N acts west, and a force of 10 N acts north on a particle. Find
the direction and magnitude of the resultant and the equilibrant of these
two forces.

Sc!iition iON

Let the resultant beR. Then by the theorem of Pythagoras,
IR = 202 + 102 = or RI = 22.4

The angle U shown is such that
10 1tanO = — = — 0 = 2720 2

Therefore, the resultant is the force R of 22.4 N, acting at bearing
270° + 27° = 297° on the particle.

From the diagram, you can see that the equilibrant is thus S. a force of
22.4 N acting at bearing 90° + 27° = 117° on the particle. •
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tt'cl&'r Diaq,'1i,\

The diagrams you have seen so far in this section are called space
diagrams or position diagrams, because they try to portray the reality of
the particle being tugged at or pushed from different directions. Since
vectors can be drawn anywhere, however, you can also represent the
forces F, Q, S by joining the tip of one vector to the tail of another.

S

space diagram vector diagram

This often clarifies relationships between vectors, and facilitates
calculations, as you will see in the forthcoming examples. The diagram on
the right is known as a vector diagram.

The vector diagram of forces in equilibrium will always be a closed polygon, since

the sum of all the vectors is 0.

The particle itself is not represented in the vector diagram.

Force vectors are sometimes described as fixed vectors (as opposed to free
vectors), because they must act on a particular point.

Example 2 Two forces P and Q act on a particle. P points due east and has a
magnitude of 30 N. Q points on bearing 0500 and has a magnitude of
70 N. Find the resultant of P and Q.

A

R IQ =7O
50 = 30

BC
space diagram vector diagram

The space diagram indicates how P and Q act on the particle.
The vector diagram, denoted triangle ABC, shows the resultant R and the
relationship P + Q = R.

Notice that the angle between the forces on the space diagram is
90° — 50° = 40°.

Notice further that the angle ACB in the vector diagram is
180° — 40° = 140°.

P
Q

Q S
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By the cosine law in the vector diagram

IABI2 = IBC +IACI2 —2IBCI IACI cos (3ACB)
thus RI2 = P12 + IQr — 2PIIQI cos 1400

= 302 + 702 — (2)(30)(70)(— 0.766...)
= 900 + 4900 + 3217.3...
= 9017.3...

thus RI = V9017.3... = 94.959... 95.0

The direction of R can be obtained by using angle B.
By the sine law in the vector diagram

BC! = ICAI = IABI
sinA sinB sinC

You need only use the second equation. Let angle B = 0°.

Thus-—= RI
sin 0 sin 140° N

sinO='4o
IRI 9O°O—

= (70)(0.6427...)

= 0.4738...

Thus 0 28°.

The bearing of R is 90° — 28° = 62°.

The resultant of P and Q is a force R of magnitude 95.0 N, acting on
bearing 062°. •
In this chapter, you will be making extensive use of the theorem of
Pythagoras, the sine law and the cosine law, as in the above examples. To
avoid cluttering the diagrams with unnecessary letters, theformulas for
these laws will not be fully quoted at each instance of their use. You can
refer to the formulas for these laws on page 542.

S'/iiti&Ji iI Il/cl! tcjh'

The cosine law
a2=b2+c2—2bccosA c/\b
The sine law /abc B a C

sinA sinB sinC



158 Chapter Four

Three forces of 5 N, 6 N, and 7 N act simultaneously on a particle, which
remains in a state of equilibrium. What are the angles between the forces?

space diagram vector diagram

Since the forces are in equilibrium, the vector diagram is a triangle. You
can use this triangle to perform the calculations. The angles a, /1, and y
which you will find are the supplements of the required angles a, b, and c
respectively, between the forces.

Using the cosine law to find a:
62 = 2 + 72 — (2)(5)(7)cos a

25+49—36 38cosa= =—=0.5428... =a=57.12
70 70

Using the cosine law again for /3:
72 = 2 + 62_ (2)(5)(6)cosfl

25+36—49 12
cos /3 = __________ = — = 0.2 /3 = 78.46

60 60

Thus y 180 — (57.12 + 78.46) = 44.42°

Thus the angles a, /3,and y, to the nearest degree, are respectively 57°, 78°,
and 44°, and hence the required angles are:
between the 5 N and 7 N forces, a 123°,
between the 5 N and 6 N forces, b = 102°,
between the 6 N and 7 N forces, c = 136°. •
(Observe that, by approximating each angle to nearest degree, in this case
a + b + c * 360°.)

Example 4 A particle of mass 5 kg is suspended from a horizontal ceiling by two
strings making angles of 35° and 62° with the ceiling. Calculate the
tensions in these strings.

space diagram

Example 3

6

7N

a

S T
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Solution Note: The force of gravity on a mass of 5 kg is (5)(9.8) = 49 newtons,
acting vertically downward. Call this force G. Call the tensions in
the strings S and T, as shown in the diagram.

Now the particle is in equilibrium, so S + T + G = 0, and this gives the
following vector diagram.

28°

G S

49 N 62° horizontal
35°

55° --

_____ II II
By the sine law, = =

sin 28 sin 55 sin 97
Also, IGI = 49,

thus = (49)(sin 28°) = 23.00... 23.2
sin 97° 0.9925...

and II= (49)(sin 55°) = 4.13... =40.4
sin 97° 0.992 5

The tensions in the strings are thus 23.2 N and 40.4 N. •

Note: An accurately drawn vector diagram would allow you to find the
solution by drawing to scale instead of carrying out calculations.
Indeed, if the length of G is drawn to scale as 49 mm, and the
angles are correctly drawn, then the lengths of S and T, in mm,
will provide the required tensions

Also the vector diagram seems to indicate that SI> ITI, whereas the
opposite appears to be the case in the space diagram. This is because
the space diagram is showing lengths of strings, not vectors. The vector
diagram is the correct representation of the forces involved, and
indeed, the greater tension will occur in the shorter string.

M M A R
The resultant, R, of a number of forces is the vector sum of those forces. The
equilibrant of those forces is —R.

A particle is in equilibrium when the vector sum of all forces acting upon it
isO.

The gravitational force on a particle of mass m kg is mg N, whereg is the
acceleration due to gravity.
(On earth, g 9.8 rn/s2.)
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F2

600

F1

4.1 Exercises

Unless directed otherwise, give all magnitudes
in newtons, correct to 3 significant digits, and
all angles correct to the nearest degree.
Useg 9.8 rn/s2.

1. Two forces P and Q act on a particle. Find
the resultant and the equilibrant of P and
Q in the following cases.

a) Fl = 12 andP acts due east
'21 = 5 andQ acts due north

b) P1 = 8 and Pacts on bearing 045°

IQI= 15 andQ acts on bearing 135°

c) P1= 10 andPacts due west
IQI = 13 andQ acts on bearing 350°

d) P1 = 20 and Pacts on bearing 058°
IQI = 35 and Q acts on bearing 328°

e) P1= 510 andPacts on bearing 232°
IQI = 425 and Q acts on bearing 105°

2. Two forces P and Qof magnitudes 30 N
and 60 N respectively act on a particle. The
angle between P and Q is 75°. Calculate
the magnitude and the direction of the
resultant of P and Q.

3. A particle is being pulled by two forces F1
and F2. F1 acts eastward and its magnitude
is 250 N. F2 acts at a bearing of 10°,
and its magnitude is 120 N.
Find the magnitude and the
direction of the resultant force.

4. Three forces of 10 N, 24 N, and 26 N act
simultaneously on a particle, which
remains in a state of equilibrium. Calculate
the angles between the forces.

5. Repeat question 4 if the forces have
magnitudes 15 N, 11 N, and 23 N.

6. The resultant of P and Q is the force F, of
magnitude 80 N, acting on bearing 070°. P
has magnitude 25 N and acts due east.
Find the magnitude and direction of Q.

7. Two perpendicular forces of equal
magnitude act on a particle. If the resultant
has magnitude 100 N, calculate the
magnitude of the perpendicular forces.

8. Two forces of equal magnitude acting at an
angle of 130° to each other have a resultant
of magnitude 42 N. Calculate the
magnitude of the two forces.

9. A particle of mass 10 kg is suspended from
a horizontal ceiling by two strings making
angles of 40° and 50° with the ceiling.
Calculate the tensions in these strings.

10. Repeat question 9 if the strings make
angles of 29° and 41° with the ceiling.

11. A particle of mass 5 kg is suspended by
cords from two points A and B on a
horizontal ceiling such thatAB = 100 cm.
The lengths of the cords are 80 cm and
70 cm. Calculate the tension in each cord.

12. A force P of magnitude 10 N acts along the
bearing 060°. Calculate the smallest
possible magnitude of a force Q such that
the resultant of P and Q acts along the
bearing 090°.

13. Two forces F1 and F2, of magnitudes 7 N
and 24 N, act on a particle. F1 acts at 30°
to the vector i, and F2 acts at 60° to the
vectori, as shown in the figure. Another
force F3 of magnitude 30 N acts
simultaneously on the particle. Calculate
the direction of F3 so that the resultant of
the three forces is in the direction of i.
(Note: The three forces would then cause
the particle to move in the direction of i.)

horizontal
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4.2 Resolution of Forces
In the last section you learned how to use triangles to find the resultant of
two forces. In this section you will learn a second method to solve such
problems. This method is the resolution of forces. One of its advantages
is that it allows you to find the resultant of more than two forces without
extra difficulty.

Recall from chapter 3 that a vector F, making an angle a with i, can be
resolved into two vectors Fi and F%,jacting parallel to the x-axis and
parallel to the y-axis respectively._ /F1

F,
F = F i + Fj

Fi and Fj are called the projections of F onto land jrespectively.

Since { i,j} is an orthonormal basis, the scalar multiples F and F are
called the components of F onto i and j. Recall further that components
can be obtained by using the dot product.
F=F.i=IFIIiIcosa=lFIcosa,sinceIi= 1.
F) = F.j = IFIIJI cos (900 — a) = IFisin a, since IjI = 1 and
cos (900 — a) = sin a.

Alternatively, you can see from the right triangle that

cos a =and sin a=
IFI Fl

giving the same results for F and F).

F A M L A
A vector F making an angle of a with us resolved on land jas
follows.

F=Iplcosa i+IFinaj
The following similar result is true in 3-space, and you will have an
opportunity to prove it in the exercises.

F o A M u L A A vector F making angles of a, /3 and y with i, j, and k respectively is
resolved on i, j, and k as follows.

F=lFlcosa i+lFlcosflj+lFlcos yk
The following example matches Example 2 of the previous section, although
it is worded differently. Thus you will be able to compare methods.
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Example 1

Now
— —

= (30i) +(53.623i
44.995j

Magnitude of R

Let 0 be the angle between R and 1.

Then tan ü = = 0.5380..., therefore 0 28°
83.623

Thus the resultant of P andQ has a magnitude of 95.0 N and makes an
angle of 28° with the force P
(or an angle of 40° —28° = 22° with force Q).

The same results are obtained as for Example 2 of the previous section. U

Solution

Two forces P and Q act on a particle and make an angle of 40° with each
other. If IPI = 30 N and IQ = 70 N, find the resultant forceR.

Vectors may be drawn anywhere. Draw P with its tail at the origin of a
two-dimensional coordinate system so that P points in the direction of the
positive x-axis (that is, in the direction of 1). This is shown in the
diagram.

x

To find the resultant R = P +Q, first resolve P and Q on i and j.
P: Since P1= 30,P= 30i
Q: Q=IQIcos4O° i+lQIsin4O°j

= (70)(0.7660. . .)i +(70)(0.6427...) j
= 53.623 i + 44.995 j

II= J83.6232 + 44•9952 = J9017.3... = 95.0

Direction of R

y

0

P x
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Example 2 Three coplanar forces F, G, and H of magnitudes 15 N, 10 N, and 20 N
respectively, act on a particle as shown in the diagram. Find the resultant
of the three forces.

G

Solution Vectors can be drawn anywhere. Draw F with its tail at the origin of a
two-dimensional coordinate system so that F points in the direction of i.
This is shown in the diagram. Note that the angle between G and i is 30°,
and the angle between H and i is 1000.

YN 1OO -
H F

Then the resultant of the three forces is R = F + G + H.

Now resolve F, G, and H on i and j.

F: SinceIF= 15,F= 15i
G: G=IGcos3O°i+IGIsin30°j

= (10)(0.8660...) i + (10)(0.5) j
8.660i+ 5j

H: H=lHcos 100° i+IHIsin 100°f
= (20)(—0.1736...) i+ (20)(O.9848...) j

—3.472i+ 19.696j
So R=F+G+H=(15i)+(8.66i+51)+(3.472i+19.696j)

= 20.188i + 24.696j

Magnitude of R

II= J20.l88 + 24.6962 = /iöi7.44... 31.9

Direction of R

Let 0 be the angle between R and i.

Then tan 0 = 24.696 = 1.2233..., thus 0 51°
20. 188

Therefore, the resultant of forces F, Gand H has magnitude 31.9 N and
makes an angle of 510 with the force F (or an angle of 51° — 30° = 210

with the force G, or an angle of 1000 — 51° = 49° with the force H). •

R

x

H F
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Some vector problems on forces are formulated in component form, and it
is convenient to treat them by using components, as in the next example.

Example 3 Given points P(—1,3) and Q(4,1), a force F of 10 N acts in the direction of
FQ. Resolve F parallel to the coordinate axes.

Solution y

The force F points in the same direction as
PQ= OQ—OP = (4,1) — (—1,3) = (5,--2),
so F = k(5,—2) where k is a positive number.

NowIF=fk(5,_2)I=kl(5,_2)I=kJ52+ 22=kf
but you know that Fl = 10,

I— 10so kv29=loork=—

Thus the force F = (5,—2)

in other words, the force can be resolved as

50 7 20:
The components of F in the x andy directions are respectively
50anci 20

I-'t'ic I i ii
Ifyou place a marble and a book on your desk, then gently incline the
surface of your desk, you will notice that the marble rolls off almost
immediately, whereas the book will remain motionless. This is because the
marble encounters virtually no resistance, and so accelerates down the
incline. The book, however, will not slide unless the incline is made a lot
steeper. The book is held in equilibrium by a frictional force acting
parallel to the surface of your desk.

These two situations will be investigated in Examples 4 and 5.
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Example 4 A marble of mass 50 g is on a plane inclined at an angle 300 to the
horizontal.

Resolve the force of gravity on the marble into two rectangular
components, one of which causes the marble to accelerate.

Solution ec
300

W2e2

30°

space diagram vector diagram

Note: 50 g is the same as = 0.05 kg. The force of gravity on the

marble is its weight, W,whose magnitude is (0.05)(9.8) = 0.49 N.
The weight acts vertically downwards.

You are asked to resolve Win the directions of the unit vectors

e1 (parallel to the plane) and

e2 (perpendicular to the plane).

Note: The angle between Wand the horizontal is 90°. Thus the angle 0

between Wand e1 is (180 — 90 — 30)° = 60°. It follows that the angle

between Wand e2 is (90 — 60)° = 30°. This is the angle used in the
vector diagram.

The marble is prevented by the plane from moving in the direction of W.

It can only move parallel to the plane, downhill, along the direction of e1.
In this direction, the component of W is

W1 = WI sin 30° = (0.49)(1)(0.5...) = 0.245
In the direction of e2, the component of W is

W2 = WI cos 30° = (0.49)(1)(0.866...) = 0.424

The components of the gravitational force on the marble are
0.245 N down the plane, causing the marble to accelerate, and
0.424 N perpendicular to the plane. •

w
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Example 5

Solution

A particle of mass m kg is in equilibrium on a rough plane inclined at an
angle 0 to the horizontal. The equilibrant of the weight is a force called a
reaction, acting vertically upwards.

Resolve this reaction into a force perpendicular to the plane (called a
normal reaction), and a force along the plane (called a frictional force).

0

R

w
F e1

space diagram vector diagram

Let the weight be W, the equilibrant beR, to be resolved into the normal
reaction Ne2, and the force of friction Fe1.

The magnitude of the equilibrant, equal to the magnitude of the weight,
is nig.

Thus the normal component (the normal reaction) is N =JRIcos 0 = mgcos 0
and the parallel component (the frictional force) is F =IRin 0 = mgsin 0. .
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I lu I),rc(loll of o I'tio in

The following example will show you how to treat a three-dimensional
problem on forces.

Example 6 The forces P and Q are such that P = (3,0,2) andQ = (—4,6,7). Calculate

the magnitude and direction of their resultant R.

Solution R = P + Q = (3,0,2) + (—4,6,7) = (—1,6,9).

Thus the magnitude of R,IRI = [i+ 62 + 92 = = 10.9.

Now the direction of R cannot be specified merely by a 'slope' or
'bearing', since these concepts are meaningful only in 2-space.

A direction in 3-space is specified by the angles a, fiand y that it makes

with i, j and k respectively.

NowR.i=IRHilcosa=lRIcOSa,sinceIiI 1.

Thus cos a = and similarly cos /3= and cos y =
RI RI IRI

Thus cos a = —, cos /3 = , and cos y =

giving a 950, /3 56°, andy 340 •

. M M A R
A vector F making an angle of a with us resolved on iand jas
follows.

F=Iplcosa i+lFlsinaj

A vector F making angles of a, fland y with i, j, and k respectively is

resolved on i, j,and k as follows.

F=Iplcosa i+lFlcosflj+lFlcosyk

The direction of a vector v in %/3 is specified by the angles a, /3' and y that
it makes with i, j, and k respectively.

v.i v.j v.k
cosa= —-,cosfl= —--,andcosy=——

lvi lvi lvi
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;. Exercises

(Unless directed otherwise, give all magnitudes
in this exercise in newtons, correct to
3 significant digits, and all angles correct to the
nearest degree.)
Useg 9.8 rn/s2.

1. Two forces P and Q act on a particle.
Calculate the magnitude and the direction
of their resultant in the following cases.

a) P=(2,7)andQ=(4,1)____
b) P = (—50,30) and Q = (35,60)

2. Show that a vector F making angles of a, fi
and y with 1, j, and krespectively is
resolved on 1, j, and k as follows.

F=lFlcosai+lFlcosflj+IFlcosyk
3. ForceP= (2,8,—i) and forceQ = (3,1,5).

a) Calculate the magnitude of the resultant
of P and Q.

b) Specify the direction of the resultant by
finding the angles it makes with i, j,
and k respectively.

4. Resolve the force F in two orthogonal
directions so that one component makes an
angle 0° with F in the following cases.

a) IFI=20,O=30°

b) lF=100,O=10°

c) P1=100,0=80°
d) P1=50,0=130°

The next two questions are the same as 2 and 6
of 4.1 Exercises. Here, solve them by resolving
the forces on i and j.

5. Two forces P and Q of magnitudes 30 N
and 60 N respectively act on a particle. The
angle between P and Q is 75°. Calculate
the magnitude and the direction of the
resultant ofF and Q.

6. The resultant of P and Q is the force F, of
magnitude 80 N, acting on bearing 070°. P
has rnagnitude 25 N and acts due east.
Calculate the magnitude and direction of
force Q.

7. Two forces P and Q act on a particle and
make an angle of 115° with each other. If

P= l6NandIQI=2i N,findthe
magnitude and direction of the resultant

force.

8. Four coplanar forces F, G, H, andJ, of
magnitudes 40 N, 25 N, 15 N, and 18 N
respectively, act on a particle as shown in
the figure. Find the magnitude and the
direction of the resultant of the four forces.

H

85

J

F
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9. Given points P(4,8) and Q(2,—3),a force F
of 50 N acts in the direction of PQ.
Resolve F on i and j.

10. Given points P(2,8,—5) and Q(3,—i,2), a
force F of 300 N acts in the direction of

PQ.

a) Resolve F on i, j, and k.

b) Find the angles between F and each of

i,j,k.
11. A Startrak Space Craft taking off from

Earth is being acted upon by three forces.
Its main engine is pushing it east with
200 000 N, its vertical jet is pushing it up
with 150 000 N, and the north wind is
pushing it southward with 30 000 N. By
considering a unit vector i pointing due
south, a unit vector jpoint due east, and a

unit vector k pointing upward, find the
magnitude and direction of the resultant of
these three forces on the craft.

12. The moment M with respect to the origin
o of a force F is the cross product M = r x F,

where r is the position vector of any point
on the line along which the force acts.
Calculate the following moments.

a) r=(0,3,0);F=(2,5,6)
b) r = (—2,1,—i); F = (4,—3,0)

o

13. The moment of a force about a point is the
effectiveness of that force to produce
rotation about that point.

The force F acts at the point F,
as shown.

0. IP
r

a) What is the angle between rand F?
b) Write an expression for the moment of

force Fabout 0, in terms of In, Fl, and 0.

(See question 12.)
c) For which angle 0 is the magnitude of

the moment a maximum? a minimum?

14. Resolve a force of 10 N into two equal
rectangular components.

>1

4

e

iON

15. Resolve a force of 60 N along two
orthogonal directions such that the
components are in the ratio 2: 3. Calculate
the angle between the 60 N force and the
larger projection.

16. A 150 kg bobsleigh is about to be released
on an icy slope inclined at 35° to the
horizontal. Calculate the force that must be
applied parallel to the slope to keep the
bobsleigh stationary.
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17. Repeat question 13 of 4.1 Exercises by
resolving the forces on i and j.
Two forces F1 and F2, of magnitudes 7 N
and 24 N, act on a particle. F1 acts at 300
to the vector i, and F2 acts at 600to the
vectori, as shown in the figure. Another
force F3 of magnitude 30 N acts
simultaneously on the particle. Calculate
the direction of F3 so that the resultant of
the three forces is in the direction of i.
(Note: The three forces would then cause
the particle to move in the direction of i.)

horizontal

20. Repeat question 19 for a mass of m kg on a
plane inclined at 00 to the horizontal.

21. In the following diagrams, the suspended
mass is 10 kg.
a) Calculate the tensions in the strings for

figure a).
b) Calculate the tension in the string and

the pushing force (called a thrust) in
the strut for figure b).

figure 1

\\\\\\\\\\\\\\\\\\\N
6O°'

ilok
18. A force F = (40,60) is pulling a particle up

an inclined plane parallel to the vector
(9,2). Calculate the component of the force
that is acting parallel to the plane.

19. A particle of mass 20 kg is in equilibrium
on a rough plane inclined at 26° to the
horizontal.
a) Resolve the equilibrant into a normal

reaction and a frictional force.
b) Calculate the number u, where

IFI = /2 NI. (If the particle is about to
slide, i is called the coefficient of
static friction.)

c) If the plane were smooth, calculate the
horizontal force required to stop the
particle from sliding down the plane.

figure 2

10 kg
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4.3 Work

When a force F pulls a particle in its direction along a displacement S.
the work' thus done by the force F is defined as IFIISI

F

S

However, the displacement s is not necessarily in the same direction as the
force. For example, if a sled is tugged along a horizontal path, you might
have the situation described in this diagram.

iisine1

S FcosOi
In this general case, work is defined as follows.

work done = (magnitude of force in direction of motion) (distance moved)
or W=FIcosO)Js[)
or W=Fs
Notice, however, that the sled will only move in the desired direction
along the path if 0 is acute, that is, if 0 < 90°. The cosine of an acute angle
is positive, hence work is a positive scalar.

If force is measured in newtons, and distance is measured in metres, then
work is measured in newton metres (N. m), or joules (J).
1 newton metre equals 1 joule.

Task Work done (approximate)

Pickup a pencil from the floor 2 J
Push a loaded shopping cart up a short ramp 500 J
Push a car out of a (level) driveway 8000 J

In the above example, you can resolve the force parallel and perpendicular
to the path by writing

F=IFjcos0 i+FIsin0j
Since the movement is horizontal here, you can say that the parallel force,

IFI cos 0 i, does all the work, while the vertical force, IFI sin 0 j, does
no work.

In the examples that follow, work will be calculated to the nearest J.
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Example 1 A stone of mass m is dropped to the ground from a height h. Calculate the
work done by gravity.

h, I -

S

The magnitude of the
gravitational force on the
stone is nip.
The stone will travel in the
direction of this force,
thus the work done
W= (mg)(h)

= mph.

Alternatively, using vectors
to describe the situation,
using] as a unit vector
pointing directly upwards:
F = -nip]
s = —hj
Work done = F. S

W= (-mgj).(-hj)
= (—mg)(—h)j.j
= (mgh)(1)
= nigh. .

Example 2 A forcef= (200,150), whose magnitude is measured in newtons, is
required to pull a heavy cart along the displacement s = (40,0). The

Soluti(: fi

magnitude of s is measured in metres.
Calculate the magnitude off, the magnitude of s, and the work done by f.

The magnitude of the force, fI= f2002 + 1502 = 250.

The distance, s = 40 ______
The work done, W = f. s = (200,150). (40,0)

= (200)(40) + 0 = 8000.

Thus the magnitude of the force is 250 N, the distance moved is 40 m, and
the work done is 8000 J. U

Solution
* /

Let the gravitational force be F and the displacement be S.
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Example 3 A man in a wheelchair moves 15 m down a ramp inclined at 100 to the
horizontal. The mass of the man and the wheelchair together is 80 kg.
Calculate the work done.

So IU! 101 Let F be the gravitational force on the man and wheelchair. The
magnitude of F in newtons is Fl = mg = (80)(9.8) = 784.

Using the horizontal unit vector i and the vertical unit vector jshown in
the diagram, the displacement vector s can be written in component form
as follows.

and F can be written
= (15 cos 10°,—15 sin 10°)

F = (0,—784)

Thus the work done is F•s = 0 + (—784)(—15 sin 10°)
= (7&4)(15)(0.1736... )
= 2042.1...

The work done is about 2042 J. U

Note: The work is said to be done by gravity when the man moves down the
ramp. In order to move the same distance up the ramp, the man must
produce an equal amount of work.

SUMMARY Work done = (agnitude of force in direction of motion)(distance moved)
or W=LFIcossl
or W=Fs
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4.3 Exercises

In the following, give answers correct to
3 significant digits where appropriate.

1. Find the work done by Fas it acts on a
particle through a displacement s in the
following cases.
a) F=(20,40),s=(1,3)
b) F=(30,—5),s=(l,3) _____
c) F= (15,20,—22),s= (—4,10,—7)

2. A force F of 1000 N moves a particle along
a path that is at an angle of 42° with the
force.

a) Resolve F parallel to and
perpendicular to the path.

b) Calculate the work done if F moves the
particle 30 m.

3. A tractor is pulling a disabled barge along a
canal. The tension in the towrope is
2500 N, and the towrope makes an angle of
25° with the direction of the canal.
Calculate the work done in moving the
barge 600 m along the canal.

4. A shopper pushes a loaded supermarket
cart of mass 20 kg up a ramp inclined at
1 5° to the horizontal. Calculate the work
done if the ramp is 10 rn long.

5. A forceF= (l0,10,20)attemptstopulla
particle along a displacement s = (3,—7,2).
Calculate the work done. Explain your
answer.

6. A forceF= (—5,—8,—1O) pulls a particle
from point P(25, 14,20) to point Q(0,--3,4).
Calculate the work done.

7. A force p of magnitude 50 N acts in the
same direction as AB where A has
coordinates (5,—6,7) and B has coordinates
(8,1,8). Calculate the work done in the
following cases.
a) Pacts on a particle along the

displacement AB.
b) Pacts on a particle along the

displacement MN, where M has
coordinates (—2,--4,--10) and N has
coordinates (4,6,9).

8. The work done by gravity as a book of mass
M kg drops to the floor from a height h m is
equal to the kinetic energy of the book just
before it hits the ground. The kinetic

energy is given by the formula where

v is the speed of the book in rn/s just before
it hits the ground.
a) It is given that v = 7. Calculate h.
b) It is given that h = 2. Calculate v.

9. a) A pen of mass 100 g is dropped to the
floor from a height of 1.5 m. Calculate
the work done by gravity.

b) As the pen falls to the ground, its speed
v increases. Just before it hits the
ground, the pen has a kinetic energy of
(0.05)v2 J, equal to the work done by
gravity during the fall. Calculate the
speed of the pen at this moment.

I



4.4 Velocities as Vectors 175

4.4 Velocities as Vectors

The word speed describes the rate at which distance is covered. (Speed is a
scalar quantity.) The word velocity describes the rate at which displacement
changes; displacement, unlike distance, includes direction as part of its
definition, thus velocity also depends on direction. Like forces, velocities
have both magnitude and direction, and furthermore, they can be
combined following the laws of vector addition. Hence you can use
vectors to represent velocities.

ReIaIi'e t'Lki!

It is important to understand that velocities are always 'relative', never
'absolute'. For example, when you say that a truck approaching Winnipeg
is travelling due east at 90 km/h, you should realize that this is its velocity
relative to the surface of the earth. If, for instance, you want to describe its
velocity relative to the centre of the earth, you must take into account the
velocity of the earth's surface near Winnipeg. That is, at latitude 50° N, the
earth's surface moves eastward at 1071 km/h. Thus the velocity of the
truck relative to the centre of the earth is 1071 km/h faster than its surface
velocity: 1071 + 90 = 1161 km/h, eastward.

N

The following notation is useful.

velocity of the Truck relative to the earth's Surface
= velocity of the earth's Surface (Winnipeg) relative to the earth's Centre

vTC = velocity of the Truck relative to the earth's Centre

In this case, the speeds, that is, the magnitudes of the velocities, are such
that IvTCI = I + Iv, because the vectors involved have the same
direction. However, if the vectors are not collinear, then the velocity of the
truck is obtained by the following vector addition of relative velocities.

FORMULA VTCVTS+VSC
In other words, for points T, S. and C moving relative to each other, the
velocity of T relative to C is the vector sum of the velocity of T relative to 5,
and the velocity of S relative to C.

Notice that this formula can be expressed also as a subtraction as follows.

FORMULA VscvrcVrs
In other words, the velocity of S relative to C equals the velocity ofT
relative to some point C, minus the velocity of T relative to S.
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Although the verbal descriptions of the relative velocities above may seem
difficult to learn, you might appreciate that the order of letters involved in the
notation match exactly those you are familiar with from the triangle law of vector

addition, and of vector subtraction. That is, for example, IC = IS + Si.

Similarly, the following observation matches the definition of a negative
vector.

Saying "the truck is moving eastward at 90 km/h relative to the surface" is
equivalent to saying "the surface is moving westward at 90 km/h relative
to the truck". You are motionless inside the truck; the scenery is travelling
backward'. Thus, if VST is the vector representing this latter velocity,
then

vST —vTS.
Thus the subtraction formula could be written

sc = VCT (—vST)
or = vST —

If a fly is crawling along the truck's dashboard, and you want to find the
velocity of the fly relative to the centre of the earth, vFC, you will require
three velocity vectors:
VFT = velocity of the fly (relative to the truck)
VTS = velocity of the truck (relative to the surface)
vsc = velocity of the earth's surface (relative to the centre)
The resultant velocity, vFC, is obtained by a vector addition of these
velocities, that is,

vFC = VFT + vTS +

Example 1 An oil tanker is sailing due south at 60 km/h. The captain, during his daily
workout routine, is running perpendicularly across the ship, from
starboard (right side) to port (left side), at 25 km/h. What is the captain's
velocity relative to the ocean?

i)ltIt fl v0 represents the velocity of the ship relative to the ocean,
v5 represents the captain's velocity relative to the ship, and
v represents the captain's velocity relative to the ocean, then
vco = + Vs0. as indicated in the diagram.

I___..

space diagram vector diagram

vs0 V;Q 0

You can draw your vectors where you want them. The diagram that
attempts to portray the position of the ship is called the space diagram. The
diagram designed purely for vector algebra is the vector diagram.
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By the theorem of Pythagoras,
Ivco = 252 + 602 = 4225

sov0I= 65,

andtanO==0.4166...,soO=23°.
60

Thus the bearing of vo is 180° — 23° = 157°.
The captain's velocity relative to the ocean is 65 km/h at a bearing 157°. U

In the next two examples, alternate solutions that use more traditional
notation will also be presented. If you now look back at the introduction
to this chapter, you will find that these examples should enable you to
solve the airplane pilot's problem.
Note that wind direction always indicates the direction that the wind is
blowing from, not blowing to.

Example 2 A pilot is heading her plane due north at an airspeed of 160 km/h, while a
wind is blowing from the east at 75 km/h. At what speed is she actually
travelling, and in what direction, relative to the ground?

Soliitior You want
the velocity of the plane relative to the ground,vpc (or r)
given the plane's velocity relative to the air, VPA (or v)
and the wind velocity, that is,
the velocity of the air relative to the ground, VAG (or w)

3O

space diagram vector diagraN

Observe the diagrams carefully. The plane's grouridspeed will be the
magnitude of the vector VPG (or r), and the plane will actually fly in the
direction 0 west of north, although its nose will always be pointing north.

The vector sum is thus or using traditional notation you can say

VPG—VPA+VAG r=v+w
From Pythagoras, From Pythagoras,
IVPGI2 = 752 + 1602 = 31225 Ir2 = 752 + 1602 = 31225

IVpGI 176.70... 177 IrI= 176.70... = 177

75Also tan 0 = = 0.46875 0 = 25
160

Thus her plane is actually travelling at 177 km/h, at a bearing 33 5°, relative
to the ground.
(177 km/h is known as the groundspeed of the plane.) U
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Ajet is to fly from Toronto to Ottawa. The bearing of Ottawa from Toronto
is 055°, and the distance is 370 km. The airspeed of the jet is 500 km/h,
and there is a prevailing wind blowing from bearing 350° at 160 km/h.
Calculate the following.
a) The direction in which the jet should head, to the nearest degree.
b) The time taken, to the nearest minute, to fly from Toronto to Ottawa.

the jet's ground velocity be VJG (or r)
the wind velocity be VAG (or w)

Then VJG=VJA+VAG orr=v+w.
YouknowthatIvJAI=v=500,IvAGI=IwI= 160.

Note carefully the angles marked in each diagram. If the wind is from
bearing 3 50°, that means the angle between the wind and the south is 10°.
This has been shown in the diagrams. From the space diagram, you can
calculate that the angle between the Toronto-Ottawa line and the wind is
(180 — 10 — 55)° = 115°. This angle is marked in the vector diagrams,
where it will be used.

Example 3

Solution Let the jet's air velocity be VJA (or ii)

10°

N

N

55 0

or

10°

0-

space diagram

N 55

vector diagram
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a) By the sine law in the vector diagram
160 — 500

sinO
—

sin 115°
l6Osinll5°sin 6 = = 0.2900... so 0 = 16.85...

500
The jet must head about 17° left of the bearing 05 5°, and thus follow
the heading (055 — 17)° = 038°.

b) In order to calculate the flight time from Toronto to Ottawa, you need
to find the jet's groundspeed, that is, VJB Ior I ri. You must use the sine
law again in the vector diagram. First you need the angle .

4=180°—(115°+16.85...°)=48.14...°
Using the sine law again,

IVJGI = 500 or __________ = 500

sin 48.14.. .o sin 115° sin 48.14.. .° sin 115°
500 sin 48.14. . .° 500 sin 48.14.. .°

VJGI= . IrI=sinll5 sinuS
= 410.8... = 410.8...

distance . distance
Now speed = , or time = d

time speed
Since the distance to be covered is 370 km. the time taken is

370 = 0.9004.. ., measured in hours.
410.8...
The time in minutes is thus (0.9004)(60) = 54.02...
The flight time from Toronto to Ottawa is about 54 minutes. U
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In the final example, the subscript notation should help you to avoid
fundamental errors, such as adding the wrong vectors.

Example 4 A small airplane A is flying on bearing 283° at 200 km/h, and another, B,
is flying on bearing 0710 at 140 km/h. What is the velocity of A relative to B?

Solution N N

2OOkm;_z
A B:

space diagrams

VAG represents the velocity of A relative to the ground,

VBG represents the velocity of B relative to the ground, and

VAB represents the velocity of A relative to B,
N

then IVAGI = 200,IvBoI = 140, and I VAR1 is unknown.
71° 77°

You can find VAR from the vector sum

VAB+VBGVAG,
according to the vector diagram. VAB

As you transcribe the space diagram into the vector diagram, note that the
angle between VBG and VAG is 710 + 77° = 148°.
The cosine law gives

IvABI2 = 1402 + 2002 —(2)(140)(200)cos 148° = 107090.69...

sothatlvABl= 327.24... 327.
Using the sine law to find the angle 0 between VAB and VBG:

200 — 327.24...
sin 0

—

sin 148°
200 sin 148°sin0= =0.3238... =.0=19.
327.24...

Thus the angle 4 between VAG and VAR S 180° — (148° + 19°) = 13°.
Hence, according to B, A appears to be moving at 327 km/h on a bearing
360° — 77 — 130 = 270°. In other words, B perceives that A is moving away
towards the west. U

. M M A R (In the following, given points P and Q moving relative to each other, the
notation VPQ represents the velocity of P relative to Q.)

Velocity is a vector whose magnitude is called speed.

For any points P and Q moving relative to each other, VPQ = —VQP

Given any points A, B,C moving relative to each other,
VAC = VAR + VBC or VBC = VAC

—
VAB or VBC = VRA

—
VCA
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4.4 Exercises

(Unless directed otherwise, give all speeds in
this exercise correct to the nearest km/h, all
times correct to the nearest minute, and all
angles correct to the nearest degree.)

1. In the following, given points P and Q
moving relative to each other, the notation

VpQ represents the velocity of P
relative to Q.

Find the magnitude and direction of VPQ in
the following cases. (Speeds are in km/h.)

a) IVpAI = 40 pointing due east
VAQI = 25 pointing due north

b) IVPAI= 100 on bearing 280°

IVAQI— 35 on bearing 190°

c) VPAI= 550 on bearing 072°

IVAQI = 420 on bearing 120°

d) IVPAI= 18 on bearing 072°

IVAQI 12 on bearing 300°

2. The Transcanadian train is travelling
westward at 100 km/h. An RCMP officer is
on the train. Calculate the magnitude and
direction of the RCMP officer's velocity,
relative to the ground, in the following
cases.
a) The RCMP officer is walking towards

the front of the train at 5 km/h.
b) The RCMP officer is running towards

the back of the train at 15 km/h.
c) The RCMP officer is running directly

across the train, from the north side to
the south side, at 12 km/h.

3. A plane is heading due east at an airspeed
of 200 km/h, while a wind is blowing
from the north at 50 km/h. Find the
groundspeed and actual direction of the
plane.

4. A is 1000 km due west of B. A plane whose
airspeed is 500 km/h flies from A to B, then
immediately back to A, on a day when the
wind is blowing from the west at
100 km/h. Calculate the total time taken.

5. The Prime Minister asks her pilot to fly her
immediately from Ottawa to Toronto on a
day when the wind is blowing from the
west at 120 km/h. Toronto is 370 km from
Ottawa on a bearing 235°. The jet has an
airspeed of 900 km/h. Find the following.
a) the heading the pilot should follow
b) the flight time

6. A swimmer, whose speed in still water is
3 km/h, wishes to cross a 160 m wide river
from A to B as shown in the figure. The
river is flowing at 3 km/h.
a) In what direction should the swimmer

head?
b) How long will it take him to get to B?

B

/
160m

3km/h

•7Q0

A

7. Repeat question 6 with the following data.
The width of the river is w, the speed of the
flow is v, the speed of the swimmer in still
water is v, and the angle between AB and
the direction of the flow is 0.

8. A ships is sailing on a bearing of 160° at
30 km/h. Another ship T is sailing on a
bearing of 250° at 40 km/h.
a) Calculate the velocity of S relative to T.
b) Calculate the velocity of T relative to S.

9. A ship is travelling due west at 50 km/h.
The smoke emanating from the ship's
funnel makes an angle of 25° with the
ship's wake. Calculate the speed of the
wind if it is known that the wind is
blowing from the north.
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Mathematics and Aircraft Navigation

One of the requirements of a private pilot's licence is that you execute at
least one long-distance solo flight from your home airport to other airports
and return.

Before departing on a cross-country flight, you must prepare a flight plan
for review by your instructor and submission to Air Traffic Control. The
wind conditions forecast for the flight must be considered. This might
involve the following telephone conversation.

"Hello. Toronto Flight Service? Can you give me information for a VFR
flight i> by light aircraft to Barrie this afternoon?"

"The weather is clear. The temperature at 4500 ft is 10°C, and the wind is
from 2100 at 25 knots."

Aircraft altitudes are still measured in feet, and windspeeds are given in
knots, or nautical miles per hour. One nautical mile (2) is the distance
spanned by one minute of arc, that is, 1/60th of a degree of longitude.

By measurement on the map, you find that the bearing of Barrie airport
from Toronto Island is 343°, at a distance of 49 nautical miles (3). You
know that your plane has an airspeed of 80 knots.

\ /
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Your heading and groundspeed are then calculated or measured according
to the vector diagram.

scale: 1 cm represents 20 knots

groundspeed
(95 knots)

Thus you must fly a 'true heading" of 3300 to reach Barrie. Your
groundspeed will be 95 knots. However, the magnetic north in this part of
the world is 100 west of dtrue north". Thus, you must add 100 to obtain the
magnetic heading, 3300 + 10° = 340°, that you will follow by reference to the
magnetic compass in the aircarft.

distance 49Note: Your estimated flight time to Barrie is = — = 0.516 hours
speed 95

or 31 minutes, to the nearest minute.

HELP!
Due to a wind change, or inaccurate forecast, you find that you are about
to fly over Newmarket after about 15 minutes. This is about 9° off course.

A quick sketch
shows that you must alter your
heading by about 2 x 9° = 18°
to the left to reach Barrie.
Thus you now turn to magnetic bearing
340° — 18° = 322°,
and keep your eyes open to find
Barrie airport about 15 minutes later.

Toronto
(1) A flight according to Visual Flight Rules. Island
(2) i foot (ft) 0.3048 m and 1 nautical mile (nm) = 1.852 km.
(3) The usual scale of an air navigation map is 1:500 000. You measure 18.2 cm on the map,

which represents 91 km. that is 91 x 1.852 49 nm. Alternatively, you can measure
along a meridian, in minutes of arc, for this distance (degrees and minutes are indicated
at the side of the map).

airspeed
j80 knots)

N

wind (25 knots)

210°

scale: 1 cm represents 20 km

Barrie

Newmarket

9°
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4.5 Velocities Using Components

In this section, you will see that a variety of problems involving velocities
can be solved by resolving vectors, or by using components.

The first example is the same as Example 4 of the previous section. This
will allow you to compare methods.

Example 1 A small airplane A is flying on bearing 283° at 200 km/h, and another, B,
is flying on bearing 0710 at 140 km/h. Calculate the direction and
magnitude of the velocity of A relative to B.

N N

167

A B

Solution Resolve the velocities in the eastward and northward directions by using
the unit vectors i and j shown. Note the angles with i shown in the
diagrams, and recall the resolution formula used in section 4.2, namely:
a vector v making an angle a with i is resolved on i and j as follows.

v=vIcosa i+Ivlsinaj
Then the velocity of A, VAG = (200) cos 167° 1 + (200) sin 167° f

=—(194.87...)i-t-(44.99...)j
andthevelocityofB, vBG=(140)cos 190 i+(140) sin 19°f

= (132.37.. .)i + (45.57..

You want the velocity of A relative to B, AB= AG — VBG

Thus VAB = (—194.87i + 44.99j) — (132.37i + 45.57j)
= —327.241 — 0.58j N

VAB

SO = f7.242 + 0.582= 327.24... 327
and the angle of VABwith i is where
vAB.,=vABIiIcos

, —327.24 0socosp= =—1p=180.327.24

Thus, as you found before, B perceives that A is moving at 327 km/h
towards the west. I
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Some vector problems on velocities are formulated in component form,
and it is convenient to treat them by using components, as in the
following example.

Example 2 A ship is travelling with velocity VSO = (20i + 30j), and a forklift on
board is travelling relative to the ship with velocity VFS = (—51 + 6j). An
ant is crawling on the engine cover of the forklift, with velocity

VAF (1 — j + 3k) relative to the forklift.
(All velocities in this example are given in km/h.)

Calculate the velocity and the speed of the ant relative to the ocean.

iii on The required velocity is
'AO VAF + VFS+ V0

= (20,30,0) + (—5,6,0) + (1,—1,3)
= (16,35,3).

Thus the speed is

IVAOI = si 162 + 352 + 32 = = 38.60...
The ant's speed relative to the ocean is about 38.6 km/h. •

The velocity of a jet shortly after takeoff is given by the vector vwhose
magnitude is 500 km/h, and whose direction is 35°from the horizontal,
pointing upwards.
a) Calculate the vertical speed of the jet, in rn/s.
b) Calculate the speed of the jet's shadow on the ground, if the sun is

directly overhead.

Solution The diagramshows that
the velocity v of the jet
can be resolved into
a horizontal vector and
a vertical vector as follows.
V = V1 I + v2j

where v1 represents the speed of the shadow along the ground, and v2
represents the vertical speed, or rate of climb, of the jet.

a) v2 = IvIsin35° = (500)(0.5735...) = 286.78..., in km/h.

To convert to m/s, you must multiply by 1000 and divide by 3600:

vertical speed in rn/s is (286.78...) = 79.66
\3600/

Example 3

V
V2 I

V1 I

14

The rate of climb is about 80 m/s.

b) v1 =Ivlcos 35° = (500)(0.8191...) = 409.57...

The horizontal speed of the shadow is about 410 km/h. U
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It 5 Exercises

(Unless directed otherwise, give all magnitudes
in this exercise correct to 3 significant digits,
and all angles correct to the nearest degree.)
In the following, given points P and Q moving
relative to each other, the notation VpQ
represents the velocity of P relative to Q.

1. Find VPQ and IVpQI in the following cases.

a) vpA=(3,1)andvAQ=(—2,5)

b) VPA = (4,—3,6) and VQA = (8,2,—i)

c) VAP = (3,2,1) and VQA = (9,—6,—5)

2. A small airplane P is flying on bearing 165
at 400 km/h, and another airplane, Q, is
flying on bearing 220' at 320 km/h.
Calculate the magnitude and the direction
of the following.
a) the velocity of P relative to Q
b) the velocity of Q relative to P

3. A train is travelling with velocity
(36i + 48j), and the food trolley is
travelling relative to the train with velocity

(6 i — 4j). A ladybug is crawling on the
food trolley with relative velocity

(i + J — 2k). Calculate the velocity and
the speed of the ladybug relative to the
ground. (All velocities in this question are
given in km/h.)

4. A ship is travelling with velocity
(—25 i + 50j), and the captain's robot is
travelling relative to the ship with velocity
(4i — 3f). A mantis is crawling on the

robot, with velocity (—i + J — 2k)
relative to the robot. An antis crawling on
the mantis, with velocity (2 i —2] + k)
relative to the mantis. (All velocities in this
question are given in rn/s.)
Calculate the velocity and the speed relative
to the ocean, of
a) the robot
b) the mantis
c) the ant.

5. Repeat question 3 of 4.4 Exercises by using
components.

A plane is heading due east at an airspeed
of 200 km/h, while a wind is blowing
from the north at 50 km/h.
Find the groundspeed and actual direction
of the plane.

6. Repeat question 5 of 4.4 Exercises by using
components.

The Prime Minister asks her pilot to fly her
immediately from Ottawa to Toronto on a
day when the wind is blowing from the
west at 120 km/h. Toronto is 370 km from
Ottawa on a bearing 235. The jet has an
airspeed of 900 km/h.
Find the following.
a) the heading the pilot should follow
b) the flight time

7. A bus is travelling at a steady speed of
20 rn/s in the direction of i on a rainy day.
Raindrops, which are falling vertically (in
the direction of —j), make traces on the
side windows of the bus. These traces are
inclined at 25° to the horizontal. Calculate
the following.

a) the horizontal component of the drops'
velocity with respect to the ground

b) the horizontal component of the drops'
velocity with respect to the bus

c) the drops' velocity with respect to the
ground

d) the drops' velocity and speed with
respect to the bus

8. Repeat question 8 of 4.4 Exercises by using
components.

A ships is sailing on a bearing of 160° at
30 km/h. Another ship T is sailing on a
bearing of 250° at 40 km/h.
a) Calculate the velocity of S relative to T.
b) Calculate the velocity of T relative to S.
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9. A motor boat is moving at 15 km/h in the
direction 048°. The wind is pushing the
motorboat 3 km/h westward, and a current
is pushing the motorboat 5 km/h
northward. Calculate the direction and
magnitude of the motorboat due to its own
power.

10. A plane P is heading on bearing 060° at
450 km/h, while a plane Q is heading on
bearing 340° at 400 km/h, at a time when
the air is still.
a) Calculate the velocity of P relative to Q.
b) If the wind now starts blowing at

150 km/h from the east, calculate the
velocity of P relative to Q.

11. A first class passenger on an airliner opens
a bottle. The cork pops off and travels
at 100 km/h directly across the plane,
from the right side to the left side.
The plane is heading due east with an
airspeed of 500 km/h, and there is a wind
blowing from the southwest (that is,
bearing 225°) at 120 km/h. Calculate the
direction and the magnitude of the velocity
of the cork relative to the ground.

12. An airplane pilot heads his plane due east
and maintains an airspeed of 170 km/h.
After flying for 30 minutes, he finds
himself over a village which is 100 km east
and 22 km north of his starting point. Find
the magnitude and direction of the wind
velocity.

-
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In Search of Vector Functions

The points of whose coordinates (x,y) satisfy the equation y = x2
form a parabola.

Notice that if x = t
andy=t2

where t IR is called a parameter, then eliminating t between the
equations and yields y = x2, the equation D.
The parabola can be represented
either by the equation Q, called a Cartesian equation,
or by the system of equations and j, called parametric equations.
Each value of t gives a specific point on the parabola.
For example,
when t = 1, gives x = 1 and gives y = 1.
Sot = 1 gives the point (1,1).
When t = 2,J gives x = 2 and gives y = 4.
So t = 2 gives the point (2,4).

Now think of P(x,y) as a particle travelling along the curve.
If t is a measure of time, the particle is
at P0(O,O) at time t = 0,
atP1(1,l)attimet= 1,
at P2(2,4) at time t = 2, etc.

Thus the parametric equations can represent the movement of a particle
along the parabola, starting at (0,0) and going into the first quadrant.

Now if i and j are unit vectors along the x andy axes respectively, then
the position vector of the particle is OP = xi + yjor, using aj and®,

OP = ti + t2j.
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x

OP depends on time, and OP is a vector.
Thus, OP can be called a vector function of time,

OP=r(t)=ti+t2j ®
The movement of the particle along the parabola can also be described by
the vector function ®.

From ®, r(O) = 0 i + 0] = 0 = OF0,

r(1)= li+ 121= i+j=0P1,
r(2) = 2 i + 22] = 2 i + 4] = OF2, etc.

'Flu (ih iiIii o/ t'L!or Eli !IitW!!S

It can be shown that vector functions can be differentiated term by term,
just like ordinary functions.

Differentiating ®yields the velocity vector function

r'(t)=v(t)=li+2tj= i+2tj
Observethatv(0)=i+0j= i

v(1) = i + 2]
v(2) = i + 4]

These are the velocity vectors of the particle at times 0, 1, 2 respectively.
(These velocity vectors are represented by coloured directed line segments
in the figure.)

Differentiating again yields the acceleration vector function.

r (1)

2
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Example 1 Aparticle in 2 moves such that x = cos t andy = sint, where t represents
time. That is, the position vector of the particle is r(t) = cos ti + sin tj.
a) Describe the motion of the particle for t 0.

b) Find the velocity of the particle at any time, v(t); compare it to r(t).
c) Find the acceleration of the particle at any time, a(t); compare it to r(t).

100 a) x = cos t andy = sin t.

Squaring and adding these two equations eliminates t as follows.
x2 + y2 = cos2t + sin2t = 1, or x2 + y2 = 1.

(See the trigonometrical identities, page 542.)
Thus the particle moves in a circle, centre 0, radius 1.
The position vector r(t) = cos ti + sin tj
represents a moving radius' of this circle. Y

At the beginning of the motion, when t = 0, V (t) a (t)

r(0)=cosOi+sinoj= li+Oj= 1
r(t)

b) Differentiatingr(t)=costi+sintj x

yields r'(t) = v(t) = —sin ti + cos tj.

Note: r(t) .v(t) = (cos t i + sin tj). (—sin Ii + cos tj)
= —cos t sint + sin tcos t = 0

Thus, at any given time t, r(t) andv(t) are perpendicular.
This indicates that the velocity v(t) of the particle is tangential to the circle,
as expected.

c) Differentiatingv(t) = —sin Ii + costj
yields v'(t) = a(t) = — cos ti — sin tj. •

Note: a(t) = —r(t).
Thus, the acceleration of a particle travelling steadily around a circle is
along the radius, pointing towards the centre of the circle. This indicates that the
particle, while travelling in a direction perpendicular to the radius at any
instant, keeps 'trying' to turn toward the centre. (This is known as
centripetal acceleration.)

Example 2 A projectile is fired with initial speed Vat an angle a to the horizontal. It is
subject only to the acceleration due to gravity, g.
Find a vector function describing the motion of the projectile.
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Let r(t) = xi + yj be the position vector of the projectile, from the point0
from which it is fired, at any time t.
Thus x andy are the components of r(t) on i and j, the standard basis
vectors, at any time t.

You know that the acceleration acts vertically downwards, so

r"(t) = —gj.
Integrating (that is, antidifferentiating) gives

IJ r'(t) = —gtj+P, where Ps a constant vector.

But you know r' (0) = V cos cxi +V sin aj, so

Vcoscxi+ Vsinaj=(—g)(O)j+P
henceP= Vcosai+ Vsinaj.
Thus becomes r'(t) = —gtj + Vcos cxi + V sinai

or r'(t)= Vcosai+(Vsina —gt)j
integrating again gives

® r(t) = Vt cos cxi + (vt sin a — igt2) j + Q, where Q is a constant vector.

But you know that r(O) = 0, so 0 = 0 i + Of + Q, hence Q = 0

Thus © becomes r(t) = Vt cos cxi + (vt sin a — !gt2) .

The Cartesian equation of this trajectory can be obtained by eliminatingt

from the two equations
x = Vt cos a

1

and y=Vtsincx—jgt2
This gives

—gx + (tancx)xwhichhasthefOrmYax2 +bx+c.Thus,
2V cosa

the path of a projectile is iii the shape of a parabola. •
Activities

1. Verify that the relationship between x and v of Example2 is the

equation GD.
2. Find the range of the projectile by setting y = 0.

3. Find the greatest height of the projectile by settingy' =0.

4. A particle in 2 moves such that x = a cos t andy = a sin t, where t
represents time, and a is a constant.
a) Describe the motion of the particle for t 0.

b) Find the velocity of the particle at any time, v(t), and compare it to

r(t).
c) Find the acceleration of the particle at any time, a(t), and compare it

to r(t).
5. Repeat question 4 for x = a cos tandy = b sin t.
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Summary

• The resultant, R, of a number of forces is the vector sum of those forces.
The equilibrant of those forces is —R.

• A particle is in equilibrium when the vector sum of all forces acting upon
it is 0.

• The gravitational force on a particle of mass m kg is mg N, whereg is the
acceleration due to gravity.
(On earth,g 9.8 m/s2)

• A vector F making an angle of a with i is resolved on i and jas
follows.

F=iFicosa i+iFisinaj
• A vector F making angles of a, /3 and y with i, j, and k respectively is

resolved on i, j, and k as follows.

F=IFicosa i+iFicos/Jj+ipicos yk
• The direction of a vector v in V3 is specified by the angles a, /3, and y that

it makes with i, j, and k respectively.
v.i v. v.kcos a = —-, cos /3= , and cos y =
lvi lvi - lvi —

• Work done, W, by a force F acting along a displacement s
= (magnitude of force in direction of motion) (distance moved) or

W=Fs
(In the following, given points P and Q moving relative to each other, the
notation VPQ represents the velocity of P relative to Q.)

• Velocity is a vector whose magnitude is called speed.
• For any points P and Q moving relative to each other,

VPQ = —vQp

• Given any points A, B, C moving relative to each other,
VAC = VAB + V

or VBC = VAC
— V

or vBC = VBA
—

VCA

Inventory

Completeeach of the following statements.

1. A force or a velocity can be represented by a _____

2. An object small enough to be considered as a point is called a _____

3. Forces are measured in _____
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4. A mass of 1 kg weighs about

5. Two forces or two velocities can be combined in the same way that
vectors are _____

6. If P and Q are forces, R =P + Q is called the _____ force.

7. If Rand S are forces, and R + S = 0, then S is called the _____

of R.

8. When the vector sum of all forces acting on a particle is 0, the particle
is said to be in _____

9. A vector diagram helps you to solve a physical problem. The reality of
the physical situation is portrayed in a diagram.

10. A vector V making an angle of a with I is resolved on i and jas

follows. v = _____ I + j.
11. A vector v making angles of a, fi, and y with i, j, and k

respectively is resolved on i,j, and k as follows.

v= ___ 1+ j+ k.

12. If F= 3e1 5e2, then the numbers 3 and 5 are called the ____ofF

on e1 and e2.

13. An object on a rough inclined plane is kept in equilibrium by a
frictional force. This frictional force acts _____to the plane.

14. The _____ of a vector v in V3 is specified by the angles a, /1, and y that

it makes with , , and respectively.

15. 'Speed' describes the _____ of velocity. 'Distance' describes the
magnitude of

16. The work done by a force is a vector/scalar. (Delete the incorrect term.)

17. Work is measured in _____. (These are also the units of energy.)

18. The work done by a force is the ____ of the force vector and the
displacement vector.

19. The work done by a force acting perpendicularly to the displacement
is _____

20. The symbol VAB describes the velocity of A ____ to B.

21. Complete the following relative velocity formulas.

a) VAcVAn+
b) VBC = VAC

c) VBA—VCA.
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Review Exercises

Where appropriate, give all angles correct to the
nearest degree, all times correct to the nearest
minute, and all other numerical answers correct
to 3 significant digits.
Given points P and Q moving relative to each
other, the notation VQ represents the velocity of
P relative to Q.
Useg 9.8 m/s2.

1. Two forces P and Q of magnitudes 80 N
and 50 N respectively act on a particle. The
angle between P and Q is 62°. Calculate
the magnitude and the direction of the
resultant of P and Q.

2. A particle is being pulled by two forces F1
and F2. F1 acts vertically upward and its
magnitude is 400 N. F2 acts at an angle of
20° to the horizontal, and its magnitude is
500 N.
a) Find the magnitude and the direction

of the resultant force.
b) Find the direction and magnitude of

the equilibrant.

3. Three forces of 50 N, 85 N, and 40 N act
simultaneously on a particle, which
remains in a state of equilibrium. Calculate
the angles between the forces.

4. Is it possible for a particle to remain in
equilibrium under the action of three forces
whose magnitudes are 60 N, 30 N, and
20 N? Explain.

5. a) Two perpendicular forces P and Q are
such that 21P1 = 51Q1. Given that their
resultant has magnitude 90 N, calculate
Fl and IQI.

b) Two perpendicular forces P and Q are
such that IPI = 21Q1. If their resultant
has magnitude 55 N, calculate

Fl and QI.

6. Two forces of magnitude 15 N acting on a
particle have a resultant of magnitude 5 N.
Calculate the angle between the two forces.

7. A particle of mass 8 kg is suspended by
cords from two points A and B on a
horizontal ceiling such that AB = 2 m. The
lengths of the cords are 1.6 mand 1.1 m.
Calculate the tension in each cord.

8. ForceP= (50,—26,14) and
force Q = (16,—10,—45).
a) Calculate the magnitude of the resultant

of P and Q.
b) Specify the direction of the resultant by

finding the angles it makes with 1, j,
and k respectively.

9. Four coplanar forces F, G, H, and J are
such that their resultant is 2000 N along
bearing 3 30°. F has magnitude 800 N and
acts along 030°. G has magnitude 600 N
and acts along 180°. H has magnitude
800 N and acts along 233°. Calculate the
direction and magnitude of the force J.

10. Given points P(4,8,—3) and Q(1,—2,5), a
force F of 100 N acts in the direction of
PQ. Resolve F on i, j, and k.

11. Resolve a force of 100 N into equal
components along three mutually
orthogonal directions.

12. A 70 kg luge is about to be released on an
icy slope inclined at 50° to the horizontal.
Calculate the force that must be applied
parallel to the slope to keep the luge
stationary.

13. A particle of mass 50 kg is in equilibrium
on a rough plane inclined at 32° to the
horizontal.
Resolve the equilibrant into a normal
reaction and a frictional force.
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14. In the following diagrams, the suspended
mass is 10 kg.
a) Calculate the tension in the strings for

figure a).
b) Calculate the tension in the string, and

the pushing force (called a thrust) in the
strut for figure b).

figure a

figure b

A

(7( 10 kg
/550

15. A particle of mass M kg remains stationary
on a smooth plane inclined at an angle of
0° to the horizontal. It is held in
equilibrium by a horizontal force. Show
that the magnitude of this force in newtons
is Mg sin 0 cos 0.

16. A force P of magnitude 300 N acts in the
same direction as AB where A has
coordinates (—1,5,8) and B has coordinates
(3,4,9). Calculate the work done in the
following cases.
a) P acts on a particle along the

displacement AB.
b) P acts on a particle along the

displacement MN, where M has
coordinates (4,4,—7) and N has
coordinates (2,—1,3).

17. A force F of 800 N moves a particle along
a path that is at an angle of 82° with the
force.
a) Resolve F parallel to and

perpendicular to the path.
b) Calculate the work done if F moves the

particle 10 m.

18. A traveller in an airport pushes a loaded
luggage cart of mass 45 kg up a ramp
inclined at 12° to the horizontal. Calculate
the work done if the ramp is 20 m long.

19. A microlight aircraft is heading due west at
an airspeed of 90 km/h, while a wind is
blowing from the south at 40 km/h. Find
the groundspeed and actual direction of the
aircraft.

20. An airliner is to take off from Winnipeg to
fly to Montréal, 1850 km away on a
bearing 094°. The captain prepares her
flight plan according to the following data.
At the altitude at which the airliner is to
fly, the wind is blowing from bearing 330°
at 100 km/h. The airspeed of the airliner is
900 km/h.
a) Calculate the heading that the airliner

should take.
b) Calculate the flight time.

21. A ship S is sailing on bearing of 005° at
25 km/h. Another ship T is sailing on a
bearing of 160° at 32 km/h.
a) Calculate the velocity of S relative to T.
b) Calculate the velocity of T relative to S.

22. A hovercraft is travelling with velocity
(301 — 42j), and a trolley is being
pushed relative to the hovercraft with

velocity (—51 6j). A fly is crawling on
the trolley with relative velocity

(—+j—).
Calculate the velocity and the speed of the
fly relative to the sea. (All velocities in this
question are given in km/h.)

60
110kg
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CHAPTER FIVE

Equations of Lines in
2- and 3-space

A city has a number of power lines going out underground in straight
lines from points A and B at different depths below the main distribution
centre. The map showing these lines has been accidentally destroyed. Your
task is to find out which lines coming from point A intersect with a line
coming from point B. If two lines do not intersect, you are required to
determine the shortest distance between these lines, and to find the points
on the lines where this shortest distance occurs.

You will be able to solve this problem if you can determine the equation of
a line in 3-space.
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In 3-space, as in 2-space, two lines can intersect or not intersect. In 2-space
two lines that do not intersect must be parallel. But, as explained in
section 1.2, in 3-space there are lines that are not parallel and do not
intersect. You can observe this in your classroom by noticing that a line on
the front wall parallel to the floor will not intersect a line on the back wall
that is perpendicular to the floor, even though the two lines are not
parallel.
As you saw in chapter 1, two lines in 3-space that are not parallel and do
not intersect are called skew lines.

In this chapter you will learn how to find the equations of lines in 3-space.
With this and other information from this chapter you will have the
mathematics necessary to solve the 'power line' problem given above.
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5.1 The Vector Equation of a Line
You are familiar with equations such as y = —2x + 6, 4x — = 15, x = 5,
andy = —3. Each represents a straight line and is called a linear equation.
What is meant by saying that y = —2x + 6 is an equation for a straight line?
If you graph every point P whose coordinates (x,y) satisfy this equation,
then the points P will all lie in a straight line. For example, the point (1,4)
lies on this line because x = 1, y 4 substituted in the equation y = —2x + 6
gives 4 —2(1) + 6, which is true. Because the line is defined in terms of
points P(x,y) in a Cartesian coordinate system, this equation is also called
the Cartesian equation of a line in 2-space.

You will recall that for the line y = —2x + 6, the slope of the line is —2 and
the y-intercept is 6, that is, the line intersects the y-axis in the point (0,6).
Figure 1 shows the line drawn using the axes of a Cartesian coordinate
system. The chart gives the coordinates of several points on the line.

x 4 3 2 1 0 —1 —2

y —2 0 2 4 6 8 10

The line consists of the set of all points P(x,y) such that y = 2x + 6. Note
that a point whose coordinates does not satisfy this equation does not lie on
the line. The point 0(0,0) is clearly not on the line. If x = 0, y = 0 are
substituted in y = —2x + 6, the result 0 = —2(0) + 6 is not true.

The line described by the Cartesian equation y = —2x + 6 can also be
defined by an equation that contains vectors, called a vector equation of
a line. Instead of looking at the coordinates (x,y) of a point P on the line, a
vector equation describes the position vector OP of a point P on the line.
Figure 2 shows position vectors for several points on the line.
figure 1 \ Y figure 2 \ Y

y=-2x+6 A y=-+6

1 1

0 1 0

Two facts are needed about this line in order to obtain its vector equation.
For example, the point A(0,6) and the point B(1,4) are on the line. These
points are used to determine a vector parallel to the line, namely
AB = OB — OA = (1,4) — (0,6) = (1,—2).



Let P be any point on the line.
From the figure, OP = OA + AP @
But OA = (0,6), and APis a vector
collinear with vector AB.
Thus, AP = kAB where k 1.
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Different values for k will give different positions for the point P on the
line.
Substituting in Q
OP = OA + kAB

OP = (0,6) + k(l,—2)
This is a vector equation for the line through the points A and B.

A vector, such as AB, that is collinear with or parallel to a line, is called a
direction vector of the line.

The above method can be used to find a vector equation of the line passing

through the fixed point P. and having direction vector m.

Let P be any point on the line. From the figure,
OP = OP0 + P0P.

But P0Pis parallel to m.
Thus POP = km. k l.
Thus OP=0P0+km.
This is the required vector equation of the line.

It is customary to use the abbreviations r = OP and r0 = OP0

FORMULA The vector equation of a line is
r = r0 + km
where
r = OP. the position vector of any point P on the line,
r0 = OP0 the position vector of a given point P0 on the line,
m is a vector parallel to the line,
k is any real number and is called a parameter.

A

B

x

y

m

x
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One of the beautiful mathematical results of vector geometry is that this
vector equation of a line in 2-space, namely, r = r0 + km. is also the
vector equation of a line in 3-space. The derivation of this equation for
3-space is identical to its derivation in 2-space. You can easily see that this
is true by employing the preceding argument using the diagram below.

x

However, there is one difference.
In 2-space the vectors r, r, and rn have two components, while
in 3-space the vectors r, r0, and m have three components.

Example 1 a) Find a vector equation of the line, through the point A(2,—1), that is
parallel to the vector (—5,3).

b) Find a vector equation of the line, through the point B(2,3,1), having
m = (4,5,6) as direction vector.

'oIution For both a) and b) the vector equation of a line is r = r0 + km.

a) Here, r0 OA = (2,—i) and m (—5,3)
Thus r = (2,—i) + k(—5,3)
which is the required vector equation of the line.

b) Here, r0 = OB = (2,3,1) and m = (4,5,6)
Thus r = (2,3,1) + k(4,5,6) is a vector equation of the line. •

Note 1 Anyvector parallel to (—5,3) could have beenused for m in part a).

If m = (—1O,6)theequatjon is r= (2,—i)+ s(—1O,6).
2 Any point on the line besides point A could be used for P0 and

hence for OP0 = r0. Therefore, jfk = 1 in r = (2,—i) +

r= (2,—i) + (1)(—5,3) = (—3,2). Hence, (—3,2) could have been

substituted for r0. Thus, another equation for the same line in a)
wouldbe r=(—3,2)+ t(—5,3) J

3 A comparison of equations 1D J and GJ. all of which represent
the same line, should help you to realize that it is not always easy
to see at a glance whether two equations represent the same line.

Similar remarks could be made about part b) of Example 1.

z

P

P
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Example 2 a) Find a vector equation of the line passing through the points A(3,2)
and B(0,—5).

b) Find a vector equation of the line passing through the points C(3,2,—l)
and D(0,—5,8).

Solution For both a) and b) the vector equation of a line is r = r0 + km.

a) Here,AB=OB—OA
= (0,—5) — (3,2)

Thus AB = (—3,--7)
is a direction vector for the line.

Hence m = (—3,—7).

Since both A and B lie on the line, either OA or OB can be used for 1-o.

Using ,- = OA = (3,2), a vector equation is
r = (3,2) + k(—3,—7).

b) Here,CD=OD—OC ____
= (0,—5,8)--- (3,2,—i)

Thus CD = (—3,—7,9) is a direction vector for the line.

Hence m = (—3,—7,9).

Since both C and D lie on the line, either OC or OD can be use for r0.

Using r0 =OC = (3,2,—I), a vector equation is
r= (3,2,—i) + k(—3,—7,9). U

Example 3 Find a vector equation of the line passing through the point E(3,0,2) that is
perpendicular to vector u = (4,—1,2), and also perpendicular to vector
V = (1,0,—3).

Solution .A vector equation of the line is r = r0 + km.

Here, r0 = OE = (3,0,2).
Since the line is perpendicular to both ii and v, the line is parallel to any
vector that is perpendicular to both u and v.
But u xv is a vector that is perpendicular to both u and v.

Henceadirectionvectorm= uxv=(4,—1,2)X(I,0,—3)=(3,14,i).
Substituting in r = r0 + km gives ______

r = (3,0,2) + k(3,14,1)

This is a vector equation for the line. U
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5.1 Exercises

1. For each of the following vector equations
of lines, state the coordinates of a point on
the line and a vector parallel to the line.
a) r=(2,—1)+k(4,2)
b) r=(8,—3)+t(5,—4)
c) r= (3,—1,4) + k(5,—2,i)
d) r = t(1,0,—8) + (—4,7,5)

2. For each of the following find a vector

equation of the line passing through the
point P0 that has the given vector m as
direction vector.

a) P0 (3,7) _____
b) P0 (—2,0)

c) P0 (6,9)
d) P0 (3,2,7) _______
e) P0 (0,—2,0)

rn=(1,5)
m = (—9,—2)

m = (—2,4)
= (1,5,3)

m = (—9,—2,5)

m = (0,0,6)

3. a) Find a vector equation of the line that
passes through the points A(4,—6) and
B(2,7).

b) Find a vector equation of the line that
passes through the points A(4,—6,2) and
B(—1,2,7).

4. a) Find a vector equation of the line that
passes through the point C(—5,2)and is
parallel to the line through the points
K(1,4) and M(3,7).

b) Find a vector equation of the line that
passes through the point C(3,—5,2)and
is parallel to the line through the points
K(1,4,—2) and M(3,7,4).

5. Find a vector equation of the line that
passes
a) through the point A(3,—1) and is

parallel to the line with equation

r=(0,2)+k(—3,2)
b) through the point A(3,—1,—5) and is

parallel to the line with equation
r = (0,2,0) + k(0,—3,2).

6. Find a vector equation of the line that
passes through the point A(3,—1) and is
perpendicular to the line with equation
r= (0,2) + k(—3,2).

7. Find a vector equation of the line passing
through the point A(3,0,2) that is
perpendicular to vector u = (4,—1,2) and is
also perpendicular to vector v = (1,0,—3).

8. Find a vector equation of the line that
passes through the point D(3,—1,2) and is
perpendicular to the line with equation
r = (4,0,2) + k(5,—3,2) and is also
perpendicular to the line
r = (1,1,2) + s(—2,1,3).

9. a) Find the value oft so that the two lines
r = (1,2) + k(3,—1) and
r = (4,1) + s(4,t) will be perpendicular.

b) Find the value of t so that the two lines
r = (1,8,2) + k(—4,3,—1)
r = (4,1,2) + s(4,t,—3)
perpendicular.

10. Given the points Pi (x1,y1) and P2(x2,y2) with

position vector r1 and position vector r2
respectively.
a) Showthatr=(1 —k) r1+kr2isa

vector equation of the line through
P1 and P2.

b) Describe the position of points on the
line in part a) for 0 <k < 1.

c) Repeat part b) fork> 1 and fork < 0.

11. a) Find a vector equation of the line,
passing through the point A(3,8), that is
parallel to the x-axis.

b) Find a vector equation of the line,
passing through the point A(3,8,1), that
is parallel to the y-axis.

c) Find a vector equation of the line,
passing through the point A(3,8,1), that
is parallel to the z-axis.

f) P0 (2,4,—3)

and

will be
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5.2 Parametric Equations of a Line

Suppose P(x,y) is any point on the line in 2-space, through the point
P0(x0,y0), that is parallel to the vector m = (m1,m2).

A vector equation for this line is

r=r0+km G P

:::t!L=:ives
(x,y) = (xo,y0) + k(m1,m2)or,

r

(x,y) = (x0 + km1,y0 + km2)

0

By the definition of equal vectors, corresponding components must be
equal.
Thus = x0 + km1

ly = y + km2

These equations for the components are called parametric equations of a
line, through the point P0(x0,y0), that is parallel to the vector m = (m1,m2).

The vector m determines the direction of the line. Hence m is called a
direction vector of the line. The components m1 and m2, written with
the x components first, are called direction numbers of the line.

In a similar manner parametric equations can be found for a line in
3-space.

If P and P0 have 3-space coordinates (x,y,z) and (x0,y0,z0) respectively, and
m = (m1,m2,m3) then OP = (x,y,z) and OP0 = (x0,y0,z0).

Therefore, equation becomes

(x,y,z) = (x0,y0,zo) + k(m1,m2,m3) or
(x,y,z) = (x0 + km1,y0 + km2,z0 + km3)

Thus, parametric equations of the line are
x = x0 + km1

Y = Yo + km2

(.z = z0 + km3
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Example 1 a) Find parametric equations of the line, through the point P0(2,3),
having m = (4,5) as direction vector.

b) Find parametric equations of the line, through the point P0(2,3,1),
having m = (4,5,6) as direction vector.

Solution A vector equation of a line is
a) r=r0+km.

Here, r=(x,y),r0= (2,3) and m = (4,5)
Thus (x,y) = (2,3) + k(4,5)

(x,y) = (2 + 4k,3 + 5k) is a vector equation of the line.

Ix = 2 + 4kThus i
ly = 3 + 5k

are the required parametric equations.

b) A vector equation of a line is
r = r0 + km.

Here, r = (x,y,z), r0 = (2,3,1) and m = (4,5,6)
Thus (x,y,z) = (2,3,1) + k(4,5,6)

(x,y,z) = (2 + 4k,3 + 5k,1 + 6k) is a vector equation of the line.

x = 2+ 4k
Thus y = 3 + 5k

z = 1 + 6k

are the required parametric equations. •

Note 1 Both part a) and part b) could be done by substituting directly into
the formula for the parametric equations of a line. But Example 1
shows that the parametric equation formulas need not be
memorized.

2 The multipliers of the parameters, namely the numbers 4 and 5
(in part a) and 4, 5, and 6 (in part b) are the same numbers as the
direction numbers of the line. Direction numbers should always be given
in the order
x then y in 2-space and
x then y then z in 3-space.

3 If the vector equation of a line is written in column form as

[]
= [fl+k[!]

then the parametric equations are more easily recognised.

The following Examples 2 and 3 will be done for lines in 2-space. Similar
solutions can be used for lines in 3-space.
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Example 2

cc

Given the line L with parametric equations k
= 2 5k
= —1 + 3k

a) Determine the coordinates of three points on line L.
b) Find the value of k that corresponds to the point (1 2,—7) that lies on

line L.
c) Show that the point (—3,4) does not lie on line L.

a) Each value of the parameter k gives the position vector of a point on
line L. Let k = 1, then x = 2 — 5(1) = —3 andy = —1 + 3(1) = 2.
Hence (—3,2) is a point on line L.
Similarily using, say, the values k = 2 and k = 3 you will obtain the
points (—8,5) and (—13,8) on the line L.

b) Since the point (12,—7) lies on line L,,x = 12 andy = —7 may be
substituted in the parametric equations for L.
Thus 12 = 2 —5k and —7 = —1 + 3k. Each equation solves to give k = —2.

c) If the point (—3,4) lies on line L, x = —3 andy = 4 may be substituted in
the parametric equations for L.
Thus —3=2—5k and 4=—I+3k
or —5=—5k and 5=3k
or k=1 5and k = —, which is impossible.

Hence the point (—3,4) does not lie on line L. U

Sol U From a point on the line is (1,5) and a direction vector is U = (3,2).

From aj. a point on the line is (1,5) and a direction vector is v = (6,4).
Since v = (6,4) 2(3,2) = 2u, the vectors u and v are parallel.
Because the two lines have a common point (1,5) and have direction
vectors that are parallel, therefore the two lines are the same line. U

r = OP the position vector of any point P on the line,
r0 = OP0 the position vector of a given point P0 on the line,
m is a vector parallel to the line,
k is any real number called a parameter.

vector equation + km

Example 3 Explain why the following parametric equations represent the same line.

@Jx+3k ©fx=1_6t
1y=5+2k y=5—4t

SUMMARY

2-Space 3-Space
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5.2 Exercises

1. For each of the following parametric
equations of lines, state the coordinates
of a point on the line and a vector parallel
to the line. Indicate whether the line is
in 2-space or in 3-space.

Ix = 5 + 2ka) i
1y = 2 + 4k

b) Jx=—3+8s
Iy = 1 — 5s
Ix = —2 + a

c) ly = 3a

d) fx=ok—4
Iy = 1

x = 5 + 2k
e) y=2+4k

1.z=2 — 5k
Ix = —3 + 8s

1) y=1—5s
Iz= —2 + 5s
x = —2 + a

g) y=3a
(z= 2a + 4
rx = 6k — 4

h) y=i
1z= —7k

2. State direction numbers for each of the
lines in question 1.

3. a) Write the coordinates of three points on
the line whose parametric equations are
Jx = —6 + 4k

= 3 — 2k
b) Write three other sets of parametric

equations representing the line in
part a).

4. a) Write the coordinates of three points on
the line whose parametric equations are

x = —6 + 4k

y = 3 — 2k
z= 5—k

b) Write three other sets of parametric
equations representing the line in
part a).

5. Find a vector equation and parametric
equations for each of the following lines.
a) through the point A(—3,4) with

direction vector (5,1)
b) through the points A(—3,4) and B(7,2)
c) through the point A(—3,4) with

direction numbers 6 and —2
d) through the point B(7,2) parallel to the

line r = (4,7) + k(4,—5)
e) through the point C(8,—3) and parallel

to the x-axis
f) through the point C(8,—3) and parallel

to the y-axis

6. Find a vector equations and parametric
equations for each of the following lines.
a) through the point A5,—3,4), with

direction vector (—6,2,1)
b) through the points A(5,—3,4) and

B(7,2,—1)
c) through the point A(5,—3,4) with

direction vector (6,7,—2)
d) through the point B(7,2,—1)_parallel to

the line r = (4,7,0) + k(4,—5,1)
e) through the point C(8,—3,4) and parallel

to the x-axis
f) through the point C(8,—3,4) and parallel

to the y-axis
g) through the point C(8,—3,4) and parallel

to the z-axis

7. Given the line with parametric equations
fx = 5 — 3t
Iy = 2 + 4t
determine whether or not the following
points lie on this line.
A(2,6) B(—l,3) C(1.5,4) D(8,—2) E(—3,4)

8. Given the line with parametric equations
x = 5 — 3t
y = 2 + 4t

tz= —1 + 2t
determine whether or not the following
points lie on this line.
A(2,6,1) B(—1,3,3) C(3.5,4,0) D(8,—2,—3)
E(—3,4,0)
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9. In each of the following, determine
whether or not the given point lies on the
line with the given equation.

point line equation

a) (—2,—1,—6) r = (2,1,0) + k(4,2,3)

b) (10,17,2) r=(l+3k,—4+7k,5—k)

c) (2,12,1) r=(2,3k,5)

10. Explain why each of the following
equations represents the same line as the
equation r = (1,2) + k(4,6)

a) r = (1,2) + k(8,12)

b) r = (1,2) + w(—2,—3)

c) r=(5,8)+t(4,6)
d) r = (—1,—i) + s(2,3)

11. Explain why each of the following
equations represents the same line as the
equation r (1,2,3) + k(4,6,—2)

a) r= (1,2,3) + k(8,12,—4)

b) r= (1,2,3) + w(—2,--3,1)

c) r = (5,8,1) + t(4,6,—2)

d) r = (—1,—1,4) + s(2,3,—1)

12. Show that the equations r = r0 + k(a,b)
and r = r0 + t(sa,sb) represent the same
line, where a, b, k, t,and s l.

13. Given the line with Cartesian equation
3x + = 5,

a) find parametric equations for the line
using the parameter k by letting x = k
and solving for y in terms of k

b) find parametric equations for the line
using the parameter t by letting
x = 3 + 2tand solving for y in terms
of t.

14. a) Find parametric equations of the line,
passing through the point D(—3,2), that
is parallel to the vector w = (—4,7).

b) For each parametric equation found in
part a), express the parameter in terms
of x or y.

c) Eliminate the parameter from the
equations found in b), hence obtain a
Cartesian equation for the line.

15. a) Find parametric equations of the line,
passing through the point D(—3,2,l),
that is parallel to the vector
u = (2,—4,7).

b) For each parametric equation found in
part a), express the parameter in terms
of x, y, or z.

c) Solve each equation found in b) for the
parameter. Equate the three values of
the parameter to obtain
Cartesian equations for the line.

16. Given the points P1(x1,y1) and P2(x2,y2) with

position vector r1 and position vector r2
respectively. In question 10 of 5.1 Exercises
you showed that a vector equation of this
line is r = (1 — k) r1 + kr1.

Let OQ = q be the position vector of the
point that divides segment P1P2 internally
in the ratio a : b.

a) Show that the value of k corresponding

to point Q is —f--—a+b
b) Showthatq=—--— r1+—--— r2a+b a+b
c) Use the results of part b) to find the

coordinates of the point dividing the
segment P1(3, 1) to P2(5,4) internally in
the ratio 7: 2.

17. Show that the lines
L1: r = (2,0,0) + k(0,1,3) and
L2: r = (1,2,3) + t(2,l,0) never intersect.
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Sailboards and Sailboats

A sailboat can use the power of the wind to travel 'upwind', as shown in
the top-view diagram below. If the sail is properly set, the wind exerts a
horizontal force N normal to the sail as shown. This force can be resolved
into two rectangular components, A parallel to the keel (1)of the craft,
and B perpendicular to it. The force A drives the boat forward, while the
force B is counteracted by the keel.

B

N

I

Icc wind

This model works well when the wind is light. However, the stronger the
wind, the more another factor must be considered. The wind also causes
the boat to lean sideways. Thus, the normal force N described above is not
actually horizontal, but points partly downward as shown in this
front-view diagram. N can thus be resolved in three directions, A driving
the boat forward, B opposed by the keel, and D pushing the boat
downward into the water, thus increasing its weight, and thereby its
resistance to forward motion.

N

st

A sailboard is a device that has a free sail system. This means that the mast
is attached to the board by a universal joint (rather than being fixed rigidly
to it). Thus the mast, and the sail, are free to move in any direction.

0 '
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A sailboard or sailboat acts in the same way in light winds, when the mast
is approximately vertical. However, when the wind is strong, riders of
sailboards must keep their balance by pulling the mast toward them. Thus,
the normal force N points partly upward.

N can be resolved into the following forces. A drives the board forward.

B is opposed by the daggerboard (2)and U decreases the weight of the craft
in the water, and thereby its resistance to forward motion.
In fact, U can be strong enough to lift the entire sailboard off the surface
of the water! When airborne, however, the rider has the problem of
keeping both board and sail balanced so as to avoid a crash landing. Good
luck if you try it!

daggerboard

(1) The keel is a plate, often weighted, under the boat and along its length, that helps the
boat resist being pushed sideways by the wind.
(2) The daggerboard is a removable plate that when positioned beneath the sailboard helps a
sailboard resist being pushed sideways by the wind.
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5.3 Cartesian Equations of Lines

You are familiar with the Cartesian equation of a line in 2-space. A single
equation such as y = mx + b or Ax + By + C = 0 is sufficient to determine a
line in 2-space. You should wonder what form the Cartesian equation of a
line in 3-space will take. In this section you will learn how to find
Cartesian equations of lines.

Example 1 Find a Cartesian equation of the line having the vector equation
r=(2 + 3k,4+ 5k).

Solution Since a vector equation of the line is r = (2 + 3k,4 + 5k),
parametric equations are
Jx = 2 + 3k

1y = 4 + 5k
Solving each equation for k gives

k = and k
3 5

Equating the two values for k gives the Cartesian equation
x—2 =y where (2,4) is a point on the line and

3 5 ' 3,5 are direction numbers of the line. I

This form of a Cartesian equation is called a symmetric equation of the
line in 2-space. The word "symmetric" is used because x andy appear
symmetrically in the equation.

The equation --= can be written 5(x — 2) = 3(y — 4) or
5x — 3y + 2 = 0, the usual form for the Cartesian equation of a line in
2-space.

Example 2 Find Cartesian equations in symmetric form of the line with
vector equation r = (2,3,1) + k(4,5,6).

Solution The equationr= (2,3,1) + k(4,5,6) may be written
(x,y,z) = (2 + 4k,3 + 5k,1 + 6k), giving the parametric equations

x = 2 + 4k
y = 3 + 5k

(.z= 1 + 6k
Solving the equations for k gives
x—2 =4k,y—3 =5k,z— 1 =6kor

= k, = k, = k
4 5 6

Hence, Cartesian equations of the line in symmetric form are

= = where (2,3,1) is a point on the line and
4 5 6 ' " 4,5,6 are direction numbers of the line. I
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Note 1 In 2-space, a single symmetric equation is sufficient to determine a line.
2 In 3-space, two symmetric equations are needed to determine a line.
3 Cartesian equations of lines are also called scalar equations of a line.
4 If one of the direction numbers equals 0 the symmetric equations

take on a different form. For example, if the direction numbers
are 3,2,0 and the line passes through the point (4,5,6), the
symmetric equations are written

= z — 6 = 0 rather than = =
3 2 3 2 0

The remainder of this section deals with lines in 2-space and their
Cartesian equations. Indeed, the familiar equation Ax + By + C = 0 for a
2-space line can be derived by using the fact that two non-zero vectors
u and v are perpendicular if and only if u •v = 0.

Recall that a vector n perpendicular to a vector a is called
a vector normal to a or a normal vector for vector a.

R P E R T The following are relationships among two lines in 2-space and the
normal vectors to these lines.

1. Two lines are perpendicular if and only if
their normal vectors are perpendicular.

2. Two lines are parallel if and only if
L

their normal vectors are parallel. L

Example 3 Find a Cartesian equation of the line that passes through the point P0(l ,2)
with n = (3,4) as a normal vector.

Solution Let P(x,y) be any point on the line.
Since n= (3,4) is a normal vector, then n is perpendicular to the line.
Thus, P0PLn. Hence, PP•n = 0.

But P0P= OP — OP0 = (x,y)— (1,2) = (x — l,y —2) andn = (3,4)
Thus, (x—1,y—2).(3,4)40
or (x— 1)(3)--(y—2)(4)=0,thatis,3x--4y— 11=0.
Thus, a Cartesian equation of the line is 3x + 4y — 11 = 0. •

SUMMARY 2-space
For a line in 2-space, through
the point P0(x0,y0), having
direction numbers m1, and m2,

m,m*0
m1 m2

3-space
For a line in 3-space, through
the point P0(x0,y0,z0), having
direction numbers m1, m2, and m3,

x—xo_y—yo=z—zo m1,m2,m3*0
m2 m3

L -

L2
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Notice that the coefficients of x and y in the Cartesian equations are the
direction numbers of the normal vector n = (3,4). The following shows
this to be true for any Cartesian equation of a line written in the form
Ax + By + C = 0

T H F o R E M The line that passes through the point P0(x0,y0), with n = (A,B)
as normal vector, has Cartesian equation Ax + By +C = 0.

Proof: Let P(x,y) be any point on this line.
Since n = (A,B) is a normal vector, then n is perpendicular to the
line.

Thus, PPIn
Hence, P0P•n = 0.

But P0P =OP — OP0 = (x,y) — (x0,yo) = (x — x0,y — y0)

andn=(A,)
Thus, (x x0,y — y0). (A,B) = 0
or (x—x0)A+(y—y0)B=O
that is Ax + By + (—Ax0 — Byo) = 0.

If the number —Ax0 — By0 is replaced by the constant C, this equation
becomes the Cartesian equation Ax + By + C = 0.

R P E R 1
n = (A,B) is a normal to the line with Cartesian equation Ax + By + C = 0.

Observe that: the slope of Ax + By + C = 0 is —

the slope of a normal to Ax + By + C = 0 is

Example 4 Find a Cartesian equation of the line, passing through the point D(—6,2),
that is perpendicular to the vector u = (5,—4).

Solution LettheequationbeAx+By+C=0. Q
Since u = (5,—4) is perpendicular to the line, a normal vector (A,B) (5,—4) —
Substituting for A and B in ci gives

5x + (—4)y + C = 0.
But the point D(—6,2) lies on the line,
Thus 5(—6) + (—4)(2) + C = 0 or, C = 38.

Thus a Cartesian equation of the line is 5x — 4y + 38 = 0. •
Note: This equation could have been obtained from first principles by

using the fact that DP. (5,—4) = 0, where DP = (x + 6,y — 2).
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5.3 Exercises 4. Find, where possible, symmetric equations
for each of the following lines.

1. For each of the following equations of a a) through the point A(5,—3,4), with
line, state the coordinates of a point on the direction numbers —6,2,1
line and direction numbers for the line.

b) through the point E(4,—1,0), with
x — 3 — direction vector (1,0,—3)a) 5 6 c) through the points A(5,—3,4) and

b) x+ly—4 B(7,2,—1)
2 d) through the point B(7,2,—1),_parallel to

x —2 = the line r= (4,7,0) + k(4,—5,1)
c)

—8 e) through the point C(8,—3,4) and parallel

d)
2x —6 =

to thex-axis

5 f) through the point C(8,—3,4) and parallel

x—2 z—1 tothey-axis
e) 3 8 5 g) through the point C(8,—3,4) and parallel

to the z—axis

')
3 7 9 5. Find a vector equation for the line with

x—lyz—Sx — 2 = z — 7 = 0. symmetric equation5' 4 2 —3

h) x—lz+2
y = 2 6. Find the value of the variable tso that the—

line with symmetric equations
x—ly+2 z—3.= is perpendicular to the

6 5 —2
2. Find a vector equation for the lines in line with vector equation

question 1, parts a) toh). -
r= (0,3,1) + k(2,t,11).

3. Find, where possible, symmetric equations
7. Find the value of the variable s so that the

line with symmetric equationsfor each of the lines having the given vector
equations. — 5 = is parallel to the line

___________ 2 —8

a) r = (3 — 2k,4 + 5k) with vector equation
r = (9,2,6) + k(—1,s,4).b) r=(6+4t,—3—t)

c) r = (2,1,0) + k(4,2,3) 8. Show that the following lines are the same
______ ______ line.

d) r= (—3,4,2) + k(—1,5,O) X — 1 — and____ L1:—= —

—1e) r= (2,3k,5)__ x-11
L2:

10
=

6 —2f) r= (—4k,3k —1)
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9. Find the value of the variable tso that the
following lines are perpendicular.

L1:
x —4 =yj = z + 2 and
2t—1 3 4t—1

L = =2
8 —2t —2

10. State direction numbers for a normal to
each of the following lines.
a) 3x+4y+6=0
b) 5x—2y=3
c) x—5y=1
d) 2x+3=0
e) y=5

11. For each of the following find a scalar
equation of the line passing through the

given point P0 and having n as a normal
vector.
a) P0(3,—1)
b) P0(0,—5)

n = (—4,1)

n = (6,4)
n = (2,—3)
n = (—2,0)

12. Use normal vectors to decide which pairs of
lines are parallel and which pairs of lines
are perpendicular.
a) 3x+2y=5

6x + 4y = 1

b) 4x—5y=7
5x + 4y = 1

c) 5x—3y+1=0
3x + 5y + 2 = 0

d) x—13y=18
3x—39y=0

e) 2x+l=0

13. a) Show that a line with equation

Ax+By+C=Ohas(B,—A)asa
direction vector.

b) Find a vector equation of the line in
2-space, passing through the point
P0(3,5), that is parallel to the line
2x + 5y + 9 = 0.

14. Given the line L with equation
4x — 7y + 9 = 0 and the point P0(1,—3).
a) Find a vector equation of the line

through P0 parallel to the line L.
b) Find a vector equation of the line

through P0 perpendicular to the line L.

15. Find the value of the variable tso that the
line with scalar equation 4x + 7y = 3 is
perpendicular to the line with vector
equation r = (0,1) + k(4,t)

16. Find the value of the variables so that the
line with scalar equation 5x + = 8 is
parallel to the line with vector equation
r = (2,1) + k(3,s)

17. Write the symmetric equation =

in the scalar form Ax +By + C = 0.

18. Write the Cartesian equation
4x + 7y — 11 = 0 in symmetric form.

19. a) Show that the vector n = (3,—1,2) is a
normal of the line

= z —c = 0
2 6'

c) P0(—4,7)

d) P0(—2,—5)

x= 10
f) 3y+5=0

2x=3 n?

b) Are all normals to this line parallel to
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4 Direction Numbers and
Direction Cosines of a Line

The direction of a line in 3-space can be given by many direction numbers
or vectors. For the line with vector equation r =(l + 2k,4 — 3k,5 + 7k), the

numbers 2, —3, and 7 are direction numbers and a = (2,—3,7) is a direction

vector. Any scalar multiple of a is parallel to a and thus is also a direction
vector; for example, (4,—6,14), (—6,9,—21) and (2t,—3t,7t), t R, are
direction vectors of the line. Thus the ordered sets of numbers 4,—6,14,
and —6,9,—21, and 2t,—3t,7t are also direction numbers of the line.

None of the these direction numbers in 3-space specify direction in the
same way as slope does in 2-space. You need to compare the direction
of the line with the directions of the three coordinate axes. This is done using
a special set of direction numbers called direction cosines. These are
associated with the cosines of the three angles a direction vector of a line
makes with the x-axis, the y-axis, and the z-axis.

Example 1 A line has a direction vector a = (2,—3,7). Calculate, to the nearest degree,
the angle this line makes with the x-axis.

Solution Let the required angle be a. Then a i = all i cos a
a i= cos a =
aIIi _______

= (2,—3,7).(l,0,0) = 2 = 0.2540002...
I22 + (3)2 + 72f12 + + 2 /jfj

a = 75.2856. .

The angle between the line and the x-axis is 75g. •

Example 1 can be generalized to find the angle a line makes with the three
coordinate axes.

Let a, /3 and y be the angles a direction vector m = (m1,m2,m3) makes with
the x-axis, y-axis, and z-axis respectively.
Since the basis vector i lies along the x-axis, the angle between m and i
must be a.

Thus cos a = (m1,m2,m3).(1,0,0) = in1

mHiI m
In a similar manner you can prove that cos /3= and cos y =

mi mi

R o P F R T The direction cosines of a line with direction vector m = (m1,m2,m3) are
rn m2 m3

ml ml ml
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Similarilyyou can show that in 2-space the direction cosines of a line with

direction vector (m1,m2) are
mi mi

Example 2 Given the line with vector equation r = (1,2,3) +(3,—4,5)
a) find the direction cosines of the line, correct to 4 decimal places, and

the angles a, /3, and y the line makes with the coordinate axes, correct
to the nearest degree

b) calculate cos2 a + cos2 /3+ cos2 y.

Solution a) Direction numbers of the given lines are 3,—4,5.
Hence m1 = 3, m = —4, m = 5.

Thus,jmI=V32+(_4)2+ 52=Jö
Therefore, the direction cosines are

3 4 5cosa= cos/3= — cosy=—
or, cos a 0.424 264 cosfl —0.565 854 cos ' 0.707 106

Thus, to the nearest degree, a = 65°, /3 = 124° and y = 45°.
Thus the direction cosines are 0.4243, —0.5659, and 0.707 1.
The angles made with the coordinates axes are 65°, 124° and 45°.

Note: Since a line has two directions', m could have been replaced by
—m = (—3,4,—5). Thus cos a, cos /3and cos y would have been the
negatives of the above, a, /3, y would then have been
180° — 65° = 115°, 180° — 124° = 56° and 180° —45° = 135°.

b) cos2a+ cos2/3+cos2 y
/ 3 \2 / 4 \2 / 5 \2 9 16 25 50=1—I +i———i +i— =—+—+—=—orl. U\1 \ J \J 50 50 50 50

You will now see by calculating the length of the vector
u = (cos a,cos fl,cos y) that the result of Example 2 part b) is always true.

Now ui2 = cos2 a + cos2 /3 + cos2 '

= (V + + (V = (mi)2 + (m)2 + (m3)2 = 2 1.
\ImII \ImI/ \ImIJ Imi2 Imi2

Therefore, the vector (cos a,cos /3,cos y) is a unit vector. If rn is a direction
vector of the line, you can call the vector (cos a,cos 13,cos y) =em.

The following property follows directly.

A E T If a, /3, and y are the angles the direction vector of a line makes with the
x-axis, the y-axis, and the z-axis respectively, then
cos2 a + cos2 /3 + cos2 y = 1.
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5.4 Exrus;

1. Given a line with direction numbers
3,2,—4,
a) state three other sets of direction

numbers
b) find the values of the direction cosines,

correct to 4 decimal places
c) find the angles a direction vector of the

line makes with the coordinates axes,
correct to the nearest degree.

2. Repeat question 1 parts b) and c) for the
following sets of direction numbers
a) —1,3,5 c) 6,—2,—1
b) 0,—5,8 d) —1,0,2

3. Find direction cosines for each of the lines
given by the following.
a) r= (3,—1,4) + k(5,—2,1)

b) r= (—4,7,5) + t(1,0,—8)
Ix = 5 + 2k

c) 1y2+4k
I.z= 2—5k
fx = —3 + 8s

d)
I.. z = —2 + 5s

e)
3 8 5

f) x+32y—4l--z
—3 7 9

x— 1
g)

4. Two of the direction cosines of a vector are
0.3 and 0.4. Find the other direction cosine,
correct to 4 decimal places.

5. A direction vector of a line makes an angle
of 30° with the x-axis and an angle of 70°
with the y-axis. Find, correct to the nearest
degree, the angle the direction vector makes
with the z-axis.

6. A line through the origin of a 3-space
coordinate system makes an angle of 45°
with the y-axis and an angle of 80° with the
z-axis. Find a vector equation of the line.

7. The direction cosines of two vectors are,, and 0, ,-.
Find the angle between the vectors, correct
to the nearest degree.

8. The direction cosines of two intersecting11 iii.lines are —, —, — and ——, —, . Find the222 222
angle between the lines, correct to the
nearest degree.

9. The line with vector equation
r = (1,4,—6) + k(—3,1,—2) is perpendicular
to the line with symmetric equations

= =
4 t 5

Find the direction cosines of each line.

10. Vectors in1 and rn2 make angles a1, fi', y'
and a2, /32, Y2 respectively with the
coordinate axes.
a) If m, is perpendicular to m2 show that

cos a1 cos a2 + COS fl cos /12 + cos Y cos Y2
= 0.

b) If 0 is the angle between m, and rn2
show that
cos 0=
cos a1 cos a2 + cos /J cos /32 + cos y cos Y2

11. Find the direction cosines of a line
perpendicular to both of the lines

2 3 6 3 8 12
12. a) For a line in 2-space with direction

vector in = (m1,m2) show that the
direction cosines are

cos a = --, cos /3 =
ml ml

b) For the line in part a) show that
cos2a+cos2/3= 1.

13. A unit vector makes equal angles with each
of the three coordinates axes. Find this unit
vector.
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5.5 The Intersection of Lines in
You have studied intersections of lines in 2-space before, using Cartesian
equations of lines. In this section you will investigate the intersection of
lines using vector and parametric equations. You will also examine the
various relationships that can occur among lines. Your understanding of
the different ways lines can intersect in 2-space will help you to
understand the intersection of lines in 3-space.

Consider the figure in which three lines L1, L2, and L3 are drawn.
L1 and L2 intersect at point P. L2 and L3 intersect at point Q. L and L3 are
parallel and distinct hence they do not intersect.
Two parallel lines L3 and L4 that have one point in common must have
every point in common. The lines are the same line and are sometimes
called coincident lines.

L

L3 >> L4

Situations like these are modelled in the following examples.

Example 1 Given the line L1 with equation 3x + 2y = 8. Determine whether or not L1 is
parallel to each of the following lines. If the lines are not parallel, find
their point of intersection. If the lines are parallel, determine whether the
lines are the same line, or distinct lines.
L2:4x—5y——3 L3:12x+8y=32 L4:6x+4y=2

Solution L1 andL2
For L1, 3x + = 8, so a normal is n1 = (A,B)= (3,2).
For L2,4x — = 3, so a normal is n2 = (4,—5).

Since n1 is not a scalar multiple of n2, vectors n1 and n2 are not parallel.
Thus, L1 and L2 intersect. To find the point of intersection you must solve
the system

3x+2y=8 CID

4x—5y=3 a
Eliminatingx,4 x — 3 x gives 23y = 23. Thus,y = 1.

Substituting y = 1 in G or© gives x = 2.

Hence, the point of intersection of L1 and L2 is (2,1).

L1 and L3

For L1, 3x + 2y = 8, so a normal is n1= (3,2).
For L3, 12x +8y = 32, so a normal is n3 = (12,8).
Since n3 =4n1, the normals n3 and n1 are parallel.
But the equation for L3 is 12x + 8y = 32 or 4(3x + 2y) = 4(8)
Dividing by 4 gives 3x + = 8 which is the equation for L1. Hence, every
point P(x,y) that is a solution for equation ®is also a solution for J.
Thus, L1 and L3 are the same line.
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L1 and L4

For L1, 3x + 2y = 8, so a normal is ii = (3,2).

For L4,6x + 4y = 2, so a normal is n4 = (6,4).
Since n4 = 2n1, the normals n4 and n1 are parallel.
But the equation for L4 is 6x + 4y = 2 or 2(3x + 2y) = 2(1)
Dividing by 2 gives 3x + 2y = 1.

Comparing this equation with the equation for L,: 3x + 2y = 8, you can see
that no point P(x,y) that is a solution for equation 3x + 2y =8 can be a
solution for equation 3x + 2y 1 (nor for equation 6x + 4y = 2).
Thus, L and L3 can not have a common point. Lines L1 and L3 are parallel
and distinct. •

if two linear equations in two variables have one or more solutions, then the
system of equations is said to be consistent.

If a consistent system has exactlyone solution the system is independent.

If a consistent system has more than one solution the system is dependent.

If two linear equations in two variables have no solutions, then the system
of equations is said to be inconsistent.

. M M A R
For a system of two equations in two variables

number of solutions geometric description

consistent and independent one two intersecting lines

consistent and dependent infinite same line

inconsistent none lines are parallel, distinct

Example 2 Given the line L1 with vector equation r = (5 + 3k,—! + 4k). Determine
whether or not L, is parallel to each of the following lines. If the lines are
not parallel, find their point of intersection. If the lines are parallel, then
determine whether the lines are distinct, or the same line.

L2: r (4 — 2t,5 + t) L3: r = (— 4 — 6s,7 — 8s) L4: r = (8 + 3a,3 + 4a)

Solution L1 and L2

A direction vector for L1 is rn1 = (3,4).
A direction vector for L2 is m2 = (—2,1).

Since no scalar k exists such that m1 = km2. m1 and m2 are not parallel.
Hence, L1 and L2 are not parallel, so they intersect.
The system is consistent (a solution) and independent (only one solution).
Parametric equations for L1 and L2 are
Ix= 5+3k Ix=4—2tand
y=—l+4k y=5+ t
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At the point of intersection, (x,y) for L1 equals (x,y) for L2. Thus,
I 5+3k=42t J3k+2t=—i 'D
1—1+4k=5+ t t4k— t= 6
Eliminating k: 4 x — 3 x J gives lit = —22, or t = —2.
Substitute in or to obtain k = 1.
Substituting k = 1 and t = —2 in either the parametric equations for L1, or
for L2, produces x = 8 andy = 3.
Thus, the point of intersection is (8,3).

L1 andL3
A direction vector for L1 is rn1 = (3,4).
A direction vector for L3 is m3= (—6,—8).
Since m3 = —2m1, the vectors m3 and m1 are parallel.
Hence, L1 and L3 are parallel.
Are L1 and L3 the same line or distinct lines? If the lines have any one point
in common they must have all points in common, and be the same line.
Test one point from L1 in L3. Now (5,—i) is on L1.
Parametric equations for L3 are
J x = —4 —

ly= 7—8s
Substituting 5 for x and —1 for y gives
5=—4—6sand—i =7—8s

9 3 —8 3ors=—= 1 *
6 2 —8 2

Since the two values for s are different, (5,—i) does not lie on L3.
Hence, L1 and L3 are parallel and distinct.
The system is inconsistent (no solution).

L1andL4
A direction vector for L1 is rn1 = (3,4).
A direction vector for L4 ism4 = (3,4).
Since m4 = m4 the vectors m4 and m1 are parallel.
Hence, L1 and L4 are parallel.
To determine whether L1 and L4 are the same line or distinct lines one
point from L1 should be tested in L4. Now (5,—i) is on L1.
Parametric equations for L4 are
f x = 8 + 3a

Iy = 3 + 4a
Substituting 5 for x and —1 for y gives
5=8+ 3aand—1 = 3a+4a

3 4a — 1 ora — i
3 4

Since both values of a are the same, (5,—i) does lie on L4.
Thus, L1 and L4 are the same line.
The system is consistent (a solution) and dependent (an infinite number of
solutions). •
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5.5 Exercises

1. a) A system of two linear equations in two
variables is inconsistent. Explain what
this means both geometrically and with
respect to the number of solutions of
the system.

b) Repeat part a) for a system that is
consistent and dependent.

c) Repeat part a) for a system that is
consistent and independent.

2. For each of the following systems
determine whether or not the
corresponding lines are parallel. If the lines
are parallel, indicate whether they are
distinct, or the same line. If the lines are
not parallel, find their point of
intersection.

f 7x+3y=—30
121x + 9y = —90

f 8x+6y= 18
t—2x — = —15

3. For each of the systems in question 2
indicate which of the following terms
apply.
a) consistent and independent
b) consistent and dependent
c) inconsistent

4. For each of the following pairs of lines in
2-space determine whether or not the lines
are parallel. If the lines are parallel, then
determine whether the lines are distinct or
the same line. If the lines are not parallel,
find their point of intersection.

a) r—(3+2k,7+k)
r = (—5 + 4t,8 — 3t)

b) r=(19—5k,16—6k)
r = (2 + s,4 —3s)

c) r=(1+8a,4—6a)
r = (2 —4b,—5 + 3b)

d) r=(1+t,3—2t)
r = (—1 + 4k,—7 + 6k)

5. Find the point of intersection of the line
r = (1,—6) + k(—3,5) and the line through
the points A(6,—4) and B(—l0,2).

6. Find the point of intersection of the line

r = (—3,1) + k(4,7) and the line X 11 =

7. Find the point of intersection of the lines
x+3 y+2 x-5 y—4= and =

2 4 —3 —1

8. Given the triangle A(1,4) B(—5,6) C(3,—2)
a) find a vector equation of the median

through vertex A
b) find a vector equation of the median

through vertex B
c) find a vector equation of the median

through vertex C
d) find the point of intersection of the

medians through vertices A and B
e) show that the point of intersection

found in part d) also lies on the median
through vertex C.

9. Given the parallelogram 0(0,0), Q(5,0),
R(8,4), S(3,4)
a) find a vector equation of the diagonals

OR and QS
b) find the point of intersection of the

diagonals in part a)
c) use your point in part b) to show that

the diagonals of parallelogram OQRS
bisect each other.

10. Given the point P(3,10) and the line L,
r = (1 + 3k,17 —4k)
a) find a vector equation of the line

through P that is perpendicular to L
b) find the point A of intersection of L and

the line in part a)
c) find the perpendicular distance from

point P to the line L.

11. Find a vector equation of the line through
the origin that passes through the point of
intersection of the lines

= and =
—1 2 3 2

14x — = 22
a) c)

L3x + 2y = 5

b) 4—2x+6y=—16 d)
I. 3x—9y= 15
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5.6 The Intersection of Lines in 3-Space
In the introduction to this chapter you learned of a 'power line' problem.

Read page 196 again.

Recall that two lines in 3-space can intersect or not intersect. If the two
lines do not intersect, then the two lines may be parallel, or not parallel.
Two lines in 3-space that are not parallel and do not intersect are called
skew lines.

The following examples will give you the mathematics necessary to solve
the 'power line' problem.

Example 1 Given the line L1 with vector equation r = (3 + 2k,4 — 3k,5 + k).
Determine whether or not L1 is parallel to each of the following lines.
If the lines are not parallel, then determine whether the lines intersect
or are skew. If the lines intersect, then find the point of intersection.
L2: r= (—7 + 6t,5 + 5t,—1 + 4t)

L3: r=(—1+3a,3—a,7+6a)
L4: r=(5 —4w,2+ 6w,4—2w)

Solution (Using elimination)

L1 andL2
A direction vector for L1 is rn1 = (2,—3,1).
A direction vector for L2 is m2 = (6,5,4).
Since no scalar k exists such that m1 = km2. m1 and m2 are not parallel.
Hence, L1 and L2 are not parallel.
To determine if the lines intersect, you will need their parametric equations.
Now the parametric equations for L1 and L2 are

Ix=3+2k 1x=—7+6t
L1y4.3k L2= 5+5t

tZ"5+ k z=—1+4t
At the point of intersection, (x,y,z) for L1 equals (x,y,z) for L2. Thus,
13+2k=7+6t 2k—6t=—1O cj
4—3k= 5÷5tor_3k_5t= 1

t5+ k=—1+4t I. k—4t= —6 J
Solving® and ©gives k = —2, t = 1.
Substituting in GJ you will obtain (—2) — 4(1) = —6, which is true.
For k = —2 and t = 1 substitution in either the parametric equations for L1
or L2 gives x = —1,y = 10, and z = 3.
Thus, the point of intersection is (x,y,z) = (—1,10,3).
(Notice that the linear system for L1 and L2, consisting of equations @
and ®, is consistent and independent.)
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L1 and L3 _____
A direction vector for L1 is rn1 = (2,—3,1).

A direction vector for L3 is m3 = (3,—1,6).

Since no scalar k exists such that m1 =km3. m1 and m3 are not parallel.
Hence, L1 and L3 are not parallel.
To determine if the lines intersect, you will need their parametric equations.
Now parametric equations for L1 and L3 are

[x=3+2k Ix=—1+3a
L11y4_3k L31v= 3— a

I.z=5+ k I.z= 7+6a
At the point of intersection, (x,y,z) for L1 equals (x,y,z) for L3. Thus,

13+2k=—1+3a 12k—3a=4 ®
4—3k= 3— aOrl_3k+ a=—1 c53

1.5+ k= 7+6a k—6a= 2 ®
Solving®andgivesk= l,anda=2.
Substituting in® you will obtain (1) — 6(2) = 2 or --11 = 2, which is not true.
Thus, the lines L1 and L3 do not intersect. Since L1 and L3 are also not
parallel, L1 and L3 are skew lines.
(Notice that the linear system for L1 and L3, consisting of equations ®
and ®, is inconsistent.)

L1andL4 _____
A direction vector for L1 5 ,ti1 = (2,_3,1):

A direction vector for L4 is m4 = (—4,6,—2).

Since m4 = —2m1, therefore m1 and m4 are parallel.
Hence, L1 and L4 are parallel.
Since the lines are parallel, they are either distinct lines or the same line.
To determine whether L1 and L4 are the same line or distinct lines, one
point from L1 should be tested in L4.
Now (3,4,5) is on L1.
Parametric equations for L4 are

x = 5 — 4w
y = 2 + 6w
z = 4 — 2w

Substituting 3 for x, 4 for y, and 5 for z gives
3 = 5 — 4w
4 = 2 + 6w

l 5 = 4 —2w

Solving each of the equations for w, gives w = —, w = , and w =

But w cannot have different values at the same time. Thus, the point
(3,4,5) does not lie on line L4. Hence, the lines can not have a common
point. Hence the lines are parallel and distinct.
(Notice that the linear system for L1 and L4, obtained by equating
components, will be inconsistent.) I
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The systems of equations for the parameters k and tof lines L1 and L2 and
for k and a of lines L1 and L3 in Example 1 can also be solved using
matrices as follows.
1 Ite,'i,a/ So/uIii, f'r /ir1 Lvanip/e I uinj hitri1

L1 andL2

As in Example 1, the three equations are
2k—6t=—10 ®

I—3k—5t= 1 a
1 k—4t= —6 ®
The augmented matrix for the three equations in the two variables k and t
and the reduced form of the matrix follows.

[ 2 —6 —101 [2 —6 —10
—3 —5 1 j 3 x row® + 2 x row® I ( —28 —28

[ 1 —4 —6] row® — 2 x row® [0 2 2

[2 —6 —10
-' —28 —28

row® + 14 x row® [

From row® of the reduced matrix, —28t = —28. Thus, t = 1.
From row® of the reduced matrix, 2k — 6t = —10.

Substituting t = 1 in this equation gives k = —2.

L1 and L3

As in Example 1, the equations are
2k—3a=—4 ®

a=—1 ®
I. k—6a= 2 ®
The augmented matrix for three equations in the two variables k and a and
the reduced form of the matrix follows.
[ 2 41 [2 —3 —4

—3 1 —1 3Xrow@+2xrow®j 0 —7 —14
[ 1 —6 2] row®_2xrow®[0 9 —8

[2 —3 —4

I 0 —7 —14
9 x row® —7>< row® [0 0 —70

From the last line of the reduced matrix, Oa = —70.

No value of a satisfies this equation so there is no solution to equations ®,
®, and ®. L1 and L3 do not intersect.

Because the direction vectors of L1 and L3 are not parallel, lines L1 and L3
are skew lines.
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L1 and L4
The parametric equations for L1 and L4 are

Ix=3+2k 1x=5—4w
Liy=4_3k L4y=2+6w
z=5+ k z=4—2w

Equating the components for L1 and 'L4, then simplifying, gives the
following system of equations.
2k+4w= 2 ©

—3k—6w=—2 ®
k+2w=—1 ®

The augmented matrix for this system is

[ 2 4 21 [2 4 2
—3 —6 — 3 x row® ÷ 2 x row® I ü 0 2

[ 1 2 —1] row® — 2 x row® [ ) 0 4
From the last line of the reduced matrix, Ow = 4.
Since this equation has no solution, the lines L1 and L4 do not intersect.
Because the direction vectors of L1 and L4 are parallel, lines L1 and L4 are
parallel and distinct. U

The Shortest Distance bc'ti ,, I ito Iine
If two lines are skew, they do not intersect. How close do they come to each
other? In other words, what is the shortest distance between two skew lines?
The following analysis will explain how to find the shortest distance between
two skew lines L1 and L3.

The shortest distance between two skew lines L1 and L2 is the distance
between the two points D1 and D2 on L1 and L2 respectively,
where D1D2±L1 and D1D2±L2.

L1D 8

LD 2

Suppose the vector a = in1x in2, where rn1 and rn2 are direction vectors for

L1 and L2 respectively. Then a is perpendicular to in1, and to m2, and hence
to L1 and to L2. Hence, D1,D2 is parallel to a.
Let d = the shortest distance between L1 and L2.
Then d = ID1D2I. Let P1 and P2 be points on L1 and L2 respectively.
Thus, D1D2±D1P1 and D1D2±D2P2.

Thus, d = I component of P1P2 along D1D2 I

= I component of P1P2 along a I , 0

Thusd=1"!'
IaI
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F .9 M L A
The shortest distance d between two skew lines L1 and L2 is

d= IP1P2aI
lal

where P1 is a point on L1, P2 is a point onL2, L1 has direction vector m1,
L2 has direction vector m2, and a =m1 x m2.

Example 2 a) Find the shortest distance, D1D2, between the skew lines
L1: r = (—1 + 2k,—2 + 2k,3k) and L2: r = (9 + 6a,3 — a,1 + 2a)

b) Find the coordinates of points D1 and D2.

Solution a) The shortest distance between the lines is given by the formula

d P.P2•aI

al
Here

P1 = (—1,—2,0),P2 = (9,3,1) so P1P2 = (9,3,1)_—_(—i,—2,O) = (10,5,1)
Also, a = m1xm2 = (2,2,3) x (6,—1,2) = (7,14,—14)

lal=V72+ 142+(14)2=.Jii=21
Thus d = I(i0,5,1)(7,14,—14)I = or 6

21 21
The shortest distance between the lines is 6.

b) You can find the coordinates of points D1 and D2 by using the fact that
D1D2JJ and D1D2±L2
Since 0D1 = (—1 + 2k,—2 + 2k,3k) for some value of k, and

0D2=(9 + 6a,3 —a,i + 2a) for some value of a,
therefore D1D2 = 0D2 — 0D1

= (6a — 2k + 10,—a —2k + 5,2a —3k + 1)

For D1D2±L1

D1D2•m1= 0
(6a —2k + 10,—a — 2k + 5,2a — 3k + i).(2,2,3) = 0

12a—4k+20—2a—4k+1O+oa—9k+3=O
16a — 17k = —33

For D1D2±L2

D1D2•m=0 ____
(6a —2k + 10,— a — 2k + 5,2a — 3k + 1).(6,—1,2) = 0

36a— 12k+60+a+2k— 5+4a—6k+2=0
41a — 16k = —57 ©

Solving D and gives k = 1 and a = —1.

Hence the coordinates of D1 are (—1 + 2[1],—2 + 2[i],3[i]) = (1,0,3) and of
D2 are (9 + 6[—1J,3 —

[—11,1 + 2[—1J = (3,4,—i)). •
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5.6 Exercises

1. For each of the following pairs of lines in
3-space determine whether or not the lines
are parallel.
If the lines are not parallel, determine
whether they intersect, or are skew.
If the lines intersect, find the point of
intersection.

a) r=(5+2k,8+k,13+3k)
r = (3 + 4t,2 — 3t,2 — 2t)

b) r=(1O—5k,4—6k,3+k)
r = (3 + s,4 — 3s,—6 + 5s)

c) r= (1 —3k,2 + 5k,4 + k)

r=(3 +b,—3b,--2 + 6b)

d) r=(l+8a,4—6a,2+2a)
r= (2 — 4t,—5 + 3t,—3 — t)

e) r=(1+t,3—2t,—14+5t)
= (—1 + 4k,—7 + 6k,—2 — 2k)

f) r=(5+a,—5—2a,3+4a)
r = (3 + 4k,—1O + k,—1 — 2k)

2. For each of the pairs of lines in question 1
indicate which of the following terms
apply to the corresponding linear system.
a) consistent and independent
b) consistent and dependent
c) inconsistent

3. Find the point of intersection of the line
r = (—1,4,6) + k(—3,5,1) and the line
through the points A (—4,— 3,7) and
B(8,1,3)

4. Find the point of intersection of the line
r = (—3,4,1) + k(4,—1,7) and the line
X —11 =

—2 —1 5

5. Find the point of intersection of the lines

L1: = = and
5 2 4

L2
3 —1

6. Find the distance between the lines in
questions 1 c) and 1 1).

7. a) Prove that the lines
L1: r= (1 + 5k,—2 + k,4 — 3k) and
L2: r = (2 + 3't,6 — 2t,7 — 4t) are skew
lines.

b) What is the distance between the skew
lines L1 and L2?

8. Given the lines
L1: r= (4 + 2k,4 + k,—3 — k) and
L2: r = (—2 + 3s,—7 + 2s,2 — 3s)

a) Prove that the lines are skew.

b) Find the shortest distance between the
lines.

c) Find the coordinates of the point
P1 on L1 and the point P2 on L2
such that P1P2 is the shortest distance of
part b).

9. Given the lines r = (3 — k,4 + 5k,! —2k)

and r = (8 + 2w,5 + 3w,—9 — 6w).

a) Prove that the lines intersect.

b) Find the angle between the lines.

10. Prove that the lines
r = (—5 + 3k,2 + 2k,—7 +6k) and
r = (s,—6

— 5s,—3 — s) lie in the same plane.
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11. Two power lines L1 and L2 from the pointA
described in the introduction to this chapter
have equations
r= (1 + 5k,llk,k) and
r = (1 — s,s,—3s) respectively.
A line L3 from point B has equation
r = (3 — t,—4 — 5t,—5 — 2t).
a) Determine if either of the power lines

from point A intersect with the line
from point B.

b) If either of the power lines from point
A do not intersect with the line from
point B, then find the shortest distance
between the lines.

c) For the lines in part b) find the points
on the lines that give this shortest
distance.

12. a) Find an equation of the line through
the origin that intersects the lines
r= (1 — t,2 + 2t,3 + t) and
r= (—1 + 3k,1 + 2k,—1 — k)

b) Find the point of intersection of the
line found in part a) and the first of the
given lines.

13. By definition, a diagonal of a cube joins a
vertex of the cube to an opposite vertex not
on a same face of the cube. A certain cube
has sides of length d. Find the shortest
distance between any diagonal of the cube
and an edge that is skew to that diagonal.

14. Prove that the lines r = a + kv and
r = b + tv lie in the same plane.

15. Determine whether or not the following
pairs of equations represent the same line.
a) r= (2,3,—i) + k(—5,O,1) and

r = (—3,3,0) + t(10,0,—2)

b) r = (4,5,4) + k(1,2,3) and
r= (4,5,4) + t(3,2,1)

c) r= (1,—3,7) + k(1,1,O) and
r = (2,—1,7) + t(1,1,0)

16. Given the points D1(—1,3,2) and D2(4,0,1).

a) Find D1D2.
b) Prove that the line

L1: r= (—1,3,2) + k(a,b,1) is
perpendicular to D1D2 provided
5a — 3b = 1.

c) Prove that the line
L2: r = (4,0,1) + t(p,q,2) is
perpendicular to D1D2 provided
5p — 3q = 2.

d) Find an equation of any one line L1,
and for any one line L2.

e) Prove that the shortest distance
between the lines L1 and L2 of d) is
equal to the length of segment D1D2.

f) Prove that the shortest distance
between any line L1 of b) and any line
L2 of c) equals the length of
segment D1D2.
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5.7 Geometric Proofs Using Vector Equations

Now that you have learned how to form vector equations of lines, you can
apply this knowledge to some geometric proofs. You saw problems of this
type already in section 2.6. Some of the examples will be the same as in
section 2.6. You can use the method presented here as an alternative.

Recall that the vector equation of a line is r = r0 + km. where r is the
position vector of any point on the line, r0 is the position vector of a given
point on the line, m is a vector parallel to the line, and k R is a parameter.

Example 1 Prove that the diagonals of a parallelogram bisect each other.

Solution Let the parallelogram be OABC.

LetOA=a,andOC=c.

In order to find F, you need to pinpoint the intersection of lines OR and
Ac; thus you will require the equations of lines OR and AC.
Taking the point 0 as origin, you can use the vectors a and c
to determine these equations as follows.
In general, r = r0 + km. k tI.
Equation of line OR:

Here, r0 = 0, m = OR = (a + c).
Using k O as parameter,

r=0+kOR 'D
or r=0+k(a+c)orr=k(a+c)
These lines intersect at point F when r = OP in equations Q and,
so k(a+c)=a+t(c—a)

ka+kc=a+tc—ta
.(k+ t —1) a + (k — t) c = 0

But a and c are linearly independent, so

k+t— 1 =0andk—t=O,givingk=-andt
These are the values which give the point P on each line.

Thus, in equation iJ, reachingP along line OR requires LOB, and, in

equation aj. reaching P along line Ac requires 1AC. More simply,

OP = 10B and AP = 1AC; the diagonals do indeed bisect each other. •
2 2

Equation of line AC:

Here, r0=OA=a,m=AC=(c—a).
Using t E R as parameter,

r=OA+tAC J
or r=a+t(c—a)
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Example 2 Given a trapezoid OABC in which OA = 2CB, OAIICB, prove that the

diagonals each intersect at of their lengths.

Solution To find F, the point of intersection of the diagonals,you need the
equations of the lines OB and AC. Using 0 as origin, choose OA = a,

OC = c, then CB = a.
2

C

0 a A

Equation of line OB: r = 0 + kOB

or r=k c+!a\ 2
Equation of line AC: r = OA + tAC

or r=a+t(c—a)
The lines intersect at F when r = OP in both ® and©.
Thus, k(c+-a)=a+t(c_a)

kc+!ka=a+tc-_ta

But a and c are linearly independent, so k — t = 0 and! k + t — i = 0,

which gives k = and t = at the point P.

Thus, in equation Q, reachingP along line OB requires OB, that is,

In equation , reaching P along line AC requires AC, that is,

AP = AC.
3

Hence, the required result is confirmed. •
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Example 3 (This is the same as section 2.6, Example 3, on page 104.)

In parallelogram ABCD, E divides AD in the ratio 2 : 3. BE and AC intersect
at F. Find the ratio into which F divides AC.

Solution A
2 E....

D

V
To find the intersection of lines AC and BE, you need the equations of AC
and BE.
To obtain these, choose any origin (say point A), and any two independent
vectors (say AB = u and AD = BC = v). If E divides AD in the ratio 2:3,

then AE = AD, that is, AE = v.
5 5

Equation of line AC: r = 0 kAC
or r=k(v+u)
Equation of line BE: r = AB + tBE ©
or r=u+t(AE—AB)

or r=u+t( vu
"5

The lines intersect at point F when r = AF in both © and ©.

Thus, k(v+u)=u+t(vu)
kv+ku=u+-vtu

(k+tl)u+(k_)v=0
But u and v and are linearly independent, sok + t — 1 = 0 and k — = 0.

These equations give k = and t = at the point F. From equation ©,

using k = , AF = AC, that is F divides AC in the ratio 2: 5. •
7 7

(Also, as a bonus, you can use t = in equation © to find that BF = BE,

so F divides BE in the ratio 5 : 2.)

This method is readily extended to 3-space problems, as in the following
example. The only difference is that three independent vectors are
required to define the equations of the lines.
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Example 4 Consider the rectangular box ABCDHGFE shown. Prove that the diagonals
AG and FD intersect, and determine where the point of intersection lies.

B

F

D

H

Solution First you need the equations of lines AG and PD.
To obtain these, use any origin (say point A), and any three independent
vectors (sayAB = u,AD = v, and AE = w).
Notice that AB = DC = HG = EF = u, AD = BC = FG = EH = v, and
AE = BF= CG = DH = w.

Equation of line AG: r = 0 + kAG

or r=k(u+v+w)
Equation of line FD: r = AP + tFD

or r=(u+w)+t(v—u—w) J
If the lines intersect, then from and ®

k(u+ v+w)=(u+w)+t(v—u —w)
ku+kv+kw=u+w+tv—tu--tw
(k+t— l)u+ (k — t) v+(k+ t— 1)w= 0

But U, v, and w are linearly independent, so
k+t—1 =0
k—t =0
k + t — 1 = 0.

These equations form a consistent system with solution k = and t =

Thus, the lines do intersect. If the point of intersection is F, then, from
equations and ©,
AP = LAG, and FP = 1FD.

2 2
Thus, P is the midpoint of each diagonal. That is, the diagonals AG and FD
bisect each other. U

SUMMARY You can use vector equations of lines to solve any geometric problem in
which you are required to find the intersection of two well-defined lines,
by choosing an origin and any known independent vectors to write your
equations.

Equating the position vector of a general point on each line will yield the
values of the parameters at the point of intersection.

A V

G
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5.7 Exercises

Use vector methods to solve the following
problems.

1. OBCD is a parallelogram. E is the midpoint
of side OD. Segments OC and BE intersecl at
point F. Find the ratio into which OC
divides BE.

2. OBCD is a parallelogram. E is the point that
divides side OD in the ratio 2: 5. Segments
OC and BE intersect at point F. Find the
ratio into which OC divides BE.

3. a) In LOAB, medians AD and BE intersect
at point G. Find the ratios into which G
divides AD and BE.

b) Show the medians of a triangle trisect
each other.

4. In AOBC, E is the midpoint of side OB.
Point F is on side OC such that segment EF
is parallel to side BC. Into what ratio does F
divide side OC?

5. In LOBC, E is the point that divides side OB
into the ratio 1:2. Point F is on side OC
such that segment EF is parallel to side BC.
Into what ratio does F divide side OC?

6. In LOBC, E is the point that divides side OB
into the ratio 1 : k, k * 0. Point F is on side
OC such that segment EF is parallel to side
BC. Into what ratio does F divide side OC?

7. In LABC, D divides AB in the ratio 1:2 and
E divides AC in the ratio 1:4. BE and CD
intersect at point F. Find the ratios into
which F divides each of BE and CD.

8. In parallelogram PQRS, A divides PQ in the
ratio 2: 5, and B divides SR in the ratio 3 :2.
Segments PR and AB intersect at C. Find the
ratio into which C divides segment PR.

9. PQRS is a trapezoid with PQ parallel to SR.
PR and QS intersect at point A. If A divides
segment QS in the ratio 2: 3, then find the
ratio into which A divides PR.

10. ABCD is a parallelogram. E is the point that
divides side AD in the ratio 1: k, where
k 0. Segments AC and BE intersect at
point F. Find the ratio into which point F
divides AC.

11. Let M be the midpoint of median AD of
LABC. BM extended and AC intersect at K.
Find the ratio into which K divides AC.

12. ABCD is a trapezoid in which AD is parallel
to BC. P and Y divide A and DC
respectively in the same ratio. Q is the point
on diagonal AC such that PQ is parallel to
BC. Prove that points P. Q, and V are
collinear.

13. In a tetrahedron, prove that the line
segments joining a vertex to the centroid of
the opposite face intersect at a point that
divides the line segments in the ratio 1: 3.
(The centroid of a triangle is the point of
intersection of the medians. See also
question 3.)

14. Show that the point found in question 13 is
the same as the point of intersection of the
line segments joining the midpoints of
opposite edges of a tetrahedron.

15. The box shown, called a parallelepiped, is
made up of three pairs of congruent
parallelograms. Prove that the diagonals BH
and EC intersect, and determine where the
point of intersection lies. A D

F

16. In the box shown, let M be the midpoint of
AB. Prove that MG and FD do not intersect.

G
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In Search o ! Proof of Desargues' Theorem
The French geometer Girard Desargues (1591-1661) was one of the first
mathematicians to initiate the formal study of projective geometry.
Projective geometry studies the properties of geometric configurations that
are invariant under a projection. An important theorem that he proved
involves the relationship between two triangles whose vertices lie on three
concurrent lines. The point of intersection of the lines is called the centre of
the projection of one triangle on the other. The lines can be in 2-space or
3-space. Desargues' theorem is true in both spaces.

I)esar.jiie

If two triangles have corresponding vertices joined by concurrent lines,
then the intersections of corresponding sides are collinear.

A
P

A

P

non-coplanar triangles

Given: LABC and LA'B'C' such that lines AA', BB', and CC' intersect at
point P.
Lines AB and A'B' intersect at M.
Lines BC and B'C' intersect at N.
Lines AC and A'C' intersect at R.

Prove: Points M, N and R are collinear.

Analysis: You can proveM, N, and R are collinear by finding real numbers p
and q such that ON = pOM + qOR where p + q = 1. aj (Seepage 98.)
Use the fact that P lies on each of the lines AA',BB', and CC' to determine a

relationship among a, b, c, a', b', and c' where OA = a, OB = b, etc.
Use these relationships to find an equation like .

A'

R M

coplanar triangles
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Proof: For Line AA':

An equation of line AA' is r = r0 + km where r0 = a, and
m = A'A = a — a'.
Thus, an equation for line AA' is r = a + k(a —a')
Similarly line RB' has equation r = b + t(b — b')
and line CC' has equation r = c + s(c — c')

Since point P lies on both of AA' and BR',
OP = a + k(a — a')and OP = b +f(b —b')
Therefore, a + k(a — a') = b + t(b— b')
or, fb'—ka'=(l+t)b—(l+k)a
Dividing by f — k gives

t — k — 1+t- 1+k-'— —a = —b — —a
f—k t—k f—k t—k
This statement implies there is a point Q such that

f— k— t —k f—k
OQ=—b —————a ,where—+-———=————= 1

t—k t—k t—k f—k f—k
Hence Q is collinear with A' and B'. Also

1+t- 1+k- 1+t —1—k f—k
OQ=—b————-a,where-———+

f—k f—k f—k f—k f—k
Hence Q is collinear with points A and B.
Hence Q is the point M.

Thus, OM —f—b' - --tf
f—k f—k

or (t — k)OM = fb' — ka' J
Now the same argument can be repeated for points N and R giving

(k—s)ON=ka'—sc' ®
(s — t)OR = Sc' — fb' ®

Addingequations®,®, andJ gives the following.
(f — k)OM + (k — s)ON+ (s

— t)OR = 0

or, (k — s)ON = —(f
— k)OM — (s — f)OR

thatis, —f+kj —s+t
k—s k—s

The sum of the coefficients on the R.S. is
—f + k + —s + f = k—s = 1
k—s k—s k—s

Thus, points M, N, and R are collinear, as required.

Acfivifies

1. Is there any situation where you could not divide by any one of
f — k, k — s, or s — tin the proof?

2. The proof assumes thatAB 4tA'B', BC 4j'B'C', and CA 41' C'A'.
IfABIIA'B' and BCIB'C', then prove that CAIIC'A'.
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summary
• A vector that is collinear with (or parallel to) a line is called a direction

vector of the line.

• The components of a direction vector are called direction numbers.

• Special direction numbers associated with the angles a direction vector
makes with the coordinate axes are the direction cosines of a line.

• A vector that is perpendicular to a line is called a normal vector of the line.

• In the following table
r = OP. the position vector of any point P on the line,

OP0 the position vector of a given point P0 on the line,
m is a vector parallel to the line,
k is any real number called a parameter.

Lines 2-Space 3-Space

vector equation r = r0 + km

parametric equations Jx = x0 + km1

ty=y0+km2
Ix = x0 + km
y=y0-Fkm2
1. z = z0 + km3

symmetric equations x — x0 = v —
Yo

m1 m2
'

m1, m2, * 0

X — X0 = Y
—

Yo = Z — Z0

m m2 m3
m1, m2, m3 * 0

direction numbers m1, m2 m1, m2, m3

direction cosines m1cosa=--,
Imi

m2cos/J=—-
ImI

2 2
ImI=jrn1+rn2

rncosa=--,
ml

_rn2cosp—-=-,
trnl
m3cosy=—-
Imi

ImI + m + rn

angle relation cos2a + cos2fl = 1 cos2a + cos2fl + cos2y = 1.

scalar equation Ax + By + C = 0 none exists (applies to
planes in 3-space)

slope or A

m1 B
does not exist in 3-space

normal vector (—m2,m;) or (A,B) not unique in 3-space
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• In 2-space, two lines can be parallel and distinct, or be parallel and
identical, or intersect.

• If a system of linear equations has one or more solutions, then the system is
said to be consistent.
If a consistent system has exactly one solution the system is independent.
If a consistent system has more than one solution the system is dependent.
If a system of linear equations has no solutions, then the system is said to
be inconsistent.
For a system of two equations in two variables

number of solutions geometric description

:onsistent and independent one two intersecting lines

:onsistent and dependent infinite same line

nconsistent none lines are parallel, distinct

• In 3-space, two lines can be parallel, or not parallel. If the lines are not
parallel, then they may intersect, or not intersect.
Two lines in 3-space that are not parallel and do not intersect are called
skew lines.

• The shortest distance d between two skew lines
L1, with direction vector m1, and L2, with direction vector m2, is the
distance between the two points D1 and D2 on L1 and L2 respectively,
where DID2±L1 and D1D21L2.

d = IP1P2.aI

I al

where P1 is a point on L1, P2 is a point on L2, and a = m1 x m2.

L ii iq '' 1I / n I i Ii CILa,, (_i't;lie! ;

A method of solving geometric problems using vector equations of lines
can be found on page 229.

Inventory

1. In the vector equationr=r0 + km. ris ,r0 is ____
mis ____,andkis

2. In the vector equation r = (1 + 3k, 4 + 5k), a point on the line is _____
a direction vector is , the parameter is _____

3. In the vector equation r = (5 — 2t,—1 + 3t, —6t), a point on the line is
_____ a direction vector is , the parameter is _____
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4. In the parametric equations x = —4 + 3s, y = 2 — 5s, a point on the line
is , a direction vector is , the parameter is , the slope is

5. In the parametric equations x = —6t, y = —1 + t, z = 4, a point on the
line is , a direction vector is , the parameter is _____

x—3 v+26. In the symmetric equation — = —, a point on the line is ,a
direction vector is _____

7. In the symmetric equations = = z — 3, a point on the line is

_____ a direction vector is _____

8. For the line 4x +3y + 7 = 0, the slope is ____ and a normal vector is

9. For direction cosines of a line, cos2a + cos2fl + cos2y = _____, wherea
is ,flis ,andyis

10. A vector with direction cosines as components has a length of ____

11. Two lines in 2-space that do not intersect must be _____

12. Two lines in 3-space that do not intersect must be either _____or

13. For a system of two linear equations that is consistent and dependent,
there is (are) solution(s) of the system and the two lines have

point(s) of intersection.

14. For a system of two linear equations that is consistent and
independent, there is (are) solution(s) of the system and the two
lines have point(s) of intersection.

15. For a system of two linear equations that is inconsistent there is (are)
solution(s) of the system and the two lines have point(s) of

intersection.

I_____16. In the formula d =

dis ,P1is ,P2is ,andais

17. For points P1(3, 2,1) and P2(5, 6,8), the vector P1P2 is ____
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Review Exercises

1. Find a vector equation and parametric
equations for each of the following lines.
a) through the point A(2,—5) with

direction vector (3,2)
b) through the points A(—5,—4) and

B(1,—6)
c) through the point A(—7,0) with

direction numbers 2 and —5
d) through the point B(2,1) parallel to the

line r = (3,—8) + k(—3,—2)

e) through the point C(—4,l) and parallel
to the x-axis

f) through the point C(—4,1) and parallel
to the y-axis

2. Given the line with parametric equations
fx=4— t
ly = 3 + 2t
determine whether or not the following
points lie on this line.
A(3,5) B(6,—1) C(5,0) D(2.4,4)

3. Find a Cartesian equation for each of the
lines having the given vector equations.

a) r=(1—2k,3—4k)
b) r=(3—2t,t+1)
c) r= (—2 + s,—4 — s)

4. For each of the following, find a scalar
equation of the line passing through the

given point P0 and having nas a normal
vector.

5. Use normal vectors to decide which pairs of
lines are parallel and which pairs of lines
are perpendicular.
a) 5x—2y=5

2x + 5y = 9

b) 4x—3y+l= 0
—8x+6y =80

c) 2x+3y=0
3x = 2y + 1

6. There are an infinite number of vectors and
hence lines that are coplanar with vectors
a = (2,0,1) and Ii = (—3,4,—5). Find a
vector equation of any one of these lines
that passes through the point A(—3,6, 1).

7. OBCD is a parallelogram with point 0 at the
origin of a 2-space Cartesian coordinate

system. OB = b lies along the x-axis.
OD = d.

a) ShowthatOC=b+d,andBD=d—b.
b) Find a vector equation for the line

through the points 0 and C in terms of
vectors b and d.

c) Find a vector equation for the line
through the points B and D in terms of
vectors b and d.

8. a) A line is parallel to the vector m = (4,5).

Show that the slope of the line is

b) A line is parallel to the vector
m = (m1,m2). Show that the slope of the

line is —

c) Find a vector equation of the line
passing through the point A(3,4) that

has slope equal to
7

9. Given the line L with vector equation
r = (1,2) + k(—3,—1) and the point
P0(—4, 3).
a) Find a scalar equation of the line

through P0 parallel to the line L.
b) Find a scalar equation of the line

through P0 perpendicular to the line L.

10. Find the value of the variable t so that the
line with scalar equation 2x — = 3 is
perpendicular to the line with vector
equation r = (4,2) + k(t,3).

11. Find the value of the variables so that the
following lines are perpendicular.
x—6 y+l x—3 y—l= and =
4s+5 1 2 —4s---2

a) P0(—1,5)
b) P0(4,0)

c) P0(11,—5)

n = (4,—i)
n = (8,—2)

n = (0,4)
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12. Find a vector equation, parametric
equations, and symmetric equations for
each of the following lines.
a) through the point A (2,3,0) with

direction vector (4,2,—2)
b) through the points A(—2,3,5) and

B(3,—l,6)
c) through the pointA(1,0,10) with

direction numbers 1, 2, and —4
d) through the point B(5,6,1O),_parallel to

the line r = (6,1,1) + k(—2,l,3)
e) through the point C(—4,3,6) and parallel

to the x-axis
f) through the point C(—4,3,6) and parallel

to the z-axis

13. In each of the following, determine
whether or not the given point lies on the
line with the given equation.

point line equation _____
a) (—1,4,9) r=(1,3,4)+k(—2,1,5)

b) (—10,—8,4) r=(0,1,0)+k(5,4,—1)
c) (11,8,0) r=(5+2k,—4+4k,3—k)

14. a) Find a vector equation of the line that
passes through the points A(3,--2,1) and
B(4,0,7).

b) Show that the line with equation
r = (5,2,13) + t(1,2,6) is the same as
the line in part a).

15. Find a vector equation of the line that
passes through the point A(—1,—2,4) and is
parallel to the line with equation
r = (0,4,9) + k(—3,1,4).

16. Find a vector equation of the line passing
through the point A(4,1,5) that is
perpendicular to vector u = (O,—1,7) and
also perpendicular to vector v= (2,4,—3).

17. Find a vector equation of the line with
symmetric equations

= =
4 5 —1

18. Find the value oft so that the two lines
r = (1,7,3) + k(—2,3,5t) and
r = (4,1,2) + s(t,1,—3) will be
perpendicular.

19. Find the value of the variable k so that the
line with symmetric equations
x—3 Yi_i z+3.= = — is perpendicular to the

2 4 k
line with vector equation
r=(5 + 2ks,3 — 4s,—8 —12s)

20. Find the value of the variable t so that the
following lines are perpendicular.
x—3 yz+3x+7yjz+9
3t+1 2 2t ' 3 —2t —3

21. Which of the following triples of numbers
can be the direction cosines of a line?
21 2

a) —,—,——33 3

b) 832

11
c) 1,——,—22
d) cosA,sinA,0

22. a) A line passing though the point
1 3(1,—2,3) has direction cosines ,

and cos y, where cos ' is positive. Find
a vector equation of the line.

b) Repeat part a) but take cos t' to be
negative.

23. If vectors a and b are linearly dependent
prove that their direction cosines are the
same.

24. Given the vectors a = (1,2,3) and
b = (—2,0,1) find the direction cosines of
any vector coplanar with a and b.

25. Find direction cosines for each of the lines
given by the_following.
a) r=k(2,—3,4)

b) 1x=12a
y = 7 + 5a
= 5 + a

c)
2 —1 3
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26. A direction vector of a line makes an angle
of 400 with the x-axis and an angle of 70°
with the z-axis. Find, correct to the nearest
degree, the angle the direction vector makes
with the y-axis.

27. A line through the origin of a 3-space
coordinate system makes an angle of 25°
with the x-axis and an angle of 85° with the
z-axis. Find a vector equation of the line.

28. For each of the following systems
determine whether or not the
corresponding lines are parallel.
If the lines are not parallel,
find their point of intersection.
a) 3x—2y=4

4x+ y=9
b) —x+ 6y=—l

3x—18y= 5
c) 4x—3y= 5

8x — oy = 10

29. For each of the systems in the previous
question, indicate which of the following
terms apply.
consistent and independent
consistent and dependent
inconsistent

30. For each of the following pairs of lines in
2-space, determine whether or not the lines
are parallel. If the lines are parallel, then
determine whether the lines are distinct or
the same line. If the lines are not parallel,
find their point of intersection.

a) r=(4+k,5—3k)
r= (4 + 2t,3 — 4t)

b) r=(11—6k,—5k)
r= (2 + 5s,8 — s)

c) r=(l+3a,4—2a)
r=(2 — 6b,—5 + 41)

31. a) Find thepoint of intersection of the
line r = (—4,2) + k(1,6) and the line
x + 5 = — 10

3 4•
b) Find the angle between the given lines.

32. OBCD is a parallelogram with point 0 at the
origin of a 2-space Cartesian coordinate
system. OB = b lies along the x-axis.
OD = d. Find a vector equation for the line
through the points B and D in terms of
vectors b and d.

33. In the figure, A and B are the midpoints of
the sides TP and VR respectively of a
rectangular box. The corner S appears to lie
on the line though A and B. The
coordinates of five of the corners are
P(0,0,0), Q(2,0,0), R(2,4,0), V(2,4,3), and
W(0,4,3).
a) Find the coordinates of the remaining

three corners 5, T, and U.
b) Find the coordinates of the points A

and B.
c) Prove that the point S does not lie on

the line through A and B.

T

A

P

w V

B

R

34. For each of the following pairs of lines in
3-space determine whether or not the lines
are parallel. If the lines are not parallel,
determine whether the lines intersect or are
skew. If the lines intersect, find the point
of intersection.

a) r=(3+k,7—2k,4+3k)
r= (—2 + 2t,l + 4t,11 -: 5t)

b) r= (2 + 3k,! + 4k,4 + k)
(3 + b,1 + 2b,—2 + b)

c) r= (—1 + a,4 — 3a,—6 + a)
r= (2 — 3t,—5 + 9t,—3 — 3t)

d) r=(6—2w,—9+4w,7+w)
r = (7 — 5k,—3 + 2k,—3 — 4k)

Q
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35. For each of the pairs of lines in the
previous question, indicate which of the
following terms apply to the corresponding
linear system.
consistent and independent
consistent and dependent
inconsistent

36. Find the point of intersection of the line
r = (0,—8,4) + k(2,7,—i) and the line
through the points A(8,4,—1) and B(0,8,5).

37. Find the point of intersection of the lines
x+7y+lOz—5

4 —2 3' 5 3 —1

38. a) Prove that the lines
r= (1 + k,4 + 3k,3 — 2k) and
r = (—3 + 3t,6 + 2t,—3t) are skew lines.

b) Find the distance between the given
skew lines.

39. Given the lines r = (—1 + k,3 + 2k,1 — 3k)
and r = (3 + 2w,10 + 3w,—6 — w).
a) Prove that the lines intersect.
b) Find the angle between the lines.

40. Prove that the following three lines
intersect and lie in the same plane.
L1: r= (—1,0,2)+k(3,1,1)
L2: r = (—3,—4,1) + k(—4,2,—l)
L3: r = (—5,2,1) + k(2,4,1)

41. Prove that the following three lines
intersect and do not lie in the same plane.
L1: r = (4,1,1) + k(2,1,2)
L2: r= (9,1,4) + k(—1,2,1)

L3: r= (—1,0,—i) + k(3,i,2)

42. a) Find the shortest distance between the
skew lines

x = 3, = and
—2 1

= YtJ =
3 2 —2

b) Find a symmetric equation of the line
joining the points on the lines that are
at this shortest distance.

43. Find symmetric equations for the following-
lines.
a) x—3y+6=0=x—2z—4
b) 2x+z=5—y=y+z

Use vector equations of lines to solve problems 44—48.

44. ABCD is a parallelogram. E is the point that
divides side AD in the ratio 4:7. Segments
AC and BE intersect at point F. Find the
ratio into which AC divides BE.

45. In a parallelogram ABCD, H is the midpoint
of AD, and F divides BC in the ratio 3 :2. If
BH and AE intersect atM, find the ratio
AM:ME.

46. In LABC, E is the point that divides side AB
into the ratio 3 :2. Point F is on side AC
such that segment EF is parallel to side BC.
Into what ratio does F divide side AC?

47. In I2ABC, D dividesAB in the ratio 3:2 and
E divides AC in the ratio 5:4. BE and CD
intersect at point F. Find the ratios into
which F divides each of BE and CF.

48. In parallelogram PQRS, A divides PQ in the
ratio 2:1, and B divides SR in the ratio 3 :4.
Segments PR and AB intersect at C. Find the
ratio into whichCdivides segment PR.

49. The point P with coordinates (1,1,3) lies on
the lineL with equation 2x= y + 1 = z —1.
Find the coordinates of two points Q and
Q2 on L such that PQ1 = PQ2 = 6.

(87 H)

50. Two lines L1 and L2 have equations

= = and
3 2 —2

x—4 v+7 z+3= = respectively.
—3 4 —1

a) Find the coordinates of a point P1 on
the line L1 and a point P2 on the line L2
such that the line (P1P2) is
perpendicular to both the lines L1 and
L2.

b) Show that the length of (P1P2) is 7.
(84 H)
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5 I .i) The lines 1 and 12 have equations
r= (2,3,1) + A(1,2,2)and

r= (5,—1,—13) +u(—2,1,6)
respectively. Show that these lines

intersect by finding the co-ordinates of
their point of intersection.
Find, in the form ax + by + cz + d,
the equation of the plane which
contains both 1 and '2.

ii) 0

In the above diagram OM = !OC and

ON = OB. The line (CB) intersects the

line (MN) at L. If LB = ABC find the
value of A.

(2 H)

52Find the position vector of the point of
intersection of the lines with equations

-( i\( 1\d
k_) 1)

53.The lines 1 and!2 have equations

= = and
1 —2 3

= = respectively. Which
2 4 1

one of the following is true?
A. ! and 12 are parallel.
B. ! and 12 are perpendicular.
C. ! and '2 have no common point.
D. ! and 12 intersect at the point with

co-ordinates (—2,1,0).
E. 1 and 12 intersect at the point with

co-ordinates (0,—3,6).

(5 H)

54Three points A, B and C are given whose
coordinates in a rectangular Cartesian
system are (0,9), (6,7) and (8,3)
respectively.
a) Find the equation of the line 1

perpendicular to BC and passing
through the point A.

b) Find the equation of the line 12
perpendicular to CA and passing
through the point B.

c) Find the coordinates of H, the point of
intersection of the lines 1 and 12.

d) Verify that HC.AB = 0.
e) What geometrical result has now been

established for L.ABC?
f) Find the coordinates of the point S such

that SH = SA + SB + SC.
(S S)

M
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CHAPTER SIX

Equations of Planes

You have a house with a second floor room that does not receive much
sunlight. You decide to increase the sunlight by building a skylight in the
roof. In order for the light to pass through the skylight into the room, you
must also make a hole in the ceiling of the room, as shown in the figure.

G

You decide that the hole ABCD in the roof and the hole EFGH in the ceiling
will both be rectangular in shape. For maximum light, you wish the
opening EFGH in the ceiling to be larger than the projection A'B'C'D' of
ABCD on the ceiling. Further, you will enclose the opening joining the roof
and the ceiling using four flat walls. Can this be done?

A

E F

A D

C

F
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You cut a rectangular hole in the roof the size of the skylight that you have
bought, mark the projection A'B'C'D' of this hole on the ceiling and then
draw on the ceiling a rectangle EFGH larger than this projection. Before
cutting the hole in the ceiling you check to see if points ABFE are coplanar.
Unfortunately you discover that they are not. You draw a different
rectangle EFGH with the same result. You wonder if it is possible to draw a
rectangle on the ceiling larger that the projection of ABCD so that the sets
of points (A,B,F,E), tA,D,H,E}, (C,D,H,G), and {B,C,G,F) will be coplanar
sets.

Suppose the axes of a 3-space coordinate system are placed with origin at
point A' as shown in the figure.

A (0,0,1

F H

Y

Let the coordinates of the corners of the opening in the roof be A(O,O, 11),
B(4,O,8), C(4,6,8), and D(O,6,1 1). Then the corners of the projection of
ABCD will have coordinates A'(O,O,O), B'(4,O,O), C'(4,6,O), and D'(O,6,O).
You try again making an opening in the ceiling by moving each corner
one unit parallel to the x-axis and one unit parallel to the y-axis as shown.
Thus, the corners will have coordinates E(—1,—1,O), F(5,—1,O), G(5,7,O) and
H(—1,7,O). Will the sets of points {A,B,F,E), (A,D,H,E), {C,D,H,G}, and
(B,C,G,F} be coplanar sets?

If, instead, you had moved each corner one unit parallel to the x-axis and
zero units parallel to they-axis so that the corners had coordinates E(—1,O,O),
F(5,O,O), G(5,6,O), and H(—l,6,O), would this have provided coplanar sets?

In this chapter you will learn how to find vector and Cartesian equations
of planes. You will be able to use such equations to answer the above
questions about coplanar points.

x
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6.1 Vector and Pararretii, Ei.aians
of a Plane in 3-Space

If two lines L1 and L2 in 3-space are not parallel and intersect in a single
point, then the two lines determine a unique plane. Denote this plane by
the symbol fl.

A vector rn parallel to L1 can be translated so that the vector lies in the
plane 11 along L1. Likewise a vector u parallel toL2 can be translated so
that the vector lies in the plane H along L2. Also m and u can be translated
together off of plane IT so that they will lie in any plane parallel to
plane H. Thus, a pair of non parallel vectors m and u determines a family
of parallel planes. To obtain a single member H1 of this family, you need
only give a point P0 that lies in plane fl1. You will now use this idea to
obtain the vector and parametric equations of a plane.

Suppose a plane passes through the point P0 and is parallel to the linearly
independent (non-parallel) vectors m and u.
Since m is not parallel to u,
then in and u determine a family of parallel planes.
Let P be any point on the member of this family
that passes through the point P0.
Thus, OP = OP0 + P0P

Let OP = r and OP0 = r0

Since P0P lies in the plane of rn and u, and rn u, real numbers k and s
exist such that
POP = km + su
Thus, a vector equation of the plane through P0 is

r=r0+km+su @

0
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Suppose the coordinates of P are (x,y,z), and of P0 are (xo,yo,zo).

Let vector m=(m1,m2,m3) and u = (u1,u2,u3).

Thus OP = (x,y,z) and OP0 = (x0,y0,z0).
Thus CD becomes

(x,y,z) = (xo,yo,zo) + k(m1,m2,m3) -F s(u1,u2,u3)

or (x,y,z) = (xo,yo,zo) + (km1,km2,km3) + (su1,su2,su3),

or (x,y,z) = (x0 + km1 + su1,y0 + km2 + su2,z0 + km3 + su3)

Equating components on left side and right side, you obtain the following
parametric equations of a plane.

x = x0 + km1 + su1

Y = Yo + km2 + su2

Z = Yo + km3 + su3

SUMMARY Foraplanein3-space

vector equation parametric equations
r= r0+km+su 1x=xo+kmi+i

I Y = Yo + km2 + su2

z = z0 + km3 + su3

where r= OF, the position vector of any point P(x,y,z) on the plane
r0 = OP0. the position vector of afixed point P0(x0,y0,z0) on the plane
m = (m1,m2,m3) and u = (u1,u2,u3) are vectors parallel to the plane
such that m u,
and k and s are parameters.

Example 1 Find vector and parametric equations of the plane passing through the
point P0(i,2,3), and parallel to the vectors m = (3,0,—i) and u = (—1,4,5).

Solution The vector equation of a plane is r= r0 +krn + su

Here r0 = OP0 = (1,2,3),m=(3,0,—i) and u = (—1,4,5).

Substituting gives r = (1,2,3) + k(3,0,—i) + s(—1,4,5)
or r= (1,2,3) + (3k,0,—lk) + (—s,4s,5s)
or r=(1+3k—s,2+4s,3—k+5s) CD
which is a vector equation of the given plane.
To find the parametric equations of the given plane, use the fact that
r = OP = (x,y,z), then equate components on the left side and right side of
the equation.
Thus, equation CD becomes

(x,y,z) = (1 + 3k — s,2 + 4s,3 — k + 5s)
x = 1 + 3k — s

Thus, the parametric equations of the given plane are y = 2 + 4s

t.x=3—k+5s I
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Example 2 Find a vector equation of the plane that contains the three points A(1,2,3),
B(4,—1,8), and C(0,—2,4).

Solution A vector equation of the plane is r = r0 + km + su.

Here,r0 can be the position vector of any one of the points A, B, or C.
Take r0 = OA = (1,2,3).
Also, m and u can be any two of the vectors AB, AC, or BC.

Takem =AB = OB — OA = (4,—1,8) — (1,2,3) = (3,—3,5), and

u = AC = OC — OA = (0,—2,4) — (1,2,3) = (—1,—4,1).

(Notice that rn is not a scalar multiple of U, so these vectors can be used in
the equation. What would happen if m and uwere collinear?)

Substituting in r = r0+km + su gives _______
r = (1,2,3) + k(3,—3,5) + s(—1,—4,I).

Hence a vector equation of the plane through the given points is
r=(1+3k—s,2—3k—4s,3+5k+s). U

Example 3 Find a vector equation of the plane FT that contains the line
L: r= (3,1,0) + t(2,1,4)
and is perpendicular to the plane
U1: r= (1,1,1) + k(1,O,5) +s(—4,2,3).

Solut o Since flies in plane U, the point P0(3,1,0) lies in U, and the direction
vector m = (2,1,4) of L is parallel tofl.
Since HILT1, any vector that is perpendicular to plane Hi is parallel to
plane FL
Since a = (1,0,5) and b = (—4,2,3) lie in plane fl,, then
ax b = (—10,—2 3,2) is perpendicular to plane H1 and must be parallel to
plane H.
Thus, the equation of the plane His r= r0 + km where r0 = (3,1,0),
m= (2,1,4), andu = axb = (—10,—23,2). (Noticem ku.)

Substituting and simplifying gives the following equation for plane H.
r = (3 + 2k —lOs,1 + k — 23s,4k + 2s). U
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6.1 Exercises

1. For each of the following vector equations
in 3-space indicate whether the equation
defines a line or a plane.

a) r=(3,4,5)+k(0,—4,6)+s(2,1,5)
b) r= (0,1,9) + s(2,3,—4) + t(—1,—2,9)

c) r= (3,4,5) + t(6,—3,5)

d) r=(4+3k+2s,—2+4k,—k+5s)

2. For each of the equations in question 1 that
represent a plane, state the coordinates of a
point that lies on the plane, and the
components of two vectors that are parallel
to the plane.

3. Find a vector equation and parametric
equations for each of the following planes.
a) the plane through the point A(3,2,7)

that is parallel to the vectors (4,6,2) and

(0,—2,5)
b) the plane through the two points

B(2,—3,1) and C(—3,0,2) that is parallel
to the vector (2,3,1)

c) the plane through the three points
A(3,2,—7), B(2,—3,1), and C(—3,0,2)

4. Given the plane _____ _____
fl: r = (3,2,1) + k(2,—1,4) + s(0,5,—6)

a) Find the point on the plane

corresponding to the parameters k = 1

and s = —2.

b) Prove that the point D(1,13,—15) lies on
plane H.

c) Prove that the point E(5,6,7) does not
lie on plane H.

5. Find a vector equation of the plane that is
parallel_to the line
L1: r = (2 — t,3 + 2t,—2 + 4t) and also
contains the line L2: r = (4 + 3s,2s,5 — 6s)

6. Find a vector equation of the plane that
contains the point A(3,2,1) and is
perpendicular to the vector u = (3,2,5).

7. Find a vector equation of the plane that
contains the line L: r = (5,6,7) + t(1,0,5)
and is perpendicular to the plane
H1: r = (0,0,5) + k(—1,3,—2) + s(3,—4,6).

8. Find a vector equation of the plane parallel
to the vector (3,4,—8) that contains the line

= =
5 —2 4

9. Show that the line
r= (2 — s,6 + 2s,1 ÷ 3s) lies in the plane
r = (1 + k — 2t,8 — 2k + 5t,4 —3k + 2t)

10. Given the plane H with parametric
equations

x = 2 + 3k + 4s

y = 5 — 6k — 2s

z=1+2k+ s

a) Find a vector equation of the plane H.
b) Find a vector equation of the plane that

is parallel to plane H and passes
through the point A(1,2,—3).

11. Find a vector equation of the plane that has
intercepts of 3, —2, 7 on the x-axis, the
y-axis, and the z-axis respectively.

12. Find a vector equation of the plane that
passes through the points A(2,3,1) and
B(5,—4,2) that does not intersect the z-axis.

13. a) There is an infinite number of planes
passing through the points C(3,5,8) and
D(7,1,—2) that are parallel to the vector
m = (—2,2,5). Explain.

b) Find a vector equation of any one of the
planes in part a).

14. Find a vector equation of the plane that
passes through the point A(2,3,1) and is
perpendicular to the line with parametric
equations

x = 2 + 3k

y = 5 — 6k
z = 1 + 4k
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15. Given the four points A(1,3,2), B(3,4,0),
C(5,—1,10), and D(4,3,2), prove that the
four points are coplanar by finding a vector
equation of the plane through any three of
the points then proving that the fourth
point lies on this plane.

16. In the introduction to this chapter you
wondered if the sets of points CA,B,F,E),
(A,D,H,E}, {C,D,H,G), and (B,C,G,F) would be
coplanar sets.

A (0,0,1

z

D(0,6,11)

The coordinates of the corners of the roof
opening are A(O,0,1 1), B(4,0,8), C(4,6,8),
and D(O,6,1 1). The corners of the ceiling
opening are E(—1,—1,O), F(5,—1,0), G(5,7,0),
and H(—1,7,0). Determine which sets of
points, if any, are coplanar.

17. If the points E, F, G, and H of question 16
have coordinates E(— 1,0,0), F(5,0,0),
G(5,6,0), and H(—1,6,0), determine which
sets of points, if any, are coplanar.

G

B' ,u,u) C) 4,b,U)

A

E F

A D

F

/ (U,U y
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j2 he Cartesian Equation of a Plane
in 3-Space

In 2-space a Cartesian linear equation such as 3x + 5y + 6 = 0 represents a
straight line. You already know that more than one Cartesian linear
equation is needed in 3-space to define a line. For example,

LE = represents a straight line through the point (5,6,1)

with direction numbers 2, 4, and 3. You will now learn that a single
Cartesian linear equation in 3-space defines a plane.

Recall that a normal vector to a line is perpendicular to every vector
parallel to that line.

£1 E F I N I TI N
A normal vector to a plane is a vector that is perpendicular to every vector
parallel to the plane.

Suppose you place two pencils on a flat surface as a representation of two
coplanar vectors. Now hold a third pencil perpendicular to the first two
pencils. Any fourth pencil on the surface can be moved parallel to itself to
touch the third pencil. Notice the third and fourth pencils are also
perpendicular. You will prove this in the following example.

Example 1 n is a vector perpendicular to two non-collinear vectors mand U.Prove

that n is perpendicular to any other vector coplanar with m and u.

Solution Since n is perpendicular to both m and u,
n.rn=O,andn.u=O.

c is coplanar with m and u then real numbers k and s exist such that
c = km + su

To prove n and C are perpendicular you need to prove that n •c = 0.

Butn.c=n.(km+su)
=n(km)+n.(mu)
= k(n.m) + s(n.u)
= k(0) + s(0) = 0

Hence, any vector perpendicular to two non-collinear vectors rn and U is
perpendicular to any other vector coplanar with m and u.

There is an infinite number of planes having the same normal vector. All
of these planes are parallel to each other. To obtain a unique plane with a
given normal vector, you only need to find one point on the plane. You will
use this idea in the next example to find the Cartesian equation of a plane.

?
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Example 2 Finda Cartesian equation of the plane, passing through the point P0(1,2,3),
that has n = (4,5,6) as a normal vector.

Solution Let P(x,y,z) be any point on this plane.
Since n = (4,5,6) is a normal vector to the plane, n is perpendicular to
every vector in the plane.
In particular, n is perpendicular to the vector P0P.

SinceP0P=(x—_1,y—2,z—3)
(4,5,6).(x — l,y — 2,z —3) = 0
or4x—4+5y—10+6z—18=0

Thus, 4x + 5y + 6z — 32 = 0 is a Cartesian equation of the given plane. •

Note: The coefficients 4, 5, and 6 of x, y, and z in the Cartesian equation of
the plane are the direction numbers of the normal vector to the
plane, n = (4,5,6). You will now see that this is true for any
Cartesian equation written in the form Ax + By + Cz + D = 0.

In the general case, to find a Cartesian equation of the plane passing
through the point P0(x0,y0,z0) that has n = (A,B,C) as a normal vector,
proceed as follows.

Let P(x,y,z) be any point on this plane.
Since n = (A,B,C) is a normal vector to the plane, n is perpendicular to
every vector in the plane.
In particular, n is perpendicular to the vector PGP.

Thus,n.P0P=O
Since P0P = (x x0,y — y0,z —

z0)

(A,B,C). (x — x0,y — y0,z — z0) = 0
or A(x—x0)+B(y—y0)+C(z—z0)=0
or Ax + By + Cz + (—Ax0 — By0 —

Cz0) = 0

If the number (—Ax0 — By0 —
Cz0) is replaced by the constant D, this

equation becomes Ax + By + Cz + D = 0.

Thus, Ax + By + Cz + D = 0 is a Cartesian equation of a plane.

R E R T E . 1. The vector (A,B,C) is a normal vector for the planeAx + By + Cz + D =0.

2. If m and u are two linearly independent vectors parallel to
theplaneAx+By+Cz+D=O,then
(A,B,C) is any scalar multiple of the vector m x u.
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Example 3

Solii t ion

Find a Cartesian equation of the plane containing the points Q(1,2,3),
R(—2,3,6), and S(3,0,1).

Let the equation of the required plane beAx+By + Cz +D 0.
The normal vector (A,B,C) can be taken asrn x u where m and u are any two
of the vectors QR, QS or RS provided m 4$' u.
Takem = QR = (—3,1,3)andu = QS= (2,—2,—2).
Thus, (A,B,C) = (—3,1,3) x (2,—2,—2) = i(6 — 2) — j(6 — 6) + k(6 2) = (4,0,4)
Substituting A = 4, B = 0, and C = 4 into Ax + By + Cz + D = 0 gives
4x + 4z + D = 0.
To find D it is only necessary to substitute the coordinates of one of the
points Q, R, or S into this equation.
Using point Q so that x = 1, y = 2, and z = 3 gives
4(1) + 4(3) + D = 0
orD = —16

Hence an equation of the plane through the three points Q, R, and S is
4x + 4z — 16 = 0. This equation can be simplified by dividing each side by
4toobtainx+z—4=0. •

You should convince yourself that the following facts are true about
parallel and perpendicular planes by using pencils as normal vectors and
flat pieces of cardboard as planes.

Facts about Parallel and Perpendicular Planes

I-Ill

nl II

[13 J 114

n3 _L n4

1. Two planes are parallel if and only if their normal vectors are parallel.

2. Two planes are perpendicular if and only if their normal vectors are
perpendicular.
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Example 4 Find a Cartesian equation of the plane H that contains the points M(1,2,3)
and T(—2,3,O) and is perpendicular to the plane LI1: 3x + y — 6z = 5.

Solution Let an equation of plane LI beAx + By + Cz + D = 0.

You will only need to find three of the variables A, B, C, and D in terms of
the fourth variable. Thus, you must obtain three geometric facts that can be
translated into three algebraic equations.

The first geometric fact, that point M with x = 1, y = 2, and z = 3 lies on the
plane, gives the algebraic equation
A(1) + B(2) + C(3) +D = 0,
or A+2B+3C+D=0 GJ
The second geometric fact, that point T with x = —2, y = 3, and z = 0 lies on
the plane, gives the algebraic equation
A(—2) + B(3) + C(0) + D = 0,
or —2A+3B+D=0 ©
The third geometric fact, that planes II and H are perpendicular, means
that the normal vector (A,B,C) of H is perpendicular to the normal vector
(3,1,—6) of LI1. This gives the algebraic fact

(A,B,C).(3,1,—6) = 0,
or 3A+B—6C=0

Solving equations ,J andJ for A, B, and C in terms of D produces
D 9D 2DA=———,B=——,andC= ——
25 25 25

To avoid fractions, you should select D = —25, giving
A = 1, B = 9, and C = 2.

Hence an equation of the given plane is x + 9y + 2z — 25 = 0. U
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Note: The equations © and (IJ of Example 4 can be solved as follows.

Liciug Matrices
The system is equivalent to the augmented matrix[12 31

1—2 3 0 1

[ 3 1 —6 0
which can be reduced as shown.

[i 2 31
2xrow©+row© 0 7 6 3
3xrow(ID—row© [ 0 5 15 3

[12 317 63
—5xrow©+7Xrow(ID [ 0 0 75 6
From row (IJ: 75C + 6D = 0,

2Dthus C=——-----
25

From row ©: 7B + 6C + 3D = 0,

or 7B + 6(— + 3D = 0,\ 25!
9Dthus B=—------
25

From row@:A + 2B + 3C+ D = 0,

or A + 2(— + 3(— + D =0,\ 25! \ 25!
Dthus
25

But D can be any real number. To avoid fractions, let D = —25

givingA= 1,B=9,andC=2.
Bi Elimination
The three equations are

A+2B+3C+D=0 @
-2A+3B +D=0 ©

3A+ B—6C =0 ©
EliminatingA from GD and © using 2 x GD + © gives
7B+6C+3D=0

Eliminating A from (13 and (13 using 3 x (13 — (13 gives

5B+15C+3D=0 (13

Eliminating B from ® and (13 using 7 x (13 — 5 x ® gives
75C + 6D = 0.

The remainder of the solution is the same as for Using Matrices.
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6.2 Exercises

1. State the components of a normal vector for
each of the following planes.
a) 3x—5y+4z+3=0
b) 2x—5y—4z=13
c)
d)
e)
f)

x — 5y + 4z =
x — 2y 3z = 8
2x — 6z + 1 = 0

+ 5z = 4

g) —6x+lOy—8z=1
h) 2x—4y—6z=16

2. List the pairs of planes in question 1 that
are parallel. Indicate whether the planes
are distinct or identical.

3. Prove that the following planes are
perpendicular.
3x — 4y + 2z + 7 = 0 and
2x + 5y + 7z + 6 = 0

4. Find a Cartesian equation of the plane
through the point M(i,4,—6) having a
normal vector (3,6,1).

5. Find a Cartesian equation of the plane
through the point M(1,4,—6) that is parallel
to the plane 4x 2y + 7z = 1.

6. a) A plane H passes through the point
M(1,4,—6). If the Cartesian equation of
the plane is Ax + By + Cz + D = 0, then
state an equation giving a relationship
among A, B, C, and D.

b) The plane fl in part a) also passes
through the point T(3,0,5). State
another equation giving a relationship
among A, B, C, and D.

c) The plane 11 in part a) is also parallel to
the line r = (1,3,7) + k(3,—4,2). State a
third equation giving a relationship
among A, B, C, and D.

d) Use the equations relating A, B, C, and D
from parts a), b), and c) to find a
Cartesian equation of plane fl.

7. Find a Cartesian equation of the plane
through K(l,4,—1), and through the origin,
that is parallel to the vector u = (—1,0,2).

8. Find a Cartesian equation of the plane
through the points M(i,4,—6) and T(—3,0,5)
that is perpendicular to the plane
4x—y+ 3z= 5.

9. Find a Cartesian equation of the plane
through the points K(i,2,3), R(l,—1,0), and
S(2,—3,—4).

10. Find a Cartesian equation of the plane
through the points E(0,1,2),F(3,—4,--8), and
G(2,2,4).

11. Find Cartesian equations of the three
coordinate planes, that is, the xy-plane, the
yz-plane, and the zx-plane.

12. Find a Cartesian equation of the plane
through the point E(0,1,2) that is parallel to
the vectorsu = (3,2,—6) and v= (5,1,1).

13. Find a Cartesian equation of the plane
through the point E(0,1,2) that is parallel to
the plane

r= (1,l,—l)+ k(2,3,—1) + m(4,2,—2).

14. Find a Cartesian equation of the plane with

vector equation
r (5,1,—i) + k(—4,1,O) + m(i,3,—2).

15. Find a vector equation of the plane with
Cartesian equation 5x — 2y + 6z + 1 = 0.

16. Find a Cartesian equation of the plane
through the points E(0,1,2), and F(3,—4,—8)
that has the same y-intercept as the plane
5x — 2y + z + 10 = 0.

17. Find a Cartesian equation of the plane
through the point M(1,2,4) that contains

x—2 y+1 z—5theline — = =
3 4 1

18. Find (so that the point (i,t,—4) lies on
the plane 4x + 7y — z = 12.

x—i y+3 z—2.19. Prove that the line = — = — is
2 3 4

parallel to the plane x — 2y + z = 5.

20. Find the value of C, given that the planes
2x—4y+Cz= landx—3y+5z—2=Oare
perpendicular.
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21. Find a Cartesian equation of the plane that
is perpendicular to the line segment joining
the points (2,3,0) and (4,—5,6) at its midpoint.

22. Find the acute angle between the line
r = (3 — t,4 + 2t,1 + 5t) and the plane
3x — 2y + 4z = 5.

23. Find a Cartesian equation of the plane
through the point T(0,3,—5) that has its
normal parallel to the line segment joining
the points (1,2,3) and (—3,6,11).

24. Find an angle between each of the
following pairs of planes.
a) 3x+5y—z= land

4x+2y— llz+2=0
b) 2x—2y+z=8and2x+y+z+2=0

25. Given the points P(2,1,5) and Q(1,3,4). Find
a Cartesian equation of the plane
containing the line PQ, that is
perpendicular to the plane x + y + z = 3.

26. Find a Cartesian equation of the plane
x+1 v—3 z—5containing the line = =

that is parallel to the line

= =
1 2 6

2 1 —4

27. Find a Cartesian equation of the plane
x—5 v+3 z—4

parallel to the line = =
3 2 1

that passes through A(1,4,—1) and B(0,2,5).

28. Find the values of k and m so that the line
x+1 v—2 z+3.= = is perpendicular to the

k m
plane through the points U(l,3,8), W(0,l,i)
and V(4,2,0).

29. Find a Cartesian equation of the plane that
contains the point (1,—1,0) and is
perpendicular to each of the planes
3x+5y+z=3and2x—4y+3Z+ 1=0.

30. Find the value of t so that the line
x+l v—2 z—3.= = is parallel to the plane

3 6 4
2x + 3y — tz + 7 = 0.

31. Find a Cartesian equation of the plane that
contains the points (3,2,—i) and (2,5,0) and

x+4 v+2 z—5is parallel to the line = =
3 2 —l

32. a) If P(x,y,z) is any point on the plane
through the points M, R, and S show
that an equation of this plane is
MP.MRxMS = 0.

b) Use part a) to find a Cartesian equation
of the plane through the points
M(l,3,2), R(0,3,5), and S(—2,1,4).

33. Find a Cartesian equation for the plane that
contains the z-axis and the point (1,2,3).

34. Find a Cartesian equation of the plane
parallel to the x-axis that passes through the
points (3,2,—i) and (4,1,3).

35. Find a Cartesian equation of the plane that
intersects its normal through the origin at
the point (2,—1,l).

36. For each of the following, find the
condition that must exist among A, B, C and
D so that the equation Ax + By + Cz + D = 0
will represent the given plane.
a) the plane will have equal intercepts on

the x-axis and y-axis
b) the plane will not intersect the y-axis
c) The plane will pass through the point

that divides the line segment joining
(1,2,3) to (—5,6,1) internally in the
ratio 2: 3

d) the plane will be parallel to the
xy-plane

e) the plane will be perpendicular to the
plane4x—y+3z+1=0

f) the plane will be parallel to the plane
4x — y + 3z + 1 = 0

37. Given the planes
f11:A1x + B1y + C1z + D1 = 0 and
fl2:A2x + B2y + C2z + D2 = 0
a) Find a formula for the angle between

the planes Fl1 and U2.
b) Prove that the planes U1 and 112 are

perpendicular if and only if
A1A2 + B1B2 + C1C2 = 0.
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6.3 The Intersection of Lines and Planes

A line L and a plane fl can be related in three ways:
1. line L lies in 2. line L is parallel to 3. line L intersects

plane H plane H plane fl

In (1), the line L and the plane H have an infinity of points in common.
In (2), the line L and the plane H have no points in common.
In (3), the line L and the plane H have one point in common,
called the point of intersection.

You can model these three relationships using a pencil as the line L and
the top of your desk as plane H. For both the pencil and the desk top,
only a finite part of the line and plane are being represented.

In this section you will learn to determine the type of intersection, or lack
thereof, between a line and a plane.

Example 1 Determine the intersection between
the plane H: r= (1 + 2k — s,3 + k + 2s,—2 — 3k + s)

and the line L: r = (4 + t,2 — 2t,6 + 3t).

Solution At the point of intersection of the plane H and the line L, some point
(x,y,z) on H must be same as some point (x,y,z) on L.
For plane fl For line L

1x 1+2k— s 1x=4+ t
I y= 3+ k+2s Iy=2—2t
tz=—2—3k+ s (z=6+3t
Thus, 1+2k— s=4+ t or 2k— s— t= 3 Q

3+ k+2s=2—2t or k+2s+2t=—1 ©
—2—3k+ s=6+3t or —3k+ s—3t= 8 ®

Solving by elimination gives the following.
aJ—2xcJ:—5s—5t=5 ®
3xaJ+GJ: 7s+3t=5
Eliminates from® and®.
7x®+ 5 x&J: —20t=6Oort= —3
Find x, y, and z by substituting t = —3 into the parimetric equations of the
line L.
x=4+(—3)= 1,y=2—2(—3)=8,z=6+3(—3)=—3.
Thus, plane U and line L intersect in one point, (x,y,z) = (1,8,—3). U



6.3 The Intersection of Lines and Planes 261

Example 2 Determine the intersection of the plane fly: 2x + 5y — z = 34,

and the line L: r = (4 + t,2 — 2t,6 + 3t).

Solution At the point of intersection of the plane fI and the line L, some point
(x,y,z) on 11 must be the same as some point (x,y,z) on L.
For line L
x=4+t,y=2—2t,andZ6+3t
Substituting for x, y, and z in the plane 2x + 5y — z = 34 gives
2(4+t)+ 5(2 —2t)—(6+ 3t)= 34ort= —2.
To find the point of intersection, substitute t= —2 into the parametric
equations for line L giving

x = 4 + (—2) = 2

y = 2 — 2(—2) = 6

I.z= 6+ 3(—2)= 0
Hence the plane fl1 and line L intersect in the single point (2,6,0). •

Example 3 Given the line L1: = =
2 1 —3

a) Show that the line L1 does not intersect plane [12: 2x +5y + 3z = 1.

b) Show that the line L1 lies in the plane 113. 2x + 5y + 3z = —4.

SoIu1 icn At the point of intersection of the line L1 and either of the planes 112 or 113
some point (x,y,z) on the plane must be the same as some point (x,y,z)
on L1.

x—3 y-1-2 z
To find parametric equations for L1, let s = — = = —

x = 2s +
Thus y=s—2

z=—3s J
a) To find the intersection of L1 with fl2 you must substitute the values of

x,y, and z fromQ into 2x + 5y + 3z = 1, and solve for s.
2(2s+3)+5(s—2)+3(—3S)= 1
or 4s+6+5s—10—9s=1
or Os=5.
Since no value for s satisfies this equation, there can be no point of
intersection of line L1 and plane 113.
The line and the plane are parallel.

b) To find the intersection of L1 with 113 you must substitute the values
for x, y, and z from c into 2x + 5y + 3z = —4, and solve for s.
2(2s + 3) + 5(s — 2) + 3(—3s) = —4

or 4s+6+5s—10—9s--4
or Os=0.
Since every real value for s satisfies this equation, every point of line L
must lie in the plane 113. •
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6.3 Exercises

1. Find the intersection of each of the
following pairs of a line and a plane. In
each case describe the intersection
geometrically.
a) plane:

r=(2+ 3k+s,1 — k + 4s,—1 — k + 2s)

line: r = (—2 + t,4 + 2t,13 — 3t)
b) plane:

r=(1+k+_2s,1 + 3k —s,—4— 5k+s)
line: r = (2 + t,4 + 3t,—9 — 5t)

c) plane:x+lly—2z=39
line: r= (1 + 2t,4t,—6 — 3t)

d) plane:4x+6y+z=12
line: r= (1 + 5t,1 — 3t,2 — 2t)

e) plane:x—2y+3z+10=0
line: = =

2 3 —1

f) plane:2x+y—z=2
lineS = Yi =

2 1 5

g) plane: r= (3,—2,l) + k(2,1,—3) + s(1,2,1)
x—3 y+2 zline:— = =

2 1 —3

x—2 yJ z—3.2. Prove that the line — = = is
3 1 2

parallel to the plane 2x + 4y — 5z + 6 = 0.

3. a) Prove that the liner= (—1 + 2t,3t,4 + t)
is perpendicular to the plane
4x + oy + 2z = 32.

b) Find the point of intersection of the
line and the plane in part a).

c) Use a) and b) to find the perpendicular
distance from the point (—1,0,4) to the
plane 4x + 6y + 2z = 32.

4. Find a Cartesian equation of the plane
through the point (1,2,1) that is
perpendicular to the plane
5x + 2y — 4z = 12 and intersects the line
r = (2 + t,1 + 2t,6t — 2) at the point where
x= 1.

5. Find the value of b so that the line through
the point (2,—4,1) and the point (b,2b,3b)
does not intersect the plane x + y + z = 9.

6. A line L intersects the x-axis in the same
pointastheplane3x—4y+z= l2and
intersects the xy plane in the same point as
the line r = (6 — 2t,1 + t,t — 1). Find a vector
equation of line L.

7. Given the point E(2,3,0) and the plane
II: 3x — y + 2z = 17.
a) Find parametric equations of the line

L1, through the point E, that is
perpendicular to the plane fl.

b) Find R, the point of intersection of the
line L1 and the plane U.

c) Find the perpendicular distance ER
from the point E to the plane fl.

8. Find the point of intersection of the line
— 6 = 3x + 20, z = 1 with the plane

4x + 2y + 3z + 13 = 0.

9. Prove that the lineX X0 y Z—Z0

m2 m3
where m1, m2, m3 * 0, does not intersect the
plane Ax + By + Cz + D = 0, if and only if,
Am1 + Bm2 + Cm3 = 0 and
Ax0 + By0 + Cz0 + D * 0

10. A diver is standing on a diving board
above a swimming pool at the point
P(2,0,5). She leaves the board travelling
parallel to the vector m = (0,3,—5). If the
surface of the pool has equation z = 0, then
find the coordinates of the point where she
enters the pooi.
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6.4 The Intersection of Two Planes

Asyou saw in Section 1.2, two planes are either parallel, or they intersect
in a straight line. Two parallel planes are either different planes or the
same plane. The following diagrams illustrate these situations.
11 and 112 are parallel 113 and 114 are parallel 115 and I1 intersect in
and distinct (n1H n2) and identical (n311 n4) a line (n5j'n6)

You should note the relationship between the normal vectors n in each of
the diagrams. These relationships are summarised as follows.

1. Two planes are parallel if and only if their normal vectors are parallel.

2. Two planes intersect if and only if their normal vectors are not parallel.

3. Two non-parallel planes intersect in a line.

In this section you will learn how to determine algebraically whether or
not two planes intersect. If two planes intersect you will find out how to
obtain an equation for their line of intersection.

Example 1 Given the plane fl1: 3x + 2y + 5z = 4 and the three planes
112:6x+4y+lOz=3 fl3:9x+6y+15z=12 114:4x—3y+z=—1
a) Prove that planes 11 and fl2 are parallel and distinct.
b) Prove that planes fl1 and fl3 are parallel and identical.
c) Prove that planes 11 and fl4 intersect in a line.

Solii ion a) planes fl1and H2
A normal vector for 11 is n1 = (3,2,5):
A normal vector for 112 is n2= (6,4,10).
Since n2 = 2n1, then n1 and n2 are parallel. Hence planes FL and fl2 are
parallel.
Now the equation for [12 can be written 2(3x + 2y + 5z) = 3, and the
equation for 11 can be written 2(3x + 2y + 5z) = 2(4). Since 3 * 2(4), the
planes fl1 and 112 are distinct.

/17
1•7

17 4
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b) planes [I1and 113
A normal vector for H is n1 = (3,2,5):
A normal vector for U3 is n3 = (9,6,15).
Since n3 = 3n1 then n1 and n3 are parallel. Hence, planes 11 and 113 are
parallel.
Now the equation for 113 can be written 3(3x + 2y + 5z) = 3(4). Dividing
both sides of this equation by 3 gives 3x + 2y + 5z = 4, which is the
equation for plane fl. Hence, the planes fl and 113 are identical.
c) planes 11 and fl4
A normal vector for fI is n1 = (3,2,5)
A normal vector for 114 is n4 = (4,—3,1)
Since no real number k exists such that n4 =kn1, then n1 and n4 are not
parallel. Hence, planes H and 114 are not parallel. Thus, the planes Fl1 and
fl4 intersect in a line. U

Example 2 Find parametric equations for the line of intersection of the planes 11 and
114 of Example 1.

Solution You must solve the system
3x+2y+5z= 4 @
4x—3y+ z=—1

1ctliod 1: Liiig 1i1ri 'c
The augmented matrix for the system is
[3 2 5 41 13 2 5 4
L4 —3 1 —1] =4xrow@—3xrowLO 17 17 19
Fromrowaj: l'7y+ 17z= 19
Let z = t and solve for y.

l'7y + 17t = 19
l'7y = 19 — 17t

19 — 17t
17

Fromrow@: 3x+ 2y+ 5z=4
Substituting for y and zgives

3x+2(19 17t,4\ 17 /
Multiplying both sides by 17, and removing the bracket, gives

Slx + 38— 34t + 85t = 68
30—51t 1O—17t

Thus, x= orx=
51 17

Thus, planes 1T and fl4 intersect in the line with parametric equations
1O—17t 19—17tx= , y= , z=t

17 17
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Method 2

Let z = t and substitute into both equations
3x + 2y + 5z = 4 (U1) and

© 4x—3y+z=—1(fl4)

3x+2y+5t= 4 ®
4x—3y+ t=—1 ®
To find parametric equations for the line of intersection, you must
eliminate x and y, in turn, from equations J and ®, then solve for the
remaining variable in terms of the parameter t.
Eliminate x: 4 x — 3 x ® gives l'7y + 17t = 19

19 — 17t
Thus, y =

17
Eliminatcy: 3 x + 2 x ® gives 17x + 17t = 10

10 — 17t
Thus, x =

17

Thus, planes [I and U4 intersect in the line with parametric equations
10—17t 19—17tx= , y= , z=t U

17 17

Visualising f/ic I;iterst'ction of Tue P/a;ic's

To assist your visualization of the relationship between two planes, take
two pieces of rectangular-shaped cardboard and use them to represent
parts of two planes. (A plane extends infinitely in all its two-dimensional
directions, so that a cardboard can represent only a finite part of a plane.)
If you hold the pieces of cardboard so that the cardboards are parallel, then
a pencil held perpendicular to one cardboard will be parallel to a pencil
held perpendicular to the second cardboard.

If you hold the pieces of cardboard so that the cardboards are not parallel,
and a side of one cardboard touches the other cardboard, you can see that
non-parallel cardboards intersect in a line segment. You should also notice
that a pencil held perpendicular to one cardboard is not parallel to a pencil
held perpendicular to the second cardboard.

n n
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6.4 Exercises

1. For each of the following planes, use
normal vectors to determine whether or not
the planes are parallel, or intersect in a line.
If the planes are parallel, indicate whether
the planes are distinct or identical.
a) 3x+ 5y—z= 10; 2x—y+4z=2
b) 4x+6y+2z=3; 6x+9y+3z=9
c)x—y+5z—2=0; —2x+2y—lOz=4
d)x—3y+5z=1; 3x—9y+15z=3
e) 5x—3y=4; 3y+z=1
f) 3x—2y—8z+4=0;

4x + 2y + 6z — 3 = 0

2. For each pair of planes in question 1 that
intersect in a line, find parametric
equations of their line of intersection.

3. For each pair of planes in question 1 that
intersect in a line, find Cartesian equations
of their line of intersection.

4. Find an equation of the plane passing
through the point T(—1,3,2) that is
perpendicular to the line of intersection of
the planes
2x+y+3z—7=Oand4x—3y+4z=—5.

5. Find an equation of the plane passing
through the points W(0,5,—3) and
M(1,—1,3) that is parallel to the line of
intersection of the planes
x + 2y + 3z+ 4= Oandx—y — 3z= 8.

6. a) Find parametric equations for the line
of intersection of the planes
2x+y—z+ 1 =Oandx—7y+z=22.

b) Find the three points where the line in
part a) intersects the coordinate planes.

7. Given the planes
11k: x+ y+2z = 0

112:3x—3y—2z =10
f13: x+ y— z+ 3= 0
fl4: x— y—2z+12= 0
Show that the line L1 of intersection of
planes fl1 and fl2 is skew with L2, the line
of intersection of planes 113 and 114.

8. Find a vector equation of the line through
the point Q(—3,0,1) that is parallel to the
line of intersection of planes l1 and U2
from question 7.

9. Given the planes fl1: kx —y + 2kz = 0 and
112:kx+y+4kz—0.
a) Find the value of k so that the line of

intersection of planes 11 and 112 is
parallel to the line r = (1 + 3t,4t,2 — t).

b) Find the value of k so that the line of
intersection of planes H and 112 is
perpendicular to the line
r = (1 + 3t,4t,2 — t).

10. Show that the line of intersection of the
planes 2x—y÷z =4aJIdx+y + 3z = 1 is

x+1 z+2parallel to the line - = =
4 5 —3

11. Show that the line of intersection of the
planes 2x + y — 3z = 1
and —2x + 3y + 2z = 4
is perpendicular to the
line r = (1,3,2) + t(2,—3,—2).

12. Show that any vector parallel to the line of
intersection of the planes —y ÷ 3z = 1 and
3x + y + 4 = 0 is a normal to the plane
3x — 9y — 3z + 1 = 0.

13. Given the planes Il': x + y + 5z =—6

112: x— y— z= 1
f13:kr—5y— z= 0

Find the value of k so that the line of
intersection of planes 11 and 112 lies in the
plane 113.

14. Given the planes fly: x — y — z = 2
fl2: 4x — 5y — z = —13

a) Find parametric equations for L, the
line of intersection of fl1 and fl2.

b) Prove that the equation
m(x—y—z—2)+k(4x—5y—z+13)=0
represents a plane containing line L,
for every pair of real numbers m and k.

c) Find the plane in b) that contains the
point (1,1,1).
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t',rclcs
Suppose that a circle has
centre P0 and radius r.
If P is any point on the circle
then IPI1 = r.

But IPoll JPoPPoP
Hence a vector equation
of a circle is

\IP0P•P0P = r, or
PP.P0P=r2.
IfP0 has coordinates (x0,y0)
and Phas coordinates (x,y),
then POP = (x — x0,y — ye).
Hence a Cartesian equation
for the circle is
(x — x0,y —

Yo) (x — X0j' — Yo) =
or
(x—x0)2+ (y—y0)2=r2.

Activities

Spherc's
Suppose that a sphere has
centre P0 and radius r.
If P is any point on the sphere
thenP = r.

ButP = [P.P0P
Hence a vector equation
of a sphere is

\JP0PP0P = r, or

P0P.P0P=r2.
If P0 has coordinates (x0,y0,z0)
and Phas coordinates (x,y,z),
then POP = (x — x0,y - y0,z — z0).
Hence a Cartesian equation
for the sphere is
(x — x0,y — y0,z — z0)• (x—x0,y — yo,z — z0) =
or
(x — x0)2 + (y Yo)2 + (z z0)2 = r2.

1. Find a vector equation and a
circles.
a) centre (0,0), radius 5
b) centre (2,3), radius 4
c) centre (—1,5), radius /i

y

0

z

x y

Cartesian equation of the following

2. Find a vector equation and a Cartesian equation of the following
spheres.
a) centre (0,0,0), radius 5
b) centre (2,3,4), radius 6
c) centre (—l,5,—3), radius fi.
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6.5 The Intersection of Three Planes
There are many ways in which three planes can intersect, as thefollowingdemonstrates. You should use three pieces of cardboardto help you tovisualize these intersections.

Suppose the planes are called U1, Fl2 and Fl3, with normalvectors
n1, n2, n3, respectively.

ace / TIlL' th,' /es art' pain/It'!, that i, I 1 I,

Notice that the three planes may be distinct, or two may be identical, or all
three may be identical. In all these situations, therelationship among the
normal vectors is n1 In2 In3.

I ii jla,e a,t pari/lel but the third plane 1ntersec1 'ac), parallel pin icala! : I Il

Afl
A

3 distinct planes

r1.
- a

A

2 distinct planes

4 IL

1 distinct plane

Notice that ;; n2In3.
1 t/h i/lie lanes ne pat illel

This occurs if no two of the normal vectors n1, n2, n3 are parallel.

The diagrams show that there are three possibilities.

A) The three lines of intersection of the planes havea common point.
Hence, the three planes intersect in a single point.
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B) The lines of intersection of the three planes are the same line.
Hence, the three planes intersect in a line.

C) The lines of intersection of the three planes are distinct and parallel.
Hence, the intersection of the three planes forms a triangular prism.

In section 5.5 you learned the meaning of the terms consistent (dependent
or independent) or inconsistent, to describe a system of two linear
equations in two variables representing lines in 2-space.

The same terms are used in a similar way for a system of three linear
equations in three variables in 3-space, as indicated in the following chart.

For a system of three equations in three variables, representing
three planes, no two of which are parallel:

number of solutions geometric description

consistent and independent one three planes intersect
in a point

consistent and dependent infinite three planes intersect
in a line

inconsistent none three planes form
a triangular prism

The following example will show you how to distinguish among these
situations algebraically.
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Example 1 Prove that the three given planes are parallel and distinct.

II:6x+4y+8z=5 Il2:3x+2y+4z=2 Il3:9x+6y+12z=l

Solutio'i The normal vector for 11 is n1 = (6,4,8)
The normal vector for 112 is 2 = (3,2,4)
The normal vector for fl3 is 113 = (9,6,12)
Since n = 2112, and 113 = 3112, the normal vectors fl1, fl, n are parallel.

Dividing the equation for fl by 2 and the equation for fl3 by 3 gives

3x + 2y + 4z = Q and 3x + 2y + 4z = © respectively. The left hand side

of each of these equations is the same as the left hand side of the equation
3x+ 2%'+4Z= 2GJofH2.

Since the right hand side of each of these three equations is different from
that of the others, no triple (x,y,z) can satisfy any two of these equations at
the same time. Thus, the three planes are both parallel and distinct. •

Note: In Example 1, if the right hand side of any of the equations (3
or GD had been the same, the corresponding planes would have been
identical.

Example 2 Given the five planes:
LI: x+3y+2z= 5
112. 2x— y—4z= 4®
133: 4x—3y+ z=—3©
[14. 5x+ i'—6z= 13®
[15: 5x+ y—6z= 8®
Determine the type of intersection of each of the following sets of three
planes.
a) fl1, 112, fl3 b) fl, 112, 114 c) fl1, [112, [15

So I u ti oil 1 L iiiI eIi,,iiiiaii',i
a) The normals to planes fly, fl2, and 113 are

= (1,3,2), n2 = (2,—1,—4), and n3 = (4,—3,1).

Since none of the normal vectors is a scalar multiple of another, no two
normals are parallel. Hence, none of the planes is parallel to another.
Each pair of planes will intersect in a line.

The line of intersection of planes 1T and fl2 can be determined, as in
Example 2 of section 6.4, to have the following parametric equations.

lOt+17 6—8tx ,y= ,z=t.
7 7
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The required intersection will be the intersection of this line with plane
113. To find this intersection you must substitute the above values for x, v,
and z in equation ® for 113 giving

4(1Ot + — 3(6_—_8t + =\ 7/ \71
Multiplying by 7 to remove fractions, and simplifying, gives

40t + 68— 18 + 24t + 7t = —21,from which t = —1.

lOt+17 6—8tSubstituting into the parametric equations x = ,v = , z =

gives the point (1,2,—i).
Hence, the three planes intersect in a single point.

b) The normals for the three planes fl, H2, and [14, are
n1 = (1,3,2), n2 = (2,—1,—4), and n4 = (5,1,—6).

Since none of these normals is parallel to another, each pair of planes
must intersect in a line.
From part a), the line of intersection of H and 112 is

lOt+i7 6—8tx= ,y= ,z=t.
7 7

Substituting in ® gives

5(lot+ 17+6_8tót= 13,or5Ot+85+6—8t—42t=91,orOt=O.\ 7 / 7

Hence, t can be any real number. Thus, every point (x,y,z) that lies on the
lOt+17 6—8tline x = , y = , z = t also lies on the plane 114.

lOt+17 6—8tHence, the three planes intersect in the line x = , y = , Z = 1.

c) The normals for the three planes H, fl2, and [15are
= (1,3,2), n2 = (2,—l,—4), and n5 = (5,1,—6).

Since none of these normals is parallel to another, each pair of planes
must intersect in a line.
From part a) the line of intersection of H and H2 is

iOx+i7 6—8tx= ,V= ,z=f.
7 7

Substituting in ® gives

5(lot+ i7+6_8t_6t=8,or5Ot+85+6_8t_42t=56,orOt=_35.
" 7 / 7

But no value of t satisfies this equation. Hence, no point (x,y,z) thatlies on
lOt+17 6—8tthe line x y , z = t also lies on the plane 115.

Hence, the three planes have no common intersection. Their three lines of
intersection are parallel. The three planes form a triangular prism. •
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Solution 2 nuti s
a) The system of equations for the intersection of planes fly, 1112, and 113 is

x+3y+2z= 5 @
2x— y—4z= 4 ®
4x—3y+ z=--3

The augmented matrix for this system is as follows.

[i 3 2 5

12 —l —4 4
—3 1 —3

[1 3 2 5

2xrow@—row®I 0 7 8 6
4xrow—row®LO 15 7 23

1 3 2 5

0 7 8 6
l5Xrow©—7xrow® 0 0 71 —71
From row GJ. 71z = —71

Thus, z = —1.

Substituting z = —1 in row t gives
— 8 = 6 or y = 2.

From row , using y = 2 and z = —1,
x+ 6—2=5
Thus,x= 1.
The three planes intersect in the point (x,y,z) = (1,2,—i)

b) The system of equations for the intersection of planes Fl1, 112, and 114 is

x+3y+2z= 5 @
2x— y—4z= 4 ©
5x+ y—6zi3 ®

The augmented matrix for this system is as follows.

1 3 2 5

2 —1 —4 4
5 1 -6 13
1 3 2 5

2xrow—row© 0 7 8 6
5xrowl—row® 0 14 16 12

[1 3 2 5

JO 7 8 6
2xrow®—row®LO o o 0

From row ®, Oz 0.
Thus, z can have any real value, say z =t.



Substituting z = tin row gives
7y + 8t = 6

6 — 8t
ory=

6—8t
From row(D, usingy = andz =

x + 3(6_—_8t + 2t = 5,'7!
17 + lotor x =

The three planes intersect in the linex = 17 + lOt = 6 ;8t, = t.

c) The system of equations for the intersection of planes 11k, 112, and 115 is
x+3y+2z=5 Q

2x— y—4z=4
5x+ y—6z=8 ®

The augmented matrix for this system is as follows.

Fl 3 2 5
12 —1 —4 4

1 —6 8

Fl 3 2 5

10 7 8 6
Lo 14 16 17
[1 3 2 5

0 7 8 6
0 0 —5
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2 x row — row
5 x row — row

2xrowaj—row® .0
From row J, Oz = —5.

There is no value of z that makes this equation true.

Thus, the three planes have no common intersection. The planes intersect,
in pairs, in parallel lines to form a triangular prism. •

Note for alternate solution:

The type of solution for three non-parallel planes can be deduced from the
third row of the reduced matrix.

If row GJ is 0 0 a b where a *0, there is one solution: a point.

IfrowGjisO 0 a b wherea=Oandb=0,thereisaninfinityof
solutions: a line.

If row GJ is 0 0 a b where a = 0 and b * 0, there is no solution: three
planes form a triangular prism.
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6 cxercises

1. In each of the following, the equations of
three planes are given. Describe how the
planes in each set are related.
a) x—2y+ 4z=—4

2x—4y— 8z= 9©
3x—6v+12z= 8J

b) x+ 3y— 5z=—1@
3x+ 9y—15z=—3©
5x+15y—25z= 5®

c) 3x+6y—9z=6D
x + 2v — 3z = 2

2x + 4y — 6z = 4®
d) 4x+2v—6z=2

6x + 3v — 9z = 5
—2x— y+3z=1GJ

2. In each of the following, the equations of
three non-parallel planes are given.
Describe how each set of planes intersects
by solving the corresponding linear system.
a) x—2y+4z=—4 d) 3x+ 5y— 2z=1

2x+4y— z= 9 —2x— 3y+ 4z=2
3x+4+2z= 8 7x+lly—lOz=8

b) x+3y— 5z=—1 e) x+ 8y— 2z= 5
3x—2y— 3z= 7 4x+ '7y+ 2z= 0
5x+4y—13z= 5 5x—lOy—lOz=—25

c) 4x+ 2y+3z= 5 f) 7x+ y— z=2
x— 6+ z=14 6x—2y+3z=1

—5x--14i'+2z=11 8x+4v—5z=3
3. For each of the linear systems of three

equations in three variables in the previous
question, describe the system using the
terms consistent (dependent or
independent) or inconsistent.

4. Find the value of k so that the following
planes will intersect in a point.
x+2v+3z 5

5x+ y—kz= 3
3x — 4v + kz = —8

5. Find the value of m so that the following
planes will intersect in a line.
2x— 3)1+ mz= 7
x—my+ z=14

5x — l4y + 17z = 28

6. Find the value of p so that the following
planes will form a triangular prism.
4x+ y—2z=p
2x—py+2z= 1
6x + 5)' — 6z = 0

7. There is an infinite number of planes that
form a triangular prism with the two
planesx — 2y + 3z 5 and —x + 3y + z = 7.
Find an equation for any one of these
planes.

8. In a certain system of three linear
equations, the third row of the
row-reduced form of the
augmented matrix is

0 0 a—7 b—5
Describe the intersection of the
three planes for the following values
of a and b.
a) a=7,b=5
b) a=7,b=6
c) a=8,b=5

9. Given the three planes
x+ y +2z= 0

mx+ (m—1)y+mz=—1
mx+(2m—I) z= 1

a) For what values of m will the three
planes intersect in a point?

b) For what values of m will the three
planes intersect in a line?

c) For what values of m will the three
planes have no points in common
and form a triangular prism?

10. a) State conditions on the normal vectors
n1, n2, and n3 so that the
corresponding planes Fl, 112, and 113
will intersect in a point.

b) If the planes 11, fl2, and 113 have a
common point, state conditions on the
normal vectors n1, n2, and n3 so that
the planes will intersect in a line.

c) If the planes 11k, fl2, and 113 do not
have a common point, state conditions
on the normal vectors n1, n2, and n3
so that the planes will form
a triangular prism.
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6.6 The Distance from a Point to a Plane
or LO a Line

The distance from a point P to a plane fl is the length of the line segment PQ
where Q is a point on the plane LI and PQ is perpendicular to the plane LI.

The distance from a point P to a line is the length of the line segment PQ
where Q is a point on the line such that PQ is perpendicular to the line.

In this section you will develop formulas for both of these distances.

A formula for the distance from a point 1' to a plane H is found as follows.

Let Q be the point on the plane H such that PQ± the plane H.
Thus, PQ is parallel to the normal n of the plane H.
Let F be any point on the plane H.

Then the length of PQ = I the component of PP along PQI
= I the component of PP along nI

pp.

ml
If the length of PQ = d, then you have the following formula.

d=
I nl

where d is the distance from any point P to a plane fl,
F is any point on the plane H, and n is a vector perpendicular to plane H.

P

d

P
0
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Example 1 Find the distance from the point P(1,2,3) to the plane 4x — 5y + 6z + 8 = 0.

Solution The required distanced is given by the formula

d= whereP=(1,2,3)andn=(4,—5,6).
ml

To find a point F on the plane 4x — + 6z + 8 = 0 Q, you need three
numbers x,y,z that make this equation true. There is an infinity of such
numbers. To obtain one set, let two of x,y and z have any values. Substitute
these in ®, then solve for the remaining variable.

If x = 1 andy = 0, substituting into G gives
4(1)—5(0)+6z+8=Oorz=—2.
Thus, use F = (1,0,—2) in the formula.
Therefore, PF = OF— OP = (i,0,—2) — (1,2,3) = (0,—2,—5)

(0,—2,—5).(4,—-5,6) 110—301 20
Thus,d= __________ = or—

J42+(_5)2+62 fi fi
Thus, the distance from the point P(1,2,3)

totheplane4x—5y+6z+8=0is-- U

jonnula jor the distance from a point P io a line L is found as follows.

Let Q be the point on the line L such that PQ± the line L.

Then the required distance is d= PQ.

Let rn be a direction vector of line L, andFany point on line L.
IfU is the angle between line LandPP. then

d=PQ=PFlsin @
ButIPF x mI= PFllml sin

IPFxmI
Thus, Isin 01=

IPFIImI
Substituting in G gives

d= (PFxrn
\IPFIImI

FORMULA
ImI

where d is the distance from any point P to the line L,
F is any point on the line L,andm is a vector parallel to line L.
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Exam pie 2 Find the distance from the point P(1,2,3) to the line
L: r = (4,—l,5) + t(—3,2,6)

Solution The required formula is

d= PFXm

where P = (1,2,3), m = (—3,2,6) and F is any point on L.
One such point has coordinates (4,—1,5).

Therefore, PF = OF — OP = (4,—1,5) — (1,2,3) = (3,—3,2)

Thus, d = (3,—3,2) x (—3,2,6)

J(3)2 + 22 + 62

i(-l8-4)-j(18+6)+k(6-9)

= (—22,—24,—3)I =
7

Thus, the distance from the point P(1,2,3)

to the line L :r = (4,—1,5) + t(—3,2,6) is

Note: The above formula can be used in 2-space by expressing each
2-space vector as a 3-space vector with z = 0.

Example 3 Find the distance from the point P(3, 1) to the line L: r = (5,—2) + t(4,7)

S dion The point P and the line L are in 2-space.
PF x mTo use the formula d =

Im
P must be written as the 3-space point (3,1,0) and L must be expressed as
the 3-space line r = (5,—2,0) + t(4,7,0).

F is any point on L. Such a point is (5,—2,0).

Therefore, PF=OF — OP = (5,—2,0) — (3,1,0) = (2,—3,0)
Since m = (4,7,0)

d (2,—3,0) x
(4,7,0)

= i(O —0) — 1(0 —0) + k(14 + 12)
V+72+02

= I(0,0,26) 26

Thus, the distance from the point P(3,1)

to the line L : r = (5,—2) + t(4,7) is
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6.6 Exercises

1. Find the distance between the given point
and the given plane.
a) (2,—1,3) 3x+5y—z=5
b) (O,3,—5) 4x — + 3z = 1

c) (9,—2,0) x+3z=4
2. Find the distance between the point and

the given plane by first using a cross
product to find a normal vector to the
plane.
a) (—1,9,3); _____________________

r=(1 + 3k — 4m,2 — 4k + 2m,—3 +k — m)
b) (—4,O,—2);

r= (2k + 3m,l + 4k + 3m,5 — 2k + m)
c) (5,0,—I);

r = (2 + 5k + 4m,3 — 2k + 6m,4k — 2m)

3. Find the distance between the given point
and the given line.

c) (l,—1,8) 2 —3 5

d) (—3,4,8) = z = 3
2 —3

4. Given the parallel planes

fl: 3x + 2y + 4z = 12, and
112: 3x + 2y + 4z = 5

a) Show that the point P (2,1,1) lies on [1k.
b) Find the distance between P and

plane ft.
c) Explain why the number obtained in b)

is the distance between the parallel
planes 111 and 112.

5. Find the distance between the pairs of
parallel planes.
a)4x+y—2z=3;4x+y—2z=13
b) 3x—2y—5z=—2; 3x—2y—5z=5
c)x+3y—z=8;2x+6y—2z=7

6. Given the parallel lines

L1: r= (2 + k,3 — 4k,i — k) and
L2: r=(k,1 —4k,3 —k)
a) Show that the point P (2,3,1) lies on L1.
b) Find the distance between P and

line L2.
c) Explain why the number obtained in b)

is the distance between the parallel
lines L1 and L2.

7. Find the distance between the pairs of
parallel lines.
a) r=(1 + 3k,2+ 5k,2 —6k) and

r= (—1 + 3k,1 + 5k,3 — 6k)

b) x+2y1z+3 and
—1 4 7

x— 5 =y+2 z
—1 4 7

8. Find the value of B so that the distance
from the point (1,—2,—3) to the plane
x + By — 2z + 1 = 0 is 4.

9. Find the value of D so that the distance
from the point (4,0,1) to the plane
2x + y — 2z + D = 0 is 3.

10. Find the distance between the point of
intersection of the lines
r = (1 + t,3 — 2t,4t) and
r = (1 + 2k,1 — 2k,7 + k) and
the plane through the points
(0,1,0), (—1,2,1) and (3,2,1).

11. Find the distance in 2-space from the point
P(2,3) to the line r = (3 — 2t,1 + t).

12. Find the coordinates of the points on the
x-axis that are 4 units from the plane
x + y — 2z = 3.

13. a) Find the perpendicular distance AN
from the point A(2,3,—5)
totheplanefl:4x—y— z+ 3=0

b) Find the coordinates of point N.

a) (2,—1,3)
b) (5,0,—i)

r = (3,4,1) + k(1,—2,3)
r = (0,1,4) + k(0,0,—5)
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14. Given the triangle with vertices A(l,2,3),
B(—4,1,0) and C(0,1,5).
a) Find an equation for the line through

the points B and C.
b) Find the distance from the point A to

the line through points B and C.
c) Find the area of triangle ABC.

15. A tetrahedron is formed from the
triangle ABC of the previous question
and the point 0(0,0,0).
a) Find an equation of the plane through

the points A, B, and C.
b) Find the distance from point 0 to the

plane in a).
c) Find the volume of the tetrahedron 0ABC.

16. A geologist discovers that a vein of gold ore
completely fills the space between two
parallel faces of rock. Her mathematician
friend determines that the equations of the
rock faces enclosing the ore are
5x—2y+z= lOOand5x—2y+z=—205.
If the unit of measurement is the metre,
find the thickness of the vein of gold ore,
correct to 2 decimal places.

17. Prove that the shortest distance between
the point P0(x0,y0,z0)
and the plane Ax + By + Cz + D = 0 is

=1Ax0y00+D1
\1A2 + B2 + C2

18. a) Prove that the shortest distance
between the point P0(x0,y0)
and the line
Ax + By + C = 0 is

d= PFxm

Imi

for P0(x0,y0,O),
m = (B,—A,0),
and F any point on the
line of intersection of the planes
Ax + By + C = 0 and
z = 0.

b) Prove that the distance
d Axo + By0 + Cl

VA2 + B2
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Summary

• I-'I l l'Liiic ii, 3—

vector equation parametric equations
r = r0 + km + su x = x0 + km1 + su1

Y = Yo + km2 + su2
z = z0 ÷ km3 ÷ su3

where
r = OF, the direction vector of any point P(x,y,z) on the plane,
r0 = OP0 the direction vector of a fixed point P0(x0,y0,z0) on the plane,
m = (m1,rn2,m3) and u = (u1,u2,u3) are vectors parallel to the plane such
that m u, and k and s are parameters.

• If m and u are vectors parallel to plane U, then mx u is perpendicular
to the plane H.

• A normal vector to a plane is a vector that is perpendicular to every vector
parallel to the plane.

• Ax + By + Cz + D = 0 is a Cartesian equation of a plane, where
1. The vector (A,B,C) is a normal vector for the plane Ax +By + Cz + D = 0.

2. If m and u are two linearly independent vectors
parallel to the plane Ax + By + Cz + D = 0,
then (A,B,C) is any scalar multiple of the vector mx u.

• !-u1.s a/'&it,l I'iial1eI ijiJ Lr/ie,ldiclIlar P1a;ic

1. Two planes are parallel if and only if their normal vectors are parallel.
2. Two planes are perpendicular if and only if their normal vectors are

perpendicular.

• A line L and a plane H can be related in several ways. The line L may be
parallel to the plane H, may lie in the plane H, or intersect the plane U.
In the first situation the line and plane have no point in common.
In the second situation the line and plane have an infinite number of
common points.
In the third situation plane H and line L have a single point in common.
To determine which situation exists, solve the system of equations that
represents the planes.
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• Two planes may be parallel and distinct, or parallel and identical, or
not parallel.
1. Two planes are parallel if and only if their normal vectors are

parallel.
2. Two planes intersect in a line if and only if their normal vectors are

not parallel.
3. Two non-parallel planes intersect in a line.

• To determine whether or not the planes are parallel, examine their
normal vectors. Planes are parallel if their normal vectors are linearly
dependent.

• To find the line of intersection of two planes you should solve the system
of two equations representing the planes.

• To determine the type of intersection of three planes, no two of which
are parallel, solve the linear system of three equations in three variables.

• For a system of three equations in three variables, representing
three planes, no two of which are parallel:

number of solutions geometric description

consistent and independent one three planes intersect
in a point

consistent and dependent infinite three planes intersect
in a line

inconsistent none three planes form
a triangular prism

• The distance d from a point P to a plane [I is the length of the line
segment PQ where Q is a point on the plane fl and PQ is perpendicular to
the plane fl.

ml
whered is the distance from any point P to a plane H,

F is any point on the plane H, and
n is a vector perpendicular to plane H.

• The distance d from a point P to a line is the length of the line segment PQ
where Q is a point on the line such that PQ is perpendicular to the line.

d= PFXm

lml
where d is the distance from any point P to the line L,

Fis any point on the line L, and
m is a vector parallel to line L.
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Inventory

1. Inthevectorequationr=r0+ km -i-su, ris ,r0is ,m
and u are ____where m is not u, and s and k are _____

2. In the vector equation r = (1 + 2s + 3t,—2 + 5s — 4t,6 — 7s + t), a point
on the plane is , and two vectors parallel to the plane are _____
and ____

3. In the parametric equations x = 3 + 2t — 4s, y = 5t + 2s,
z = —3 + 9t + 2s, a point on the plane is _____ and two vectors parallel
to the plane are _____ and_____

4. The presence of parameters in a vector equation indicates the
equation represents a plane. The presence of one parameter shows the
equation represents a _____

5. For the plane 3x + 4y + 5z + 6 = 0, a normal vector is ____

6. If two planes are parallel then their normal vectors are _____

7. If a system of three equations in three variables has one solution, then
the planes they represent intersect _____

8. If a system of three equations in three variables has an infinity of
solutions, then the planes they represent intersect _____

9. If a system of three equations in three variables has no solution, and
the planes represented by the equations are not parallel, then the
planes form _____

10. Iftheplanes3x+2y+4z=3andAx+By+Cz+D=Oare
perpendicular then ____= 0.

11. If a line is not parallel to a plane then the intersection of the line and
the plane is _____

12. If a line is parallel to a plane where the line and the plane have a
common point, then the intersection of the line and the plane is _____

PP.n13. In the formula, d =
ml

dis ,Fis ,andnis_.
PP X m14. In the formula, d =

ml
dis ,Fis ,andmis
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Review Exercises

1. Find a vector equation and parametric
equations for each of the following planes.
a) the plane through the point A(1,3,6),

that is parallel to the vectors (0,2,2) and

(1,6,5)
b) the plane through the two points

B(5,—1,4) and C(3,—3,0), that is parallel
to the vector (4,—1,2)

c) the plane through the three points
A(1,2,3), B(1,—1,0), and C(2,—3,—4)

2. Find a vector equation of the plane parallel
to the line L1: r = (2 3t,1 + 4t,1 + 2t),that
contains the line L2: r = (2s,1 — 5s,4 + s).

3. Find a vector equation of the plane that
contains the point A(—1,0,1) and is
perpendicular to the vector u = (4,1,2).

4. Find a vector equation of the plane that
contains the line L: r = (0,6,1) + t(1,2,5)
and is perpendicular to the plane
3x + 2y — z = 4.

5. Find a vector equation of the plane parallel
to the vector (4,8,—3), that contains the line

x=y—3 z+ 1

2 —1 5

6. List the pairs of planes that are parallel.
Indicate whether the planes are distinct or
identical.
a)
b)
c)
d)
e)
f)

7. Find a Cartesian equation of the plane
through the point T(1,5,—3) having normal
vector (1,3,5).

8. Find the point of intersection of the plane
2x + 3y — z = 1 and the line of intersection
of the two planes x — y + z = 2 and
x + 2y — 2z = —3.

9. Find a Cartesian equation of the plane
through the point M(1,1,—1) and through
the point T(0,—2,3), that is parallel to the
vector u = (6,—1,2).

10. Find a Cartesian equation of the plane
through the points M(1,1,—1) and T(0,—2,3),
that is perpendicular to the plane
5x + 2y — 3z = 1.

11. Find a Cartesian equation of the plane
through the points K(1,2,3), R(1,—1,0), and
S(2,—3,4).

12. Find a Cartesian equation of the plane
through the point E(1,4,2) that contains the
x-axis.

13. Find a Cartesian equation of the plane with
vector equation ______ ______
r = (2,3,—4) + k(—2,0,1) + m(3,1,—1).

14. Find a vector equation of the plane with
Cartesian equation 3x — + z = —2.

15. Find the acute angle between the line
r = (3 — 2t,4 + t,2 + 5t) and the plane
4x — + 5z = 1, correct to the nearest
degree.

16. Find the acute angle between the planes
2x—3y+z= land3x—5y—z—3=0,
correct to the nearest degree.

17. Find a Cartesian equation for the plane that
contains the z-axis and is parallel to the
line r = (1 + 3t,—4t,—3 + 2t).

18. Find a Cartesian equation of the plane
parallel to the xy-plane, that passes through
the point (4,1,3).

4x — + 3z + 3 = 0
4x — — 2z = 10
x — 2y + 3z = 1

2x — — z = 5
2x — + 5z =2
4x — Sy + 3z = 3
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19. Find the intersection of each of the
following pairs of a line and a plane. In
each case describe the intersection
geometrically.

a) plane:
r=(2+4k — m,1 +k —4m,2 —k+ 2m)
line: r = (—2 + t,—t,8 + 2t)

b) plane: 2x + 3y — 2z = 13

line: r = (2 + t,3 + 2t,2t)
c) plane:x—2y+z=2

line: =
2 3 4

20. Find the value of k so that the line through
the point (2,—4,1), and also the point
(k,—k,2k), is parallel to the plane
x + y + z = 9.

21. Show the line of intersection of the planes
x — 3y + 6 = 0 andx — 2z —4 = 0 lies in the
planex — 9y + 4z + 26 = 0.

22. a) You are given the 2-space equation
Ax + By + C = 0 where A and B are fixed
numbers and C is a parameter. Explain
why the equation represents a family of
parallel lines.

b) You are given the 3-space equation
Ax + By + Cz +D= 0 where A, B and C
are fixed numbers and D is a parameter.
Explain why this equation represents a
family of parallel planes.

23. A plane passes through the points
P1(x1,y1,z1), P2(x2,y2,z2) and P3(x3,y3,z3). Prove
that an equation of the plane is
Ax + By + Cz +D= 0 where
A= Y2Y1 Z2—Z1

Y3Y1 Z3—Z1

B= Z2ZI x2—x1
z3—z1 x3—x1

C=2x1 y2—y1
and

x3—x1 y3—y1
D = —Ax1 — By1 — Cz1

24. Find a Cartesian equation of the plane

containing the line = =
4 2 4

that is parallel to the line

= =
3 2 2

25. Find a Cartesian equation of the plane
passing through the origin, that is
perpendicular to the plane x + 2y — z = 5
and makes an angle of 45° with the x-axis.

26. A line L intersects the x-axis in the same
point as the plane 3x —4y + z = 12 and
intersects the xy-plane in the same point as
the line r = (6 — 2t,1 + t,t — 1). Find a
vector equation of line L.

27. Find the point of intersection of the line

2x — 3 = z = 3 with the plane
2

x + 2y — 3z = 11.

28. For each of the following planes use
normal vectors to determine whether or not
the planes are parallel or intersect. If the
planes are parallel, indicate whether the
planes are distinct or identical. If the
planes intersect, then find parametric
equations of their line of intersection.
a) 6x+4y—2z=10 c) x—3y+5z=1

3x+2y—z=2 3x+2y+z=3
b) 8x+6y+2z=4 d) 5x—3y=4

12x+9y+3z=6 3y+z=1
29. Given the planes

11k: 2x + 3y + 2z = 0
112: 6x— 9y — 2z = 10
fl3: 2x + 3y — z + 3 = 0

LE4:2x—3y—2z-i- 12=0
Show that the line L1 of intersection of
planes fJ and fl2 is skew with L2, the line
of intersection of planes fl3 and 114.

30. Find a Cartesian equation of the plane
through the point (2,—3,—1 1) that is
perpendicular to the plane 2x — y + z = 2
and intersects the line r = (3 + t,4 + 2t,2t)
at the point where y = 0.
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31. There is an infinite number of pairs of
planes that have the line

= = as their line of
2 —1 3

intersection. Find equations for any two of
these planes.

32. Given the planes U: x + 5y — z = 1 and
112: 3x + ky + 2z = 5.
a) Find the value of k so that the line of

intersection of planes H and 112 is
parallel to the line r = (2 — 4t,1 + t,—3t)

b) Find the value of k so that the line of
intersection of planes 11 and fl2 is
perpendicular to the line
r = (3s,2 — 3s,1 + 4s)

33. In each of the following, the equations of
three planes are given. Describe how the
planes in each set are related.
a) x—2y+4z=—4 b) x+ 5y—3z= 1

x—2y+4z= 0 2x+lOy—6z=2
x—2y+4z= 2 3x+15y—9z=3

34. In each of the following, the equations of
three non-parallel planes are given.
Describe how each set of planes intersects
by solving the corresponding linear system.
a) x—2y+4z=—4c) x+5y—3z=6

4x—5y+8z= 0 2x+2y— z=2
x— y+ z= 2 3x+7y—4z=3

b) x+2y—3z=—ld) 3x+ y— z= 6

3x+ y—3z= 6 9x—4y+2z= 21
5x+5y—9z= 4 x+4y+7z=—18

35. Describe each system of the previous
question as consistent (dependent or
independent) or inconsistent.

36. Given the three planes
x+ y+ 2z= 0

(k+2)x+ (k+1)y+ (k+2)z=20
(k + 2)x + (2k + 3)z = 1

a) For what values of k will the planes
intersect in a point?

b) For what values of k will the planes
intersect in a line?

c) For what values of k will the planes
form a triangular prism?

37. The following system of equations
represents three distinct parallel planes.
ax+ 5y+4z=3
4x + by + bz= 3

3x+ cy+6z=d
Find the values of a, b, c, and d.

38. Prove that the system
a1x + b1y + c1z= d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

represents three distinct parallel planes
provided that
a1 : a2 : a3 = : b2 : b3 = : c2 : c3

anda1: a2 * d1:d2 and a1: a3 * d1:d3
39. Find the distance between the given point

and the given plane.
a) (0,0,0) x+2y+3z=3
b) (3,2,—4) 5x+3y+7z=3
c) (0,2,—3)

r=(2 + 3k+ 2m,3 — 2k+ 4m,1 +k+ 2m)
d) (1,5,1)

r=(2m+k,1 +m+4k,3 —2k — 3m)
40. Find the distance between the given point

and the given line.

a) (0,0,0) r=(8,1,3)+k(5,3,—2)
b) (3,—1,4) r=(2,3,1)+k(6,0,—1)

c) (1,—1,8)

d) (0,0,0)

e) (—3,4,8)

= =
2 —3 5

x+2y—1 z+3
—1 4 7

= Y±_, z = 3
2 —3

41. Given the points P(—1,3,3) and Q(—3,4,2)
and the plane _____
11: r = (2,1,4) + m(1,0,1)+ k(2,—1,1).
Prove that every point on the line PQ lies in
the plane 11.

42. The plane r = (22 + 3s + t,b—s + 2t,b+9t)
is parallel to the line r = (2,1,6) + k(0,a,b).
Find the relationship between a and b.

43. Find the intersection of the plane
r = (2,6,1) + s(1,—1,—1) + t(3,4,2) and the

xy-plane.
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44. Find the distance between the pairs of
parallel lines
r= (4 + k,l + 3k,1 — 7k) and
r = (—1 + k,1 + 3k,3 — 7k)

45. Find the value of A so that the distance
from the point (—2,1,—3) to the plane
Ax + y — 2z = —1 is 4.

46. Given the system of equations
y+ z=1

kx+ my+ tz=a
(k + l)x + (m + l)y + (t + 1)z = 3
where k, m, and t l
a) For what value of a will this system

have an infinity of solutions?
b) For what value of a will this system

have no solution?
c) For what value of a will this system

have a single solution?

47. Determine the distance between the
parallel planes 2x — 2y + z = 1 and
x + By + Cz = —3.

48. Find a vector equation for the line through
the point (1,0,1) that is parallel to each of
the planes 2x + y + 3z = 1 and
x — 2y + z = 2.

49. Given the planes
p=x+y+z
q = 2x — y — z
w = 3x + 2y + z
Express each of x, y and z in terms of p. q,
and w.

50. Given the planes x + y + z = 1 and
2x — 3y + z = —1

a) Write an equation for a plane that
intersects these two planes in the point
(2,1,—2).

b) Write an equation for a plane that
intersects these two planes in a line.

c) Write an equation for a plane that
forms a triangular prism with these two
planes.

51. Given theplane ____ ____
H: r = (11,5,1) + t(3,—2,6) + s(O,—3,7). A
point A lies on plane H such that OA is
parallel to u = (7,3,0). Find the coordinates
of point A.

52. Given the line r = (2,a,b) + k(—1,1,1) and
the plane r = (4 — 2s + t,2 + 6s + t,5 + 4s).
For what values of a and b will the line lie
in the plane?

53. Giventheplanell:r=r0+ka+mb
where r0 = OP0. Show that the point P lies
in plane H if and only ifPP.(axb) = 0.

54. Show that a vector equation of the plane
through the three points A, B, and C with
position vectors a, b and c respectively is

r=a+k(b—a)+s(c—a)
55. A tetrahedron ABCD is given with vertices

at the points A(l,0,0), B(0,l,0), C(0,0,l) and
D(1,1,1).
a) Find the equation of the plane

containing the points A, B and C.
b) Find the equation of the plane

containing the points B, C and D.
c) Find the value of the acute angle

between the planes ABC and BCD,
giving your answer to the nearest
degree.

d) Find the perpendicular distance from
the point D to the plane ABC, leaving
your answer in surd form.

e) Calculate the volume of the tetrahedron
ABCD.

($5 S
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56. The planes p' and P2 are given with
equations
p: 2x + 3y — z = 4,

P2: 3x + 5y — 4z = —1.

a) Find, in parametric form, the equation
of the line 1 that is the intersection of
the planes p1 and P2

b) The plane with equation
cx + y + 2z = 9,
where c is a constant, contains the
line 1. Find the value of the constant c.

c) Find the equation of the plane
containing I and passing through the
point with coordinates (0,0,1).

(85 S)

57. A line 1 passes through the points A and B
whose position vectors are 9i — 5j + 2k

and 5 i — j respectively. A plane fl has a
normal vector 3 i — 4j — k and it passes
through the point whose position vector is
—i+4k.
a) Show that the position vector of the

point of intersection of 1 and 11 is
i + 3j — 2k.

b) Find the position vector of the foot of
the perpendicular from A onto the
plane U.

c) The line m is the projection of the line 1
onto the plane 11. Find, in any form, the
equation of the line m.

d) The line n is the reflection of the line 1
in the plane fl. Show that a vector in
the direction of n is —I + 2j + 2k

(88 H)

Two lines L1 and L2 are given whose
equations are

L = =
2 3 1

L2: = =
1 —1 2

a) Prove that the lines L1 and L2 intersect
and find the coordinates of F, their
point of intersection.

b) Find a vector which is perpendicular at
the same time to both of the lines L1 and
L2 and hence, or otherwise, find the
equation of the plane p which contains
both the lines L1 and L2.

c) Find the perpendicular distance from
the origin 0 on to the plane p, giving
your answer correct to two decimal
places.

84 S)

9. The equations of three planes H, 112 and
113 are

8x — y + 3z = 10
Find, correct to the nearest degree, the
angle between Il and U2.

b) Show that the three planes intersect in a
line, and give the Cartesian equations
of this line.

c) The point A has position vector
17 i + 2] + 8k. The point B is the
foot of the perpendicular from A to the
plane U3. Find the position vector of B.

d) Show thatAB =
(87 H

60. a) Using a rectangular Cartesian
co-ordinate system Oxyz determine the
equation of the plane 11 passing
through the origin 0 and the points
A(1,0,2) and B(0,3,—1). Write down the
components of a vector n normal to 11.

b) Derive the parametric form of the
equation of the normal to the plane U
through A. Calculate the co-ordinates of
the point of intersection H of this
normal with the plane whose equation
is x = —5.

c) The point P(0,—4,3) is joined to the
point Q(0,0,q), q R. Given that (PQ) is
parallel to the plane 11, find the value
of q.

11
112

[13

a)

3x — y + z = 3
2x + y + z = 4
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CHAPTER SEVEN

Matrices and Linear
Trans formations
Many of the introductions to television programs and movies include
visual displays of transformations such as rotations and dilatations. Some
well-known examples of this are the introductions to "The National" and
"The Journal" on CBC television, or the text that appears to move into
outer space in the introduction and credits of the "Star Wars" movies.

Transformations are a part of our life in a modern society. Indeed,
transformations are involved in any form of representation—be it
drawing or painting, sculpture, playing music, etc.

( -r
for ev - er andL
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Transformations have an increasingly wide application in design
technology. Computer programs are now available to architects as an aid
in the design of elaborate structures. Engineers use similar programs to
help them develop new projects.

In this chapter, you will be introduced to a new mathematical object called
a matrix (plural matrices) that can be used as an operator to effect various
transformations.

Matrices provide a very compact way of expressing transformations.

Recall that many vector equations can be applied to 2-space, 3-space, and
even to spaces of higher dimensions. Matrix equations also have this same
universality.

This chapter will provide you with an extensive study of transformations
of 2-space, but the principles that you learn will be readily applicable to
transformations of 3-space.

NEW
N EWS
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7 1 Iiatrices
In this section, you will be taking an elementary look at matrices, their
properties, and some of their algebra. The main purpose of this chapter is
the study of matrices as operators that transform vectors. That study will
begin in the next section.

D E F I N I T, N A matrix is a rectangular array of numbers.

For example, A =
[2

1

'], B = [], c = [0 ] are matrices.

The numbers composing the matrix are called elements. (They are also
known as entries or components.)

The Dj,nencjo,, of a %ia(riv

A matrix can be described by its rows or its columns of elements.
For example, in A,

the istrowis 2 1 —1
the2ndrowis 5 6 0

the 1st column is 2; the 2nd column is 1; the 3rd column is —1
5 6 0

Since the matrix A has 2 rows and 3 columns,
A is known as a 2 x 3 matrix (read '2 by 3 matrix").
Alternatively, A is said to have dimension 2 x 3 (or order 2 x 3, or
shape 2 x 3).

o E F I N / / N A matrix that has m rows and n columns is known as an m x n matrix.

Example 1 Whatare the dimensions of the matrices B and C above?

Solution The matrix B above is a 3 x 1 matrix.
The matrix C above is a 2 x 2 matrix. •

5ub.ccipt \olatin

Given any matrix A, it is often useful to specify its elements in the
following way.

The element in the ith row,jth column is represented by ay.

You can also abbreviate A to A = [a1.

Thus, if A is a 2 x 2 matrix, it can be written as

A = [au] =
[au a12]a21 a22
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L:quali
Two matrices A = [aJ and B = [ba] are equal if and only if all their
corresponding elements are respectively equal.
That is, a = b for all values of i andj.
(Thus only matrices that have the same dimensions can be equal.)

Example 2 GivenM=I l,iv=I x 2YlandM=Nfindthevaluesofxy
L—z 5] Lii 5 J

and z.

Solution The elements in the 1st row, 1st column, are 3 and x.
Thusx= 3.
The elements in the 1st row, 2nd column, are —2 and 2y.
Thusy= —1.
The elements in the 2nd row, 1st column, are —z and 11.
Thusz=—11. U

.Sqiíar' /U a! rice

E F I N I T 0 N
A square matrix of order p is a matrix of dimension p x p.

The properties and operations discussed in the rest of this section will be
devoted entirely to 2 x 2 matrices, that is, square matrices of order 2. This
is to prepare you for the 'matrices as operators' that you will be using in
the rest of the chapter. Whenever the term "matrix" is used, it will mean
"2 x 2 matrix".

Tlií' 1 l'hra ef 2 2 1a!rice

:1cI,li lieu anl Suu/,ii,uiI('ui
ía bl 1w xlGiven M = I i and N = I I the sum M + N is defined as follows:
Lc di Ly zJ

Ia+w b+xlM + N = I i Corresponding elements are added.
Lc+y d+zJ

The difference is defined as follows:

M — N =
[a

— w b —

X] Corresponding elements are subtracted.
c—y d—z

Tue /e'' Ia!, i v
The 2 x 2 zero matrix has each element equal to zero. It will be represented
by 02X2.

Thus 02X2 =[ ]
The zero matrix is called the neutral element for the addition of
2 x 2 matrices because, for any matrix M,
M+O22=M and O22+M=M.
The zero matrix is also known as the null matrix.
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Cominutativity of Mat ix 4ddi rj(,fr
The addition of matrices is commutative.
That is, for any matrices M and N, M + N = N + M.

ía bl 1w xProof: Given M = I I and N = I
Lc di Ly z

b+x
Lc+y d+z

and
x+b

Ly+c z+d
Since the addition of numbers is commutative,
a + w=w+ a, b+x= x+ b, c =y+ C, andd+ z+ d.
Hence
M + N = N + M.

ssoiativitv of Matrix Addition
The addition of matrices is associative. That is, given any matrices L, M
and N,
(L + M) + N = L + (M + N).
Thus, brackets are not required when adding matrices. The expression
L + M + Ncan be used to mean (L + M) + N.
You will have an opportunity to prove this property in the exercises.

he Negative of a 'ñatrix
Given the matrix A = [au], then the matrix [—au] = —A.

—A is called the negative of A.
—A is also called the additive inverse of A, because
A + (—A) = 02X2 = (—A) + A.

ultiplication of a Matrix by a Scalar
Since matrix addition is associative, it seems natural to write
M + M + M = 3M.
This operation is accepted, and is called
multiplication of a matrix by a scalar.

ía blGiven a matrix M = I I and a real number k,
Lc di
Ika kbthen kM=iLkc kd
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Example 3 GivenM= 1 1 andN= 12 hl, calculate
L—2 OJ LO ii

a) —1M b) 4N c) 2M+3N

Solution a) —1M — _l1 3] — 1—1 (—4) —1(3)] — 1 —3
—

L—2 oi
—

L—i (—2) —1(0)]
— L 0

Notice that the matrix —1M = —M.

b) 4N— 412 —'l_ 14(2) 4(—1)] _18 —4—

Lo 1YL4(o) 4(1) fLo 4

c) 2M+3N=2I 31+312 —1
[—2 OJ LO 1

— f—8 6] 16 —3]j—2 3] •—
L— 0] Lo 3iL—4 3]

Note: A 2 x 2 matrix is in fact an ordered quadruple of numbers.
Thus, it can be considered a "four-dimensional vector". The
properties listed above go a long way towards showing that 2 x 2
matrices, together with the operations of matrix addition, and of
multiplication of a matrix by a scalar, form a vector space. You will
have an opportunity to prove this in the exercises.

Properties of 2 2 M,rrices
2 x 2 Matrices form a vector space V2><2, that is, the following properties
hold.

P R 0 P E R T I E
Matrix Addition

Al. V2><2 is closed under addition: M, N V2><2 implies M + N V2<2
A2. Addition is associative: L + (M + N) = (L + M) + N
A3. There is a 02x2 V2><2 such that for all M V<2, M + 02X2 = M
A4. If M V2><2, then there exists —M V2<2 such that M + (—M) = 02X2

A5. Addition is commutative: M + N = N + M
(These properties mean that V22 is a commutative group with respect to
addition.)

P R 0 P E R T I E
Multiplication of a Matrix by a Scalar

Ml. If M V22, k ER, then kM V2<2
M2. (kp)M=k(pM),k,pER
M3. k(M + N) = kM + kN
M4. (k + p)M = kM + pM
M5. There exists 1 R such that 1M =M
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7.1 Exercises

1. Give the dimensions of the following
matrices.

1268 ii —

A=i I B=i 6L—1 0 0 3J I
L4 1

c=1 2

IS
L -2

[310 1

2.A=[au]=I —2 4 5 2

[—1 0 8 —6
a) State the values of a11, a14, a23, a33.
b) Use the ay notation to describe the

positions of the zero elements in this
matrix.

6. Using the matrices A, B, C given in question
5, calculate the matrix X in the following
cases.

7. Show that no real values of x and y exist
such that

13x x+yl 6 7
L2y x—yJ Lio 4

8. Using as examples any of the matrices
given in question 5, illustrate the
following.
a) the commutative property of matrix

addition
b) the associative property of matrix

addition

For the following questions, in which you will
be asked to prove various properties of 2 x 2
matrices belonging to a vector space, use the
matrices

M = 1' bl, N = fe -"1, L = 1W
Lc dJ Lg hi Ly z

9. Prove property Al: if M and N are both
2 x 2 matrices, then M +N is a 2 x 2 matrix.

10. Prove property A2: matrix addition is
associative, that is,
L + (M + N) = (L + M) + N.

11. ProvepropertyMl:ifk€IJi,andMisa2 x 2
matrix, then kM is a 2 x 2 matrix.

12. Prove property M2: if k, p l, then
(kp)M = k(pM). (This was illustrated in
parts h) and i) of question 5.)

13. Prove property M3: k(M + N) = kM + kN.
(This was illustrated in parts I) and g) of
question 5.)

14. Prove property M4: (k + p)M = kM + pM.

Your solutions to questions 9—14, together with
the proofs supplied in the text of section 7.1,
show that V22 is a vector space.

a) 2X=A
b) X—3B=022

c) B—X=A
d) 5X+C=3X—A

3. Calculate the values of the variables in the
following.

a) 1x 2114 )'

L3 0J Lz W
b) 13x 11 9 —8

L5 Wi Lw—x z

4. Calculate the values of the variables in the
following.

a) 12 31+1x 6113 Y
L5 zi Lo —ii Lw 0

b) 1' '1—1 b117 4L8 —7i Lc 5J L8 d
c) 21" 11319 b117

L8 —71 Lc 5] LB d
d) 1"y 1+1° xlii 7

L z xi Lx Oi L3 x
1—501 12 35. GivenA=i i,B=i
L 3 01 [—1 —1

c = 1
' 1 calculate the following.

L—4 6]
a) —B d) A+B+C g) 2B+2C
b) 3A e) A—2C h) 3(2A)

c) 3A—B f) 2(B+C) i) 6A
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'.2 Matrces and Linear Transformations

In this section you will be looking at transformations of vectors in V2
using 2 x 2 matrices as operators. It will be necessary to use a different
notation when expressing vectors in component form.

The notation v = lxi will replace the notation v = (x,y).
LYJ

The former notation is called a column vector or a 2 x 1 matrix.

A transformation of a vector v is a function or mapping that changes v
into another vector v'.
For example,

F: v — v' where v = lxi and v' = I 3x is a transformation.
LyJ L—yJ

It can be equally well described in the following ways.
lxi 13x1 lxi 13x1 lxi F 13x1

F:L ]L-]
or

FL ]L-]
or

L
rh-i or F(v)=v

y y y - y y
The vector v' is known as the image of vunder F.
You can also say that v is mapped onto v' by F.

D E F I N I T I 0 N I'raiicfrmatit,
A linear transformation T of a vector space is a transformation that has
both of the following properties.
1. T(u± v) = T(u) + T(v)
2. T(kv)=k[T(v)1
where u, v are vectors and k is a real number.

Example 1 Check if the transformation F as defined above, namely F: [x] — [fl], is

a linear transformation.

Solution lxi 1w] lx + wLetu= andv= ,thenu+v=

F(u) = [] F(v) = [] F(u + v)=[1]= [w]
NowF(u) + F(v) = [] + [3w]

=
[3x+3w]

= F(u +

Thus the first property holds.

F(kv) =
F(k['])

=
Fft"]

=[']
k[F(v)J = k[3w]

= [3] = F(kv)

Thus the second property also holds.
Hence, F is a linear transformation. U
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Example 2 Check if the following are linear transformations.

a) G:ix1—*1x+21 b) H:[Xl Ix+2y1I-*1Lyi L5XJ yj L3x—yi

Solution
Letu=iXiandv=iwi,thenu+v=ix+1Lyi Lzi Ly+zj

a) G(u)=Ix+21 G(v)=1w+2lL5xJ L5Wi
G(u + ) — [x

+ w) +
2] = [x

+ w + 21—

5(x+w) 5x+5wj

NowG(u)+G(v)=[X+2i+FW+2
= x+w+41 - -

5x J L 5w 1 [ 5x + 5w ]
* G(u + v)

Thus the first property does not hold. The transformation G is not
linear.

b) H(u) = 1x +
2y] H(v)

Iw + 2z
L3x—y L3—]

H(u+v)—E Ix+2y+w+2z1—

3(x+w)—+Z)]L3x—y+3w_z]
Fx+2y+w+2z1H(u) + H(v) =
L 3x — y + 3w — zi

= H(u + v)

Thus the first property holds.

H(kv) = H(kIWi) = H1k 1kw + 2kzl
LzJ LkZiL3kW—kz]

k[H(v)J k[w+2Z1
Ikw+2kzl -

= 3w_zjL3kw—kzj'''
Thus the second property also holds.
Hence, H is a linear transformation. •

A general linear transformation in V2 has the following form.
1x1

Iax+b][x'1T:I I—I
LYJ LCX+dy y

wherea, b, c and d are real numbers.
You will have an opportunity in the exercises to prove that T thus defined
is indeed a linear transformation.
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\iiIi,; fr Iri,icfrrc
It is customary to use matrix notation to indicate the relationship between

FxlandIax+
Ly] Lcx+dy

DEFINITION [a b][x][ax+bY]c d y cx+dy
This definition of a matrix multiplying a column vector can be
remembered in the following way.

ía blFxl Iax+byl ía blFxl [ax+by
I ii 1=1 andi ii
Lc dJLyJ Lcx+dyi Lc dJLyJ Lcx+dy

This is called a "row-column" multiplication process. It is the basis of
multiplication of matrices in general, as you shall see in the forthcoming
sections.
You can also think of the result of this multiplication in the following
way.

[dot product of the first row with 1x

L
dot product of the second row with

Ly
Also, note that the product (2 x 2 matrix) x (2 x 1 matrix) gives a
(2 x 1 matrix).
Thus the transformation (i can be written in matrix form, as follows,

[x][a b][x][x] ®y cdy y'
or even more compactly like this

v—*Mv =v', ®
- [x1 Ix'] ía bwherev=i I,V =1 i,andM=i

LyJ LyJ Lc d

Here, the matrix M is an operator called the transformation matrix of T.

Note: The above discussion implies that a 2 x 2 matrix will always express
a linear transformation of 'V2.
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Example 3 Find the images of each of the following vectors under the transformation
matrixM=1 —

LO 1

141 1—21 Iiu=I I V1 I lI[3] L 5J [0
Sketch (as position vectors) u, v, i and their images u', v', i'.

Solution
U' — Mu — 12 —'1141 — l(2)(4) + (—')(3)1 — 15—

Lo 1]L3iL(o)(4)+(1)(3) ]L3
— Mv= 12 —111—21 =1(2)(2) + (—')()1 = 1——

Lo i]L 5] L(o)(—2)+(1)(5) ] L 5

i'—Mi— 12 —11111 1(2)(1) + (—')(°)l _12—
Lo 1]L0FL(o)(1)+(1)(o) ]Lo

y

V V

T

Note: The transformation affects the entire plane. The vectors u, V. and i
are position vectors of just some of the points that are transformed.

Indeed, under a transformation described by matrix M, every vector maps
onto a vector Mv.

Suppose v is the position vector OP of the point P.
and Mv is the position vector of the point P'.
Then you can say that
P maps onto point P' under the transformation defined by the matrix M, or

M
P—. P'.

y

V !

a'—
P
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The Image of a Line
One of the most important properties of a linear transformation is that it
transforms a straight line into another straight line, as the following
example will show.

Example 4 Given a linear transformation whose matrix isT, find the image under T
of the straight line L whose vector equation is r = r0 + km.

SoI iiii on Recall that r is the position vector of any point of L.
Let r' be the position vector of any point of the image of L.
Then r' =T(r)
= T(r0 + km)
= T(r0) + T(km) linear transformat

= T(r0) +k[T(m)] linear transfc

= r0' + km',
where r0' and m' are the images of r0 andm respectively.
Thus the image of L has vector equation r' = r0' + km'.

This is the equation of a straight line. •

A P E R T
Thus, straight lines are transformed into straight lines by linear transformations.

The following example uses the above property to show how a diagram
can portray the effect of a linear transformation.
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Example 5 Consider the unit square S whose vertices are 0(0,0), A(1,O), B(1,1), C(0,1).
Describe the image of S under the transformation defined by matrix

M=I 0
LO —3

The unit square seems to have been enlarged and reflected in the x-axis.
Recall that the transformation affects the entire plane, not just the unit
square.

.

Sot ution Use the following notation.

points 0 A B C images 0' A' B' C'
position vectors 0 a b c images 0' a' b' c'

MO=1 01101=10+01=101==
LO —3JLOJ L0+0J LOJ
13 ollil 13+01 131 — —ifMa=I II 1=1 1=1 i=a =OA
LO —3JLOJ L0+Oi LOJ

Mb=I °11'1=1°1=1 1==ii
LO —3JL1J L0—3J L—3J

Mc=I 0110110+011 o1oc
[0 —3JL1J L0—3J L—3J

Thus the point 0 remains at 0,
the point A(1,0) has image A'(3,0),
the point B(1,1) has image B'(3,—3),

and the point C(0,1) has image C'(0,—3).

Since straight lines are mapped onto straight lines, you know that OA',
A'B', B'C' and C'O are straight lines.
Thus, the transformation is as shown in this diagram.

y
GB
01A

x



7.2 Matrices and Linear Transformations 301

7.2 Exercises

1. Check if the following are linear
transformations.

lxi 13x
F:I I-*I

LyJ L4y
lxi Ix+yG:i i—i
LyJ Lx—y
Ixl lx+iH:i i—i
LyJ L y

2. State the matrix of each of the linear
transformations found in question 1.

3. Prove that the transformation T:v — Mv

defined by the matrix M = [z ] is a
linear transformation.

4. Calculate the following products.

a) 1—' 21151 b) 10 211—3
L 6 —4JL4J L2 OiL 1

5. Calculate the values of the variables in the
following.

15 xliii 1 2a) i II 1=1
L4 yJL2J L—i

b) 12 311x1=17
Li —1JLyJ Li

c) 12x )1P1=1x
L—y xJL3J Ly

d) 1_x 311x1=1_9
Ly zJLOJ L 3

6. Show that there are no real values of x and
ix yllxl 1 0

ysuchthati II 1=1
L3 5JLyJ L—i

7. Find the images of the following vectors
under the transformation matrix

M=I
L4 3

— 10v=I
L3

Sketch as position vectors U, V. w and their
images u', v', w'.

1—2 41 13 s1 1—i8.ForM=l i,N=i i,v=i
LO 6J L—7 ii L4

find
a) Mv b) Nv c) M(Nv) d) N(Mv)
Draw conclusions.

9. For the following, use the matrix M = 12
3

rAi L4 5

0 is the zero vector I
LO

i and j are the standard basis vectors, that
- Iii - lois,=I iandj=i

LOJ Li
Calculate the following.

a)M0 b)Mi c) Mj
Draw conclusions.

10. The straight line L has vector equation
r = r0 + km. where1xi 14i 12r=i i,r0=i i,m=i

Lyi Lii L—i
a) Find the vector equation of the image of

L under the transformation of matrix

A=I 3 i
L—2 1

b) Graph L and its image on the same set
of axes.

11. a) Find the coordinates of two points A
and B on the line L whose Cartesian
equation isy=2x+ i.

b) Find the image A' of A, and the image
B' of B, under the transformation of

matrixM= 1—L2 0
c) Find the Cartesian equation of the line

L' that passes through A' and B'.
d) What is the image of L under M?

12. a) Consider the points 0(0,0), A(3,1) and
B(i,4). If OABC is a parallelogram,
calculate the coordinates of the point C.
Sketch OABC on a grid.

b) Findtheimageo'A'B'C' of the
parallelogram OABC under the

transformation of matrix M = 12 1

LO 3
c) Sketch O'A'B'C' on the same grid.

Describe the nature of O'A'B'C'.

Ixl 12R:i i—i
LyJ Lx
Ixl 1x2S:

-* []

- 12u=I
LO

Iiw=I
L—2
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7.3 The Effect of a Linear Transformation

Since any linear transformation T of V2 can always be represented by its
matrix, M, the expression "the transformation M" can clearly replace the
expression "the transformation whose matrix is M".

As you have seen, linear transformations are defined for vector spaces.
You can observe their effect on points in R2 as follows. By considering the
vectors of V2 as position vectors of points in R2, you can examine the effect
of a linear transformation of their tips.

Thus, you can speak of linear transformations 'of a plane'.

Some questions of the last exercises illustrated properties of matrices as
transformations. These properties will be demonstrated here.

Iiiiaqe / () IY 1 I IIUdi I,iii //f?iliiIi

Consider the general linear transformation M = b

Lc d

MO= 1' bliol 1(a)(0)+(b)(0)1= 101=
Lc dJLOJ L(c)(O)+(d)(O)J LOJ

Thus the image of 0 is always 0.

I/?/l/('S / I',iri//'I I/H\ /' i Li,ia, Iiiif&iiiiiIi'ii
Consider the two parallel lines L1 and L2 whose vector equations are

L1: r=a+krn
L2: s=b+qm
where L1 contains a point A whose position vector is a,

L2 contains a point B whose position vector is 1.',

r and s are position vectors of a general point on L1 and L2
respectively, and k, q are scalars.

(Notice that the lines both have the same direction vector m. The lines are
thus parallel.)

As you saw in Example 4 of the previous section (page 299), the images of
L1 and L2 under a linear transformation T will be

L1': r'=a'+km'
L2': s'=b'+qm'.
Thus the image lines will have the same direction m', that is, they will be
parallel.

These conditions, together with the examples and exercises seen so far in
this chapter, lead to the following generalization.
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A general linear transformation of a plane may pull, push, turn, stretch, or
compress the plane, in any directions, with the two following provisos.

PR OP ER TIEs 1. The origin does notmove.
2. Parallelism is preserved.

One thing that a linear transformation cannot perform is a translation.
Indeed, a translation of the plane would violate the first proviso.

Rc'adii iq and i%riiii - air!v

Consider the effect of a general transformation M = Fi bl on theLc di
standard basis vectors i = 1 and j = I

LOJ Li

Mi= F" bull = lu1 andMj= ía /u1101 = lb
L1 dJLOJ Li Lc dJL1J LI

Thus, the first column of a matrix Mis the image of iunder M and the
second column of a matrix M is the image off under M.

This beautiful property allows you to do two very useful things.
1. WRITING A MATRIX

Given a transformation, you can state its matrix as follows.
Write the first column as the image of i,
and the second column as the image off.

2. READING A MATRIX
Given a matrix, you can determine the linear transformation it
represents as follows.
Its first column is the image of i,
and its second column is the image off.

The following examples show how this knowledge can be applied.

Example 1 State the matrix M of the transformation that reflects the plane in the
y-axis.

y
So Jut ion If all vectors are reflected in they axis then

j = 11 — 1_il; this is the first column of M.LOi LOi- 101 101 1 J

j = I —, i I; this is the second column of M. —.* -Lii Lii
I

ThusthematrixMy=F1 01 UL 0 1]
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Example 2 Describe the transformation whose matrix is D = 12 0
LO 2

Solution Read the columns of D.

The image of i is the first column, 121. Thus 111 + 1
LOi L0J LO

101 101 FoThe image of j is the second column, I I. Thus i i —
L2J Lii L2

Thus, both iand fare doubled in magnitude, or 'enlarged
by a factor of 2'.

Hence, the transformation D can be described as an enlargement or a
dilatation of factor 2. U

(See a diagram of the effect of "D2", in the second of the following
illustrations.)

To summarize this section, you will observe the effects of some common
linear transformation matrices, as illustrated on the figure OABCD, which
is the unit square OABC with BC produced to D so that BC =CD. (The use of
a non-symmetric figure such as OABCD gives a clearer idea of the
transformation in some cases.)

The image figure can be obtained in each case by calculating the image of
each of the points 0, A, B, C, and D. You will have an opportunity to verify
these illustrations in the exercises.

12 0D2 -
LO 2

O'O AA'

BLCD

Transformation
identity

SUMMARY

Matrix
1=11 0

LO

Effect
y

DO—1

C B'
CB

M,=Il 0
LO 1

M45=[° ]

dilatation,
of factor 2

reflection
in y-axis

reflection
in line y = x

OH ID' x
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10 0
02x2_Lo 0

HX2=[' ] y
D' C' B'

O J A x

dilatation
of factor —1,
or reflection in 0

projection
onto x-axis

null
transformation

shear I Ix-axis,
of factor 2

When a linear transformation acts on a plane,
1. the origin does not move,
2. parallelism is preserved.

The matrix M of a linear transformation is such that its first column is the
image of i under M, and its second column is the image of junderM.

7- 1o-iC' R90=I
+

Li 0

14 0

Sx4L 1

y
B'
c'fl

4'

0'

D'I ' x

y
C' B'

counterclockwise
rotation about 0,
through 90°

one-way stretch lix-axis,
of factor 4

C,

1—i °1
0 —ii ATT1

A' X

i 0
Px I

LO 0

BD

D'±
0' A'
C' B'

x

G=I 1 2
L—3 4

y D '

/\\

general linear
transformation

0' x
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7.3 Exercises

In the following,
0 shall refer to the origin (0,0).

1. Justify the diagrams of pages 304—305, at
the end of section 7.3, that show the effect
of each of the following transformations.
I, D2, M,
M45, R90, S4,
D1, PX °2x2,
H2, and G.

2. Describe in words the effect of the
following transformations, shown on
pages 304—305.

the identity transformation I =[

the null transformation °2x2 =
LO 0

3. Write the matrix that corresponds to the
given transformation by finding the image
of i and the image off.
a) a dilatation of factor 3
b) reflection in the x-axis
c) counterclockwise rotation about 0

through 270°
d) counterclockwise rotation about 0

through 180°
e) projection onto the y-axis
f) reflection in the line y = —x

4. By finding the images of the points 0,
P(i,0), Q(l,i), R(0,i) sketch the effect of
each of the transformations of question 3
on the unit square.

5. Compare your answer to question 3d) with

the matrix D_1 = 1. listed in section
L 0 —ii

7.3 as a "dilatation of factor —1" or a
"reflection in 0".
Draw conclusions.

6. By reading the columns of the following
matrices, describe the associated
transformation in each case.

A=I0 01 F=I1 0
LO ii L4 1

B=I° 0 1 G=I1 0
LO 0.5J Li 0

c=I 1 H=I 0 —3
LO ii L—3 0

D=12 01 1=11 0
LO —2J LO 1

E=I 01 =1—1 0
LO ii LO 0

7. By finding the images of the points 0,
P(i,0), Q(i,1), R(0,i) sketch the effect of
each of the transformations of question 6
on the unit square.

8. What is the image of the point 0 under the
1w xltransformation matrix M = I I?Ly zJ

9. The transformation matrix s = P 21 isLO ii
known as a horizontal shear of factor 2.
Some of the properties of a shear will
appear as answers to the following
questions.
a) Find the images of (1,0) and (a,0),

where a l.
b) Describe how any point of the x-axis is

transformed.
c) Find the images of (0,1) and (a,1),

where a tJ.
d) Describe how any point on the line

y = 1 is transformed.
e) Find the image of the point (0,b), where

b R.
f) Describe how any point on the y-axis is

transformed.

Icos 30° —sin 30°10. Show the effect of R = I
Lsin 30 cos 30

on the unit square.
Describe the transformation
associated with the matrix R.
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15. Consider the straight lines L1 and L2 with
the following vector equations.

L: r= [] + k[3]

L2:s= [] +[—]
a) Explain why the lines L1 and L2 are

parallel, and graph them on the same
set of axes.

b) Find the vector equations of the images
of L1 and L2 under the transformation

M=I 1

L2 4
c) Show that these images are also

parallel.

16. Given the matrix S = 1k 01, wherek is a
LO kJ

positive scalar.
a) Find the image under S of the unit

square.
b) Calculate the image under S of a general

vector v = 1x
Ly

c) Describe the image under S of the entire
x plane.

17. Repeat question 16 using the matrix

s=12 3
L6 9

18. In question 5 you determined that the
following transformations in 2-space are
equivalent.
A. a dilatation of factor —1
B. a reflection in 0
Consider also another transformation
C. a rotation through 1 800 about 0
Is this transformation equivalent to A and
to B?
Discuss whether or not these
transformations are also equivalent in
3-space.

11. Write the matrix of the following
transformations.
a) a stretch parallel to the x-axis

of factor 5

b) a dilatation of factor
4

c) a two-way stretch,
of factor 2 parallel to the x-axis, and
of factor 3 parallel to the y-axis

d) a perpendicular projection
onto the line y = x

e) a shear parallel to the x-axis
of factor—i

f) a shear parallel to the y-axis of factor 5
g) a reflection in the y-axis followed by a

dilatation of factor 4

12. Sketch the effects of each of the
transformations of question 11 on the unit
square.

13. Write the matrix of a counterclockwise
rotation about the origin, through 450

y
B

\\
A

14. a) Verify that the following four points
determine the vertices of a trapezoid.
A(—1,2), B(9,0), C(5,4), D(0,5)

D
C

AL N
b) Transform this trapezoid with the

12 —3matrix M = I
L2 5

c) Show that the images of the parallel
sides of the trapezoid remain parallel
under the transformation.
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7.4 Rotations and Reflections

In this section you will learn about two important linear transformations,
namely rotations, that you will be using in chapter 8, and reflections. You
will also make further observations on linear transformations in general.
These should help you to solve transformation problems with more
assurance.

Example 1 Find the matrix R0 of the transformation that rotates the plane
counterclockwise about the origin 0, through an angle of 0.

Solution If all vectors are rotated counterclockwise about 0, through 0, then this
will also be true for i and j.
Let i = OA, andj= OB.
Let the image of i be OP. that is, let OA —* OP. Under a rotation, lengths are
invariant, so IOPI = Ill = 1.

Foci FcosOThusOP=i 1=1
LcPJ LsinO

y y
B B

Q

________ ________ ________
Qcose Ax 0 AX

Similarly, let the image off be OQ, that is, let OB —* OQ.

Then the angle between OQ and i is (900 + 0).
Note also that IOQI = il = 1.

Thus OQ = 10)1 = 10s (90° + 0)1 = [90° — (90° + 0)]
LDQi Lsin (90° + 0)] Lcos [90° — (90° + 0)]

=Isin(—0)1
Lcos (—0)]

= 1—sin 0
L cos0

(The formulas on page 541 have been used.)

FcosOl F—sin 01
Thus,z—..I . Iandj—i IL5'n OJ L cos Ui 1 1 7

P R 0 P E R T V Hence the matrix R0 [cos0 —sin
0] /sinO

0 X

This is known as a positive rotation through 0. (A counterclockwise
rotation is a positive rotation.) •
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Example 2 Find the matrix M of the transformation that reflects the plane in the line
L, where L passes through the origin and makes an angle 4) with the
positive x-axis.

So Jut ion If all vectors are reflected in L, then this will also be true for i and j.
To obtain the image of any point D under a reflection in L, construct the
perpendicular DG from D to the line L. Extend this perpendicular on the
other side of L so that PG = GE. E is then the image of D.
Let the image of ibe OR, that is, let OA — OR. Under a reflection, lengths

are invariant, solORl = I= 1. Also, the right triangle OAH, where H is the
foot of the perpendicular from A to the line L, is congruent to the triangle
ORH. Hence, the angle between L and OR is the same as the angle between
OA and L, namely 4).
Thus, the angle between OR and i is 24).

Hence, = Ic 24)

Lsin 24)
y E yR L B'., L

X X

I

Similarly, let the image of jbe OS, that is, let OB — OS.

Then the angle between L and OS is equal to the angle between OB and L,
namely 900 — 4)

Hence, the angle between OS and i is —([90 —4)] — 4)) = (24) — 90°).

Thus OS = Icos (24) —
90°)1 = fcos [—(90° — 24))]

Lsin (24) — 90°)J Lsin [(90° — 24))]

= cos [90° — 24)]
L —sin [90° — 24)]

sin24)
L—cos 24)

(The formulas on page 541 have been used.)

Icos 24)1 1 sin 24)Thus,i—i iandj-÷i
Lsin 24)J ' L—cos 24) ., L

Hence the matrix M, =
[cos

24) sin
24)]

Notice that the slope of the L is tan4).
Thus, L has a Cartesian equation y = (tan4))x. U
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Icos2 sin21.Note: The matrix M4, = I I is very similar to the rotation
Lsin 2 —cos 2J

Icos 0 —sin 01matrix of Example 1, that is, R0 = I I. You must be
LsinO cos0J

careful not to confuse them. A reflection matrix, like Md,, is a
symmetric matrix. Its elements are symmetric about the leading
diagonal.

ía hThat is, it is of the form ILh b ding aigo al
The observations that follow should help you to make this distinction.

Ii Size in I Orieñtati n j rans rined ig ire

Consider the effect of the general linear transformation M = I" on the
Lc dJ

unit square OPQR.
Recall that under M, parallelism is preserved and 0 does not move. Thus
the image of the square OPQR will be a parallelogram OF'Q'R', where F' is
the image of F, Q' is the image of Q, and R' is the image of R.

R'
or

R H Q
0P

O'P'Q'R' has same O'P'Q'R' has opposite
orientation as OPQR orientation to OPQR

Reading the columns of M gives OF' = l'1, OR' =
LcJ Ld

Recall that the area of a parallelogram whose adjacent sides represent the
vectorsu and visluxvl.
However, the cross product is not defined in V2. In order to calculate the
area of the parallelogram OF'Q'R', you must imagine that it lies in the
xy-plane of a 3-space coordinate system.
Then the vector OF' = (a,c,O), and the vector OR' = (b,d,O).
Thus the area of OP'Q'R' is

IOF'xOR'l=l(a,c,O)x(b,d,O)l=lad—bcl
Since the area of the unit square is 1, the area of the transformed figure is
changed by a scale factor lad — bcl.

D E F I N I F I 0 N The quantity (ad — bc) is known as the determinant of [' ],
that is, the determinant of M, or det(M), or Ml.

abDet(M) can also be denoted by cd
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Notice that the original unit square OPQR is read counterclockwise. Also, from

the diagram, the slope of OP' is £, and the slope of OR' is 1•
a b

If OF' and OR' are in the first quadrant, and > £, then OP'Q'R' will beba
read counterclockwise.

Figure OPQR and figure O'P'Q'R' have the same orientation.

Observethat4> £ ad>bc ad—bc> 0 detM)> 0.ba
Similarly, you can see that if det(M) < 0, OP'Q'R' will be read clockwise.
Figure OPQR and figure O'P'Q'R' have opposite orientation.

This can be extended to all four quadrants.

Example 3 Calculate the area and describe the orientation of the image of the unit
square under each of the following transformations (taken from the
examples of the last section).

D2=F2 01 M=I1 °1 0

LO 2] L 0 ii LO 0

Solution Note that the area of the unit square is 1.

You can find the area scale factors by calculating the determinants.

det(D2) = (2)(2) — (0)(0) = 4

The image is enlarged 4 times.
Since 4> 0, the image retains the original orientation.

(D2 is a dilatation of factor 2.)

det(M) = (—1)(1) (0)(0) = —1.

The area of the image is unchanged.

Since —1 <0, the image has the opposite orientation.

(M, is a reflection in the y-axis.)

det(P,) = (1)(0) — (0)(0) = 0.

The image has zero area. Orientation is not defined for a figure of zero
area.

(P, is a projection onto the x-axis.) •
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Example 4 Calculate the area scale factor and describe the orientation of the
transformations described by the following.

IcosO —sin Ua) the rotation matrix R0 = I

LsinO cosO

Icos2 sin2b) the reflection matrix M11 = I
Lsin 2 —cos 2cj

So1ut To simplify the determinants in this question, use the Pythagorean
trigonometric identity of page 542.

a) det(Ro) = cos2O —
(—sin2O) = cos2O + sin2O = 1. Note that 1 > 0.

Thus a rotation does not alter the area or orientation of any figure.

b) det(M) = —cos22 — sin22 = —(cos22 + sin22) = —1. Note that—i <0.
Thus a reflection leaves the area invariant, but reverses the
orientation of a figure. •

M M A R
These results can be summarized as follows.

If M = I' bl, then its determinant, det(M) = ad — bc.Lc di
If a figure of area S is transformed by matrix M, the area of the image
figure is Idet(M).
det(M) I

is called the area scale factor of matrix M.

If det(M)> 0, the image retains the original orientation;
if det(M) <0, the image acquires the opposite orientation.
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7.4 Exercises

In the following, all rotations are about the
origin 0, counterclockwise through the
indicated angle, unless specified otherwise.

1. Write the matrix of the rotation through the
given angle in each case, giving entries
correct to 2 decimal places.
a) 40° c) 900 e) 200°
b) 80° d) 1100 f) 342°

2. Write the matrix of the reflection in the line
y = (tan )x for the following values of ,
giving entries correct to 2 decimal places.
a) 20° b) 45° c) 100°

3. a) Describe the similarities and
differences in your answers to la) and
2a).

b) By calculating the determinant of each
of these two matrices, show how you
can distinguish between a rotation and
a reflection.

4. Repeat question 3 by comparing your
answers to le) and 2c).

5. Write the matrix of the rotation through the
given angle in each case, giving exact
answers. (Use the trigonometric tables on
page 543.)
a) 45° b) 60° c) 120°

6. Write the matrix of the reflection in the line
y = (tan )x for the following values of q,
giving exact answers. (Use the
trigonometric tables on page 543.)
a) 22.5° b) 60° c) 150°

7. Given that R0 represents a counterclockwise
rotation about 0 of 0°, compare R300 and

R60. Explain.

8. Given that MçL, represents a reflection in the
line y = (tan 4°)x, compare M30 and M210.
Explain.

9. Calculate the determinant of each of the
following matrices. Hence describe the area
scale factor and the orientation of the
associated transformations.

the identity transformation I = 1 0
LO 1

the null transformation °2x2 = 10 0
LO 0

10. The following are the matrices whose
effect you described in questions 6 and 7 of
7.3 Exercises. Calculate the determinant in
each case, to describe the area scale factor
and orientation of each transformation.

b) —1

Ii k12. The transformation matrix S = I
LO 1

where k is any real number, is a horizontal
shear of factor k.
Calculate det(S). Hence, describe the area
scale factor and the orientation of a figure
transformed by a shear.

A=I0 0
LO I

B=I0.5 0
LO 0.5

c=11 3
LO I

D=I2 0
L 0 —2

E=I 0
LO 1

0

L4 1

G=11 0
Li 0

H=I 0 —3
L—3 0

1=11 0
LO 1

J=1—1 0
LO 0

11. Find k if the determinant of [2 ]equals

a) 5 c) 0
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13. Given M = I_k 1
1, find det(M). What is

Lk2 —kJ
the area of a figure transformed by matrix M?

14. Sketch on a grid the right triangle whose
vertices are 0, P(3,0), Q(0,2).
a) Calculate the area of the triangle OPQ.
b) Transform 0, F, Q into their images 0',

1—4 3P , Q by the matrix M =
L 5 —2

c) Calculate the area of O'P'Q'.
d) Compare the orientation of OPQ and

0'P'Q'.

15. Use the information of question 14 for the
following.
a) By calculating the dot product OP.OQ,

prove that the angle POQ is 900.
b) Calculate the angle P'O'Q' by finding

the dot product 0'P'0'Q'.
c) Are right angles preserved under linear

transformations?

16. a) Show that the clockwise rotation through
a about 0 is represented by the matrix

cosa sinct
L—sina cosa

b) Verify thatdet(C)= 1.

17. In the right triangle shown, tan 0= &

4

Give all your answers to the following in
fractional form.
a) Calculate sin 0 and cos 0.
b) Write the matrix of the rotation through

angle 0.
c) Write the matrix of the reflection in the

I i\line y =
kfl _0)x.

18. Describe the following transformations.

r4 31 [ '
K=I IL=I 2 2Ia.'Ls 5] L 2

I 31 [ 5 12

M=I IN=I 13 13

I 12 5

L 5 5] L 13 13



7.5 Inverse Transformations 315

7.5 Inverse Transformations

So far you have learned how to carry out various linear transformations by
using their matrices.

Is it possible to find a transformation that returns the plane to its original

status after it has been transformed? That is, if v —v , can a
— M-

transformation M' be found such that v' — v? Does a transformation
always have an inverse? If an inverse exists, what does its matrix look
like?
In this section, these questions will be investigated.
First observe the following examples.

Example 1 Given A =
[3 ], try to find a matrix D to reverse the effect of A.

Solution - Fxl — x'Consider the vector v = I and its image under A, V =
LYJ Y

Then Av = v'.
Now if D exists, it will transform V back to v,
thus Dv' = v or v = Dv'.

lxi. lx'Thus, if you can find I I in terms of I
LYJ Ly

and express your result as a product D[x,].
y

you will have the answer.
ff 13 —illxl lx'NowAv=v =i II 1=1

Li 1JLyJ Ly'
J3x—y=x' Q
L_ x+y=y'

Eliminating y: Q + 2J gives 4x = x' + y' so x = 1x' +

Substituting into ®gives AX' + Jy' + y =y' or y = —-1x' +

Thus lxi = I IH. Hence the matrix D = I I •
LyJ I _1 l-y'j I i

L4 4] L4
D is called the inverse of A and is written A'.
Notice that det(A) = (3)(i) — (—i)(i) = 4, and that the inverse can also be

written A' = A1
1 ii det(A') =

4L—1 3] 4
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Observing this form of A' demonstrates the following facts, that you will
prove later.

1. The numbers along the leading diagonal [3 ii ofA

are exchanged in A'.

2. The numbers along the second diagonal [1 1] of A

are multiplied by (—1) in A'.

3. The scalar coefficient of A' is 1
Also, det(A') = 1

det(A) det(A)

Example 2 Given the matrix B =
[2

4], try to find a matrix B' that reverses the

effect of B.

Solution . . . Ixl. Fx'
Proceeding as in Example 1, try to obtain L ] in terms of L

y y
12 411x1 Ix'Bv=v =i ii i=i
Li 2JLyJ Ly'

,j2x+4y=x'
L x+2y=y'

Eliminating y: — 2 x gives Ox = x' — 2y'.
But x' andy' might be any numbers so that, in general, x' * 2y'. Hence no
value exists for x. Thus no matrix B' exists. •

In this case, matrix B is called non-invertible, or singular.
Its transformation is also called singular.

Note: The determinant of B is (2)(2) — (4)(1) 0, that is det(B) = 0.

F 0 A M U L A The matrix M = 1i bl has an inverse M' if and only if det(M) * 0;
Lc dJ

—1 1 —
then the inverse of M is M =

det(M) —c a
If det(M) = 0 the matrix M (and its transformation) are known as singular;
no inverse exists.

You will have an opportunity to derive the general formula for M' in the
exercises.
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Example 3 Find the inverse, if it exists, of each of the matrices

a) A=[3 5] b) B [

1ution a) det(A) = (3)(6) — (5)(4) = —2 0.
Thus A has an inverse A'.

r3 5

-' 116 —51 I 2
By the formula, A = —l I = I

—2L—4 3] I 2 —

b) det(B) = (')(o) - =
L 2

Thus, B is a singular matrix. No inverse for B exists. •

Geo,netric Siqnificanct' of Singular Transformations
The previous discussion leads to the fact that a matrix M is singular, that
is, non-invertible, if its determinant is zero.

Since the area scale factor of a linear transformation of matrix M is Idet(M) I,

the area of any figure transformed by a singular matrix is zero.

Look back at the examples of common transformations in section 7.3
(pages 304—305). The following transformations have zero determinants.
P (projection onto the x-axis)
02x2 (null transformation)
You can see from the diagrams that both these transformations 'squash'
the plane onto a single line or a single point. V2 is said to 'lose some
dimension' by a singular transformation. When V2loses some dimension
by a transformation, that transformation cannot be reversed.

S U M M A A Y M =
[i ] has an inverseM' if and only if detM) 0;

then the inverse of M is M = I
det(M) L —c a

If det(M) = 0 the matrix M (and its transformation) are known as singular;
no inverse exists.

The area of any plane figure transformed by a singular 2 x 2 matrix is zero.
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75 Exercises

1. Which of the following are singular?

A=l° 01 H=I 0 —3
[0 ii L—3 0

B=I0.5 0 1 1=11 0
LO 0.5J LO 1

c = 11 1 = Ic 30° —sin 300
LO ii Lsin 300 cos3O°

D=0I2 01 [
L 0 —2J K—'

E=F 01 I —
[0 lJ L 5 5

F=11 01 L=I
L4 ii L—3 4

G=I1 0
Li 0

2. Find the inverse of each of the invertible
matrices of question 1.

3. By finding the images of the points 0,
P(1,0), Q(l,1), R(0,1), sketch the effect on
the unit square of each of the inverses of
the transformations of question 1 (when
they exist).

4. Calculate the area scale factor and describe
the orientation for each of the inverses of
the transformations of question 1 (when
they exist).

5. a) Which of the matrices in question 1
describe rotations?

b) Conjecture a formula for the inverse of
the rotation matrix

R =Icoso —sinO
°

Lsino cos0
6. a) Write the matrix R of a rotation,

counterclockwise about 0, of 0°.
b) FindR'.
c) Explain your answer to b) in terms of a

rotation about 0 of 00. (That is, a
clockwise rotation of 0°.)

7. Find the value of k if the matrix

M =I —21 is singular.
Lk —ii

8. Find the inverse of the identity matrix

i = [' °]. Explain your answer.

9. Find the inverse of s = 11 2
LO 1

(the horizontal shear of factor 2).
Describe this new transformation.

17 1010. Consider the matrix M =
L2 3

a) Find the inverse matrix M'.

b) Find the image v' of the vector v =[']
under M.

c) Verify that M'v' = v.

11. Repeat question 10 with matrix
M=I6 —1

[5 2

12. By following the procedure of Example 1
in the text, page 315, prove that the inverse
of the matrix

M=Ia b]iMl 1 d —b
Lc di det(M)L—c a

What happens if det(M) = 0?

13. M is an invertible matrix. Calculate
det(M) x det(M').

14. UseM = b where det(M) * 0, to prove
Lc di

the following statement.

If v is any vector, then Mv = 0 v = 0.
(This proves that only the zero vector is
transformed by an invertible matrix into
the zero vector.)

15. The matrix s = I hl maps the entire
[12 —4J

plane onto a single straight line.
a) What is the image under S of a general

Ixlvector v = I?
LyJ

b) What is the Cartesian equation of the
image line?

c) Does S have an inverse? Explain.
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7.6 Composition of Transformations
and Multiplication of Matrices

To compose' two transformations means to make one of the
transformations follow the other. You then have a 4'composite
transformation". The same term is used for functions. In this first
example, you will observe the effect of the composition of two
transformations. Later you will see how this composition is linked to the
multiplication of matrices.

Example 1 Consider the two transformations whose matrices are

p11 01 and Q=10 —1LO ii Li 0

and the general vector v =
LY

a) Describe each transformation.
b) Calculate Pv= V1. then Q(Pv) = V2.

c) Calculate Qv = v', then P(Qv) = v".
d) Describe the transformations that take v to v2, and v to v".

Solution — 1—il - Foa) Read the columns of P: z — I I,) -s I
LOJ Li

Thus i goes to —i, and jdoes not move.
Both i and j are reflected in the y-axis.

P therefore represents a reflection in the y-axis.

ReadthecolumnsofQ: i—s [0],j_s [—1]
Thus i goes to j, andjgoes to — i.

Both i and j are rotated counterclockwise through 90°.

Q therefore represents a counterclockwise rotation about 0 through
90°. (This will be abbreviated to "rotation of 90°".)

1—i Olixi 1—xl
b) PV=[ iL iL j=Vi

Q(P;) =Q(v) =1? [] = [] = V2

c) Qv[0 _i][x][_]
P(Q;) =P(v')= [' 0][_Y]

= [] =
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y

V.,

,

V2

d) Observe the figure.
In b), v is reflected in they-axis to v1.
v1 is then rotated by 900 to v2.

Thus,v is reflected in the y-axis THEN rotated by 90° to v2.
In c), v is rotated by 90° to v'.
v' is then reflected in they-axis to v".
Thus, v is rotated by 90° THEN reflected in the y-axis to v". •

Note 1 Doing P first, then Q, gives a different result from doing Q first,
then P.

2 Writing Q(Pv) means that P acts first, then Q.

This example shows that the composition of transformations is
non-commutative. (Beware! "Non-commutative" does not mean "never
commutative". There are examples of transformations that do commute, as
you shall see later.)

If you now compute a 'matrix product' QP by the same dot product
'row-column' process you used to multiply a 2 x 2 matrix and a 2 x 1 matrix,
you have

(rov 1). (col I) (row 1). (cul 2)
I

QPI° —111_i 01= (0)(1)+(1)(0) (0)(0)+(1)(1)
[1 OiL 0 ii (1)(—1) + (0)(0) (1)(0) + (0)(1)

I I
(row 2). (cot I) (row 2). (col 2)

=1 0 ll=R
L—1 0J

You obtain a 2 x 2 matrix R that will transform v directly to v2, as follows.

Rv= (QP)v= [° i][x] = [—] =;.
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Note: The calculations Q(Pv) and (QP)v lead to the same result.

That is, Q(Pv) = (QP)v

This is one of the manifestations of the associativity of matrix
multiplication, which will be discussed later in this section.

Similarly, PQ can be computed.

PQI' 0110 —11=10 'l=s
LO 1JL1 0J Li 0J

S will transform v directly to v", as follows.

Sv=(PQ)v=[ 1][x][Y]
Recall that v2 * v", that is, the image by QP was different from the image
by PQ.
Hence it is not surprising that the matrix QP *matrix PQ.

The Multiplication iJ 2 2 Matrices

DEE I NI TI ON GivenamatrixP=[' b]andamatrixQ=[W X],thentheproductPQ
is defined as follows.

PQ=Ia blIw x
Lc diLy z

(row 1 of P) . (column I of Q) (row 2 of P) (cohn L ,

[1= aw+by ax+bz
cw+dy cx+dz

I I
(row 1 of P). (column 2 of Q) (row 2 ol P). (column 2 of Q)

The matrix PQ represents a transformation that is the result of doing
Q first, then P.

Matrix multiplication is non-commutative.

However, there are cases of matrices that commute.

For example, recall that I = [i °] is the identity matrix.

The transformation I leaves the plane unchanged.
Thus, if A is any matrix, then Al = IA = A.
Hence, I commutes with any matrix.
Also, since any invertible matrix M has an inverse M' that 'undoes' the
effect of M,
MM' = M'M = I.

Hence, a matrix commutes with its inverse.

You will have an opportunity to verify these properties in the exercises.
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Example 2 Consider the matrices M = 10 11 and D = 12
0

Li OJ LO 2
a) Describe the transformations whose matrices are M and D.
b) Calculate the product MD, and describe its transformation.
c) Calculate the product DM, and describe its transformation.
d) State whether or not the transformations M and D commute.

Solution a) ForM:i-jandj-.i.
Thus M is a reflection in the line y =x.

ForD: i—2 i and j—i2j.
Thus D is a dilatation of factor 2.

b) MD=I0 1112 01= 10 2
Li OJLO 2] L2 0

The plane is dilated first, then reflected.

c) DM=12 0110 1110 2
LO 2JL1 0J L2 0

The plane is reflected first, then dilated.

y y

MDv DMv

d) The order in which the transformations M and Dare performed does
not alter the final image. These transformations, as well as their
matrices, do commute. U

The Associativity of Matrix Multiplic2 ion
The associative property for matrix multiplication holds. That is,
given any 2 x 2 matrices A, B, and C,
(AB)C = A(BC).

You will be asked to prove this property in the exercises.

Multiplication of Matrices 'f DifferL';Il Dimension
Recall that for any 2 x 2 matrices P and Q, and any column vector
(that is, a 2 x 1 matrix) v,

P A 0 P E R T V Q(PV) = (QP)v.

This seems to indicate that matrix multiplication is associative even in
cases when the matrices are not all of equal dimension.
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Indeed, it is valid to 'multiply' any two matrices for which the dot product
'row-column' process is possible. This will be true whenever the number
of elements in the rows of the first matrix is equal to the number of
elements in the columns of the second matrix. This leads to the following
general results, which will not be proven.

A P E R T
The product AB of two matrices is defined only if A and B have dimension
as follows.
A has dimension m x n, B has dimension n x p.
Then the product AB has dimension m x p.

Whenever the product of matrices is defined, the associative property
holds.

1 /'e Dci i i,iant of a Cotn;citc Transjcrni

A 0 P E A T
The determinant of a product of matrices is equal to the product of the
determinants, that is, given matrices P and Q,
det(PQ) = det(P) x det(Q)

In the exercises, you will have an opportunity to prove this property. An
important consequence of this property is demonstrated in the following
example.

Example 3 Calculate the area scale factor of AB where

A=I 2 lldBI4
L—4 —2j L 5 1

S
-

Note that det(A) = (2)(—2) — (1)(—4) = 0.

Hence, det(A) x det(B) = 0, or det(AB) = 0.
The transformation AB is singular.
Thus the area scale factor is zero. U

Example 3 shows that
a singular transformation composed with any other transformation gives
a singular transformation.

S U M M A R V Given a matrix P =
[a

b] and a matrix =
[w X]

then the product PQcd yz
is defined as follows.

PQ=Ia blIw xl Iaw+by ax+bz
Lc diLy zi Lcw+dy cx+dz

The matrix PQ represents a transformation that is the result of doing
Q first, then P.
(This composition of transformations is non-commutative.)

In general, QP * PQ (Matrix multiplication is non-commutative.)

(PQ)R = P(QR) (Matrix multiplication is associative.)

det(PQ) = det(P) x det(Q)
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7.6 Exercises

1. Given

L=P 21M,J4 ll,N=l 6 5
L3 4J L5 7J L—2 0

calculate
LM, ML, LN, NL, MN, NM.

The following matrices are to be used in
answering questions 2—10.
A=10 0

LO 1

B=10.5 0
[0 0.5

c=Ii 3
LO 1

E=I 0
LO 1

G=li 0
Li 0

1=11 0
[0 1

= F05 30°

Lsin 30°

K — Icos 60°
—

Lsin 60°

2. List which of the transformations defined
by the above matrices fit the following.
a) singular
b) identity
c) dilatation
d) shear
e) rotation
f) area scale factor = 1

3. a) Calculate the products JR. IC, 1K.
b) Explain your results.

4. a) Calculate the products CE and EC.
b) Show the effect of CE and of EC on the

unit square, and describe each of these
composite transformations.

c) Calculate the area scale factor of CE and
of EC.

5. a) Calculate the products BJ and JB.
b) Describe each composite

transformation. What is special about
these?

6. a) Calculate the product JK and KJ.
b) Describe each composite

transformation. What is special about
these?

7. a) Calculate the products AK and GK.
b) Calculate the area scale factor in each

case. What is special about these
composite transformations?

8. Given a matrix M, the notation
M°=MxMXMx x-

n times
-

a) Calculate J2 and A2.
b) Explain your results.

9. a) Calculate B2 and E2.
b) Show the effect of B2 and E2 on the unit

square, and describe each composite
transformation.

10. a) Write J using exact values (see page
543). Calculate J2, J3, J6.

b) Explain your results.

Ii 01.11. 1= I I is called
[0 ii

the 2 x 2 identity matrix, or unit matrix.
a) Show that for any vector v, Iv = v.
b) Show that, for any 2 x 2 matrix A,

Al = IA = A.

12. Consider the matrix M = 12
5

Li 3
a) Find the inverse matrix M1.
b) Calculate MM1 and M'M.
c) Draw conclusions.

]

—sin 30°
cos 30°

—sin 60°
cos 60°

13. Given M = 1' bi and its inverseLc dJ
M' = 1 d —bi, where ad — bc * 0,

ad—bc[—c aJ
show that MM' and M'M = I.

(Jis the identity matrix [i 0])
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14. Consider the matrices A = 16 —11 and
L5 2J

B=_iI 2 1
17L—5 6

By calculating AB and BA,
show that A and B are inverse matrices.

Fl 0 2
15. Repeat question 14 for A = 2 —1 3

[i 1 8
F—il 2 2

andB=l —4 0 1

[ 6 —l —1
16. Given three matrices

K = 1' bl L = 1" q]M= 1w x
Lc di Lr sJ Ly z

a) Calculate the following products.
KL LM (KL)M K(LM)

b) Hence show that matrix multiplication
is associative.

17. a) Using the matrices of question 16,
calculate the following.
det(K); det(L); det(KL).

b) Hence show that
det(KL) = det(K) x det(L)

18. Using the matrix K of question 16, where
det(K) * 0,
a) calculate K',
b) show that KK' = land K'K = I.
c) Do the matrices K and K' commute?

19. A transformation has matrix M = 10
1

Li 0
a) Show the effect of Mon the unit square,

and describe M.
b) According to your description, what

would happen if M operated twice?
three times? four times?

c) Confirm your answer to b) by
calculating M2, M3, and M4.

20. Repeat question 19 with the matrix

M=I0 —i
Li 0

represents a reflection in the line
y = (tan 6)x.
a) What would be the effect of applying T

twice?
b) Confirm your answer to a) by

finding T2.

IcosO —sin 022. The matrix R =
LsinO cosO

represents a counterclockwise rotation of
angle 0 about 0.
a) What would be the effect of applying R

twice?
b) By calculating R2, obtain expressions

for cos 26 and sin 26 in terms of cos 0
and sin 0.

23. Given the matrices

[ 41
P=I land

L
4

Q=15 5I 3L 5
a) Describe each transformation, and

hence describe the composite
transformation PQ.

b) Confirm your answer by calculating the
product PQ.

c) What is the inverse of matrix F? of
matrix Q?

24.A=I2 5lafldB Ii —iLi 3J Li 1

a) Calculate AB and BA.
b) Calculate the inverse matrices A_i

and Bi.
c) Calculate A'B'.
d) Calculate (A'B1)(AB) and (A1B)(BA).
e) What is the inverse of (A1B')?

Icos 2021. The matrix T = L5 20
sin 20

—cos 20
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Similarity and Folding
Thegolden ratio, or golden section, is a well-known ratio that occurs in more
than one branch of mathematics. It has also been used traditionally in
architecture as the 'perfect rectangle'.

H
A rectangle ABCD is said to be 'golden' if its sides form the golden ratio,
that is, if

AB= AD
AD AB-AD

or = W , where the length AB L, and the width AD = W.
W L—W

Thus, L(L — W) = W2 or L2 — LW — W2 = 0,

which leads by the quadratic formula to = 1

2
= 1.618...

A less well known shape is the following, called the folding section.

Consider a sheet of paper of length L and width W.

If the sheet is folded once, its new dimensions will be and W.
2

If the half-sheet is to have the same shape as the original, then

1.414...W L W

A W D ______ or

w
B C



CONNECTIONS
Notice that when the sheet is folded again and again, the same shape is
always retained. This idea was adopted to create the A' series of
international paper sheet formats, as follows.

The base sheet size, called A0, has area 1 m2 or 10 000 cm2.

Thus (W)(W./) = 10 000

_ 2 10000w =

W =-=84.O89...cm

This leads to the following IAn' sizes in cm, where n represents the
number of folds.

A0 84.089x 118.921
Al 59.46 x 84.089
A2 42.04 x 59.46
A3 29.7 x 42.0
A4 21.0 x 29.7
A5 14.8 x 21.0
A6 10.5 x 14.8
A7 7.4 x 10.5

etc...

This series of formats has been adopted by most countries.

The most frequently used paper size is A4. Note that any subsequent size
can be obtained merely by folding.

Thus, if envelopes are manufactured in sizes marginally larger than these,
any paper size can be put into any envelope merely by folding it the
required number of times.
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7.7 Properties of Matrix Multiplication
and Matrix Equations

At this point, a multiplicative algebra of matrices has been established
alongside the additive algebra described in section 7.1.
The set S of invertible 2 x 2 matrices together with the operation of
matrix multiplication is said to form a non-commutative group.

The following properties hold.
Ml. S is closed under multiplication: M, N S MN S
M2. Multiplication is associative: L(MN) = (LM)N
M3. There exists 1€ S such that for all M S. IM = MI = M
M4. If M 5, then there exists M' S such that MM' = M'M = I
There remains only one property to be proven to allow you to solve matrix
equations in a manner similar to that which you use to solve ordinary
algebraic equations in l.

The Distribuiiiit I 1arrix V1u1ti'lication eier 'viati t ddiri,,

PROPERTY Givenany2x2matricesL,MandN,then
L(M + N) = LM + LN

and (M + N)L = ML + NL
You will have an opportunity to prove this property in the exercises.

Notice that the order of the letters is crucial. Since matrix multiplication is
not commutative, it is not valid to replace, say, LM by ML.

You must continually be aware of the non-commutativity of matrix
multiplication when working with matrices. With this proviso, you can
solve matrix equations. In the first example, you will find the inverse of a
composite transformation.

Example 1 Given matrices A and B, find the inverse of the product AB.

Solution Let the image of v under ABbe v'.
To find (AB', you must express v in terms of v'.
Now (AB)v = v'
thus (A')(AB)v = (A')v'
therefore (A'A)(B)v = A'v' property M2

or (1)(B)v=A'v' property M4

or By = A'v' preperto 13

thus (B')(Bv) = (B')(A')v'
therefore (B'B)(v) = (B'A')v' wo fl ' v

so Iv = (B'A')v' oroperfy
and finally v = (B'A')v'
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(sing MaH\ I quations toSoh' Ii neii n
IfM is an invertible matrix, Mv= u

M'(Mv) = M'u
(M'M)v = M'u

Iv = M'u
v = M'u

Hence, solving Mv= u yields v = M'u.1a bl xThus,if M=I I,v= andu=1'1
Lc dJ [y]' Lqi'

1a

b][x]IP1
Iax+by=p . 1

[
d _b]Iplr

L L jort whic I I
c d y q cx+dy=q LyJ det(M) —c ala]

dp—bg —cp+aq _____ _____x= andy=
ad—bc ad—bc'

EITHER u is the position vector of a
point of L. In that case, solutions
for v' mustexist.

OR no point of L has u' as position
vector. In that case, no solutions for
v are possible.

Hence, the inverse of (AB) is (B'A). UPROPERTY

FORMULAS _____ ______ pd—bq ag—pcor x= andy=ad—bc ad—bc

These results are known as Cramer's rule for the solution of a system of
two first-degree equations in two unknowns.

Example 2 Solve the system 2x — = 7

4x—y= 1

Solutio. Substituting directly into the formulas,

= (7)(—1) — (—3)(1) = —0.4, = (2)(1) — (7)(4) = —2.6 U
(2)(—1) — (—3)(4) (2)(—1) — (—3)(4)

However, ifM is not invertible, then Cramer's rule cannot be used. Recall
that the plane will lose some dimension under the effect of a singular
transformation. The plane will be 'squashed' into at most a single line,
say L. Since the origin 0 never moves under a linear transformation,
L will contain 0.
Thus, if M is singular, there will be two possibilities when Mv = u.

y,y
V

0
7,x

image of
pPane

U

x

mage of
pane
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Example 3 Given M= [1 2], find the vectors v that satisfy the equation Mv =u if

a) =[] b)

Solution Notice that det(M) = (1)(4) — (2)(2) = 0, o M is singular. The effect of M

on a general vector v = lxi is
LYJ

Ii 211x1 F x+2yl F x+2yl F a] Iii
I ii 1=1 1=1 1=1 I=aI i,wherea=x+2y.
L2 4JLyJ L2x+4yJ L2(x+2y)i L2aJ L2J
Thus the entire plane is squashed onto a line L, through the origin,

of direction vector 11 1 Y Y'J /L
L2i 1

I I
1 1

a) Since no a exists such that a[1] =[], the point whose position vector

is l1 is not on L. Thus the transformation Mv =l1 is impossible. No
LOJ [0]

vector v can be found.

b) Since all 1 = l1 for a = 3, the point whose position vector is l1 is on

L. Thus, :oluti:ns exist for v given Mv =
[3].

Since a = x+ 2y and

a = 3, then x + 2y = 3. Hence all the position vectors of points of the

line D with equation x + 2y = 3 are mapped onto []

__ vu
A vector equation of the line D can be found by introducing a parameter k,

as follows. Let x = k.Then, frorn:±2y = -'

Thusv=i 1= 1= 1= i+ki
Ly]

k+3j 3k] 3] L—
Or, with the notation of chapt:r 5,(x,y) = (o) + k(1,_) which

represents the line through the point (o). with direction vector (i_).



7.7 Properties of Matrix Multiplication and Matrix Equations 331

7.7 Exercises

1. L=I2
l,M=[ 5 —4

Li 2] L—1 1

I is the identity matrix.

a) CalculateL' andM'.
b) Calculate LM, L'M' and M'L'.
c) What is the inverse of LM?
d) Verify that (LM)(M'L') = land

(LM)(L'M1) * I.

Ii ol 1202.GivenA=i I Bi
10 —ii 10 2

Show that B'A' = A'B' in this case.
Explain.

3. Solve the following systems by writing
each system as a matrix equation.

a) 5x—6y=—1
—3x+4y= 2

b) 2x— 7y= 4
4x — 14y = —6

c) 2x— 7y=4
4x — 14y 8

d) x+2y=5
3x + 6y = 8

e) —x+4y= 7
2x — = —14

f) 2x+3y= 6
5x— y=—i

4. Solve the systems of question 3 by using
Cramer's rule, where possible.

7. Given three matrices

K=Ia blL4P q]w
Lc di Lr sJ Ly z

a) Calculate
L + M, KL, KM, K(L + M),

LK, MK, (L + M)K.
b) Hence show that matrix multiplication

is distributive over matrix addition.
That is, show that K(L + M) = KL + KM
and (L + M)K = LK+ MK.

8. a) Calculatetheproductl2 0110 0
13 0111 4

b) If A and B are twomatrices such that
AB = 02x2, is it necessarily true that
A = 02x2 or B = 02X2? Explain.

9. Three non-zero matrices P. Q and R are such
that PQ = RQ. Is it necessarily true that
P = R? Discuss this in the two cases
a) Q is invertible b) Q is singular.

10. Show that, for any 2 x 2 matrices A and B,
(A + B)2 = A2 + AB + BA + B2.

Is it possible to simplify the expression on
the right side?

11. The matrix T is said to be a square root of
the matrix A, if T2 = A.
Find two different square roots of

A=I 0
10 4

12. Matrix A is such that A —A2 = I, where I is
the unit matrix.
a) Prove that A is invertible.
b) Prove that A3 —I.
c) JfK is a matrix such thatAX= l+A,

find the real numbers p and q such that
X = p1 + qA.

5. Given M = 1
—21 find the vectors v

1—3 6J
that satisfy the equation Mv =u in the
following cases.- Iii 13
a) u=L] c) u=1

b) =[] d)

12 ii6. Show that the matrix M = I i maps all
L4 2]

the points of the line 2x + y — 2 = 0 to the
point P(2,4).

13. a) Jf12 llandQl a b

14 5] L4b 3b+a

a, b l, prove that PQ = QP.
b) It is also known that for non-zero

vectors u and v, Pu = u and Pv = 6v.
Find the matrix Q such that PQ =QP,

Qu = —u, and Qv = 4v.
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14. a) State the matrix R that rotates the plane
counterclockwise through an angle 0,
and the matrix M that reflects the plane
in the line y = x.

b) Solve for 0 the equation RM = MR,
00 0 < 360°.

15. An orthogonal matrix is one whose
columns represent perpendicular unit
vectors. Show that the following are
orthogonal.

loa) iLi 0

b) [ i;]
c) the matrix of counterclockwise rotation

through an angle 0

d) the matrix of reflection in the line
y = (tan a)x.

16. Given R = lcos
0 —sin

0] andLsin0 cos0
Icos 2a sin 2a1M=I i,showthattheLsin 2a —cos 2aj

following are orthogonal matrices.
(See question 15.)
a) R2
b) M2
c)RM
(Use the formulas on page 542.)

ía h].17. S=i iisknownasa
Lh bJ

symmetric matrix.
12—3

a) Verifythati
L—3 5

is a symmetric matrix.
b) Calculate S2. and show that it is

symmetric also.
c) Calculate S3. and show that it is

symmetric also.

[2 1 41 [—2 8 —i9
18.A=I 5 1 Iand1=I i —4 10

Li 2 0] L i —3 7
a) Show that DA = AD = I, where

[1 0 0
I=Io 1 0

Lo 0 i
(I is the 3 x 3 identity matrix. Thus, you
have shown here that A and D are
inverse 3 x 3 matrices.)

b) By writing the following system of
equations as a matrix equation
Av = b, solve the system for x, y and z.

2x+ y+4z= 2
3x+5y+ z= 1
x+2y =—5

19. To find the invariant lines of a
transformation M, you look for vectors v

whose images under M are collinear with v.

That is, you look for real numbers k and
non-zero vectors v that satisfy Mv =kv.

Ii 21-s Ixla) GivenM=i i,v=i i,showthatL3 2J LyJ
Mv = kvwill have non-zero solutions
for x andy if and only jfk =4 or k = —1.

(4 and —i are known as the characteristic
values of the matrix M.)

b) If k = 4, show that v = 121 satisfies the
L3J

equation Mv = ku and if k = —1, show

that v = [ 1] satisfies the equation

Mv = ku.

(These are known as characteristic
vectors of the matrix M.)

c) Hence find the Cartesian equations of
two lines through 0 that are invariant
under the matrix M.
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In Search of Invariant Lines arni
Characteristic Vectors

!iiviriujI Li',c
The algebraic properties of matrices will also allow you to discover
whether or not a transformation has any invariant lines.

Recall that when a matrix transforms a plane, the origin does not move.
For some transformations, there may be entire lines that do not move.
Such a line, called an invariant line, must therefore contain the origin.

A line Lthrough the origin is completely determined by any direction
vector kv, where v * 0 is any vector parallel to this line.

Now a line through (0,0) with direction vector v is invariant under a
transformationM if v maps into some vector parallel to itself.
In that case, Mv = kv for some k E III.

An example should help you to understand the general case.

Example 1 Find the invariant lines of the transformation M = 12 1
Li 2

-rx1 —If a line of direction vector v = is invariant, the image of v is parallel
LYJ

to v. Hence Mv = kv for some k l.
12 ilixikIx
Li 2JLyJ Ly

12x+yllkx
Lx+2yi Lky

f(2—k)x+y = 0
+ (2 — k)y = 0

12—k 1 11x1 11
L iL ] = L ] D ri moirrx form

1 2—k y 0
or Cv=0.

An invertible matrix sends only 0 to 0. Thus, matrix C must be singular.
That is, det(C) = 0.

det(C)=(2—k)(2—k)—(i)(i)=0
4 — 4k + k2 — 1 = 0

k2 — 4k + 3 = 0

(k — 1)(k — 3) = 0
k = 3 or k = 1.

Thus, the direction vectors v of invariant lines are obtained for k = 3 or
k = 1 (the numbers 3 and 1 are called the characteristic values of M).
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12—3 1 lix] 10Whenk=3 j II 1=1
L 1 2 —3JLyJ LO

1—' 1x][0
L 1 —i]Ly][o

f—x+y= 0
L x—y=0

and both these equations lead toy =x.
Thus one invariant line has equation y =x.

12—1 1 lix] = 10Whenk=1 ii i
L 1 2—1JLyJ = LO

11 ilixi_lO
Li 'iLyfLo

x + y = 0
x+y = 0

and these equations are equivalent toy =—x.

Thus the other invariant line has equation y = —x.

I,itarii,,! Liju's ii; i/u' (A',icral (7acc—C/l!/1ct('rRiil Vectors

v will be a direction vector of a line that is invariant under the
transformation M if v is mapped into a vector parallel to v.
Hence Mv = kvfor some k R.
Thus Mv = k(Iv) since Iv =v.

Mv — (kI)v = 0

(M—kl)v=O

Since (M — kf) sends a non-zero vector to 0, this matrix must be singular.
Thus, det(M — ki) = 0.

ía bl Ii ol ía b] 1k ol ía—k bNowM—kI=i 1—ki I =1 i—i i =1
Lc di LO ii Lc di LO kj L c d—k

Thusdet(M—kI)=(a—k)(d—k)—bc=0 J
Equation GJ, a quadratic equation in k, is called the
characteristic equation of matrix M.
The values of k that are the roots of equation GJ are the
characteristic values of matrix M.

If the characteristic values are real, the direction vectors of the invariant
lines can be obtained by substituting the characteristic values into
equation ®. These vectors, defining invariant lines for M, are the
characteristic vectors of matrix M.

If the characteristic values are not real, then the transformation has no
invariant lines.

Note: Characteristic values and characteristic vectors are sometimes
known as eigenvalues and eigenvectors (from the German
"elgen" meaning "proper").
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Example 2 Find the invariant lines of the transformation R = 1 4
L4 3

Solution The characteristic equation of the matrix R is (a —k)(d — k) — bc = 0, where
a= 3,b=—4,c=4,d= 3.
Therefore (3 — k)(3 — k) — (—4)(4) = 0

9 — 6k + k2 + 16 = 0
k2 — 6k + 25 = 0.

The discriminant for this quadratic equation is (_6)2 — 4(1)(25) = —64 < 0.
Hence, the roots of this equation are not real. Thus, the transformation R
has no invariant lines. •

Note: R could be written 5 [ ]
Thus, R represents a rotation through 0, where tan 0= = =

cosO 3
together with a dilatation of factor 5. Since every line in the plane is
rotated by 0 (approximately 5 3°), no line can be invariant.

Activities

1. a) Find the characteristic values of M = [1 4
L2 3

b) Find the characteristic vectors of M (if they exist).
c) Find the equations of the invariant lines of transformation M (if

they exist).

2. Repeat question 1 for the following: M = 12 hi, and M = 11
—i

Li 4i L2 —1

3. a) Show that matrix M = [1 21 has the characteristic equation
L3 2J

k2 — 3k — 4 = 0.
b) Show that the matrix M satisfies its own characteristic equation,

that is, show that M2 — 3M — 41 = 02X2.

(This is known as the Cayley-Hamilton theorem.). = 'i is known as a symmetric matrix.
Lh bJ

a) Prove that the characteristic values of a symmetric matrix are
always real.

b) Find a condition on a, I', h so that the characteristic values of S are
equal.

5. A symmetric matrix S (see activity 4) for which a * b always has two
distinct real characteristic values p and q, associated with
characteristic vectors u andy as follows.

Su=pu and Sv=qv
a) Showthat(Su).v=(Sv).u
b) Hence show that (pu) .v = (qv) .u
c) Hence show that the characteristic vectors of a symmetric matrix

must be orthogonal.
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Summai y
• A matrix with m rows and n columns is said to have dimension m x n.
• The element in the ith row,jth column is represented by a.
• Two matrices are equal if and only if all their corresponding elements are

respectively equal.
• Two matrices that have the same dimensions are added by adding their

corresponding elements.

(In the following, all matrices are 2 x 2 unless specified otherwise.)
• Matrices form a vector space V22, that is, the following properties hold.
Matrix Addition
Al. V22 is closed under addition: M, N V2><2 implies M + NE V22
A2. Addition is associative: L + (M + N) = (L + M) + N
A3. There is a °22 V2,2 such that for all M V2<2, M + 02,2 M
A4. If M V2<2, then there exists —M E V2,2 such that M + (—M) = 02X2
A5. Addition is commutative: M + N = N + M
(These properties mean that V2<2 is a commutative group with respect to
addition.)
Multiplication of a Matrix by a Scalar
Ml. If M E V2<2, k O, then kM V2>2
M2. (kp)M = k(pM), k, p ift

M3. k(M + N) = kM + kN
M4. (k + p)M = kM + pM
M5. There exists 1 O such that 1M = M

L i#u ir Tra ii / r,,, i ti ii c

• A linear transformation T of a vector space V2 is such that
1. T(u + v) = T(u) + T(v)1 where u, V V2 and k R
2. T(kv) = k[T(v)] J

• A general linear transformation of V2 has the following form.
Fxl ía blFxl Iax+byl Ix'T:i i—i II 1=1 1=1
LyJ Lc diLy] Lcx+dyi Ly'

or v -+ Mv =

1x1 Ix'l ía bwhere v = I ' = I I, and M = I

LyJ LyJ Lc d
• When a linear transformation acts on a plane,

1. the origin does not move,
2. parallelism is preserved.

• The matrix Mof a linear transformation is such that its first column is
the image of i by M and its second column is the image of j by M.

• The matrix of a counterclockwise rotation about 0 through an angle 0 is

R _Icoso 51fl0
°LsinO cosO

• For various types of linear transformations, see the summary of section
7.3, pages 304—305.
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I )t!e rin iii au I

• If M = 1' b] then its determinant, det(M) = ad — bc.
Lc di

• If a figure of area S is transformed by matrix M, the area of the image

figure is det(M)I S.
• If det(M)> 0, the image retains the orientation of the original figure;

if det(M) < 0, the image acquires the opposite orientation.

Ii! 1'I'cL ;%1,u!iic&'

•M = [i b] is invertible if and only if det(M) * 0; then the inverse of M is
Lc di

M'=—' d —b

det(M)L—c a
• If det(M) = 0 the matrix M (and its transformation) are known as

singular; no inverse exists.
• V2 'loses some dimension' by a singular transformation.

a uliiplicaIia I a I riCC

• Given a matrix P = [" ] and a matrix Q = [' ], then the product PQ

is defined as follows.

PQ=Ia blIw xl Iaw+by ax+bz
Lc diLy zi Lcw+dy cx+dz

• The matrix PQ represents a transformation that is the result of doing
Q first, then P.

• In general, QP * PQ. (Matrix multiplication is non-commutative.)
• (PQ)R = P(QR). (Matrix multiplication is associative.)
• Matrix multiplication is distributive over addition:

L(M + N) = LM + LN and (M + N)L = ML + NL

• The inverse of (AB) is (B'A').
• A singular transformation composed with any other transformation

gives a singular transformation.

Geu 1er1 / Ial nv I'rdiuc

• The productAB of two matrices is defined only if A and B have

dimension as follows.
A has dimension m x n, B has dimension n x p.
The product AB then has dimension m x p.

• Whenever the product of matrices is defined, the product has the

associative property.

(nail! 'r ' iii
• Cramer's rule for the solution of fax

+ by = p
cx + dy = q

and ag—pc (ad—bc*O)
ad—bc ad—bc
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Inventory
12 3 511. In the matnxA = I i, theelement a23 is ______
LO 1 4J

2. A matrix that has p rows and q columns has dimension _______

3. A square matrix of order n has _______rows and _______ columns.

Ii a] Ii 61 ______ ______4.i =i I=a= ,b= ,c=Lb 2J L3 ci
5. If Tis a linear transformation of V2. then T(u + v) = _______ and

T(kv) = _______

6. Under a linear transformation, the origin moves to _______

7. _______ is always preserved under a linear transformation.

8. The first column of the matrix M of a linear transformation is the
image of by
The second column is the _______

9. 0 is an angle such that cos 0= 0.6 and sin 0= 0.8. The matrix of the
counterclockwise rotation about 0 through the angle 0is _______

10. The matrix product AB represents a transformation that is the result of
doing first, then _______

11. The composition of transformations is in general non-_______

12. If A has dimension p x q, and B has dimension r x s, then the matrix
product AB is defined if and only if _______= _______. In that case,
the dimension of AR is ______

13. The inverse of the matrix M = 1" bl exists if and only if _______Lc di
Then M' =_____

14. A matrix M represents a singular transformation if _______

15. A singular transformation cannot be _______

16. A singular transformation composed with any other transformation
gives a _______

17. The area scale factor of matrix M is _______

18. A figure is transformed into a figure of the same orientation if
_______ and into a figure of the opposite orientation if _______
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Review Exercises

1. Given

A=11 i,B=I 6 O11 5 —1
L2 OJ L—2 —3] [—4 7

calculate the following.
a) —1A d) A+B+C g) —B+6C
b) 3B e) A—4C h) —4(2A)
c) 5A—B f) 1-(B+C) i) —8A

2. Using the matrices A, B, C given in
question 1, calculate the matrix X in the
following cases.
a) 3X=B c) C+X=A
b)X—2A=022 d)X+2B=5X—A

3. Calculate the values of the variables in the
following.

12 x1131 ho
a) I II 1=1

Li yJ[4J [—8
b) 1x 2ylIllIx

[ y xi[3J [y
4. Find the images of the following vectors

Ii —2under M = I
L5 2

- [01 — 1—i
V[1] WL 3

Sketch as position vectors U, V, w and their

images u', v', w'.

5. Write the matrix that corresponds to the
given transformation in each case.

a) a dilatation of factor
4

b) reflection in the y-axis
c) rotation through —90°
d) projection onto the x-axis
e) reflection in the line y =x

6. By finding the images of the points 0,
P(i,0), Q(i,1), R(0,i) sketch the effect of
each of the transformations of question 5
on the unit square.

7. The straight line L has vector equation
r = r0 + km. where
— 1x1 1—41--k Iir=I I,r0=I I,m=I

[yJ [ 3] Li

a) Find the vector equation of the image of
L under the transformation of matrix
A=I 2 5

L—1 0
b) Graph L and its image on the same set

of axes.

8. By reading the columns of the following
matrices, describe the associated
transformation in each case.

A=I° 01 D=I 0
[00] [0—5

B=P 11 E=11 1
[0 —3] Li 1

c=I' 21 plcoso5°L2 0] [sin 65°

9. By finding the images of the points 0,
P(1,0), Q(i,1), R(0,1) sketch the effect of
each of the transformations of question 8
on the unit square.

10. Use the matrices of question 8 to answer
the following.
a) For each transformation, describe the

orientation and the area of a
transformed figure.

b) Which matrices are singular?
c) Find the inverse of each of the

invertible matrices.

11. Use the matrices of question 8 to calculate
the following.

a)AB c)DE
b)CD d)E2

12. Write the matrix of the rotation
counterclockwise about the origin through
the given angle. In each case, give entries
correct to 2 decimal places.

a) 50° b) 125w c) 180°

— Ii
u=I

[0

—sin 65°
cos 65°
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13. Write the matrix of the reflection in the line
y = (tan 4)x for the following values of
giving entries correct to 2 decimal places.
a) 70° b) 132° c) 900

14. Given that R0 represents a counterclockwise
rotation (about the origin) of 0°, compare
R225 and R135. Explain.

15. Show that the counterclockwise rotation
(about the origin) of (180° — a) is
represented by the matrix

—cos a —sin a
[ sina —cosa

16. Consider the straight lines L1 and L2 with
the following vector equations.

Li:r=[3]+k[1] L2:s=[j]+P[]
a) Explain why the lines L1 and L2 are

perpendicular, and graph them on the
same set of axes.

b) Find the vector equations of the images
of L1 and L2 under the transformation

M=Ii 0
L6 —5

c) Are the images also perpendicular?

17. Describe the following transformations,
where0x1,0y1,andx2+y2=i.
M=[' —1 N=1X

Y]y xJ Ly —x

18. a) Write the matrix M0 of the reflection in
the line y = (tan 0)x.

b) FindM0'.
c) Describe the transformation M0'.

13 —6119. Given M = I i, describe the
Li —2J

vectors v such that Mv = 0.

20. a) Find the inverse of each of the
following matrices.

A=I0 ii B=Ii 0
Li 0J LO i

c=Ic0s80° sin 80°
Lsin 80° —cos 80°

b) Explain your answers by describing the
transformations involved.

21. Let M' be the inverse of a matrix M.

a) What is the effect of applying M then

b) WhatisMM'?

22.A=12 —ii dB=1 01I an
Li —2J L7 3]

a) Calculate AB and BA.

b) Calculate det(A), det(B), det(AB) and
det(AB).

c) Verify that det(AB) =det(A)det(B).

23. Given the 2 x 2 matrices A and B, discuss
the statement AB = °2x2 BA =

24. Consider a matrix M, and a non-zero vector
u. Discuss whether or not a vector v such
that Mv = u can always be found in the
following cases.

a) M is invertible.
b) M is singular.

ía hi25. Consider the matrix M = I , where
Lc —aJ

none of the elements a, b, or c are zero.
It is required to find a non-zero matrix X
such that MX + XM = 02X2.

Find the general solution in terms of a
parameter t.

26. Prove that the set S of invertible 2 x 2
matrices forms a non-commutative group
by verifying each of the following
properties.

Ml. S is closed under multiplication:
M, N S MN S

M2. Multiplication is associative:
L(MN) = (LM)N

M3. There exists I S such that for all M 5,
IM = MI = M

M4. If M 5, then there exists M' S

such that MM1 = M'M = I
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27. The matrix M and the vectors Vand w are
given by

M=12
[4 2J L7J L5J

p. q iJ.

a) Given that the matrix N is the inverse of M,
i) write down N, and
ii) state the value ofp if N is singular.

b) Prove thatM(v — w) =M(v) — M(w).
c) Given M(v — w) = v + w, calculate the

values of p and q.
d) Given det (M2) = 64, calculate the values

of p.
(86 SMS

28. and w are three vectors in a
two-dimensional rectangular Cartesian
coordinate system with origin o. i and j are
unit vectors in the direction of the
coordinate axes. A, B and C are three points
such that

OA = u = 2 i — j
OB = v= i + 3j
OC = w = 7 i +

2
a) Show A, B and Con a diagram.
b) Find the values of )L and such that

w = )u + uv.

c) Prove that BA and BC are
perpendicular.

d) Find the coordinates of D so that ABCD
is a rectangle and determine the
magnitudes of the vectors BA and BC.

e) The rectangle ABCD is transformed to
the quadrilateral A'B'C'D' under the

transformation with matrix 1 —1
[—1 2

i) Calculate the coordinates of the
points A', B', C' and D'.

ii) Prove that A'B'C'D' is a
parallelogram.

iii) Calculate the value of a, a oi, such

that

(83 SMS)

BB' = aBC'.

9. Given that pT denotes the transpose of the
matrix P, which one of the following
statements concerning 2 x 2 matrices and
their determinants may be false?
A. det2P=4detP
B. det(PQ)= detP det Q
C. det(P+Q)=detP+detQ
D. detPr=detP
E. PQ)T = QTPT.

(83 H>

*see page 362

30. A linear transformation L is such that
Iii 131 101 1—il . 1 2

Li 1=1 iandLi 1=1 i.FindLi
LOJ Lii Lii L 2J L—1

(85 H)

3 I. Oxy is a 2-dimensional rectangular
Cartesian coordinate system. Points of the
system P(x,y) are mapped onto points
P'(x',y') by a linear transformation T
represented by the (2 x 2) matrix M, in such
a way that the coordinates obey the relation

where
[;:] = M[x],

M=I1.4 —0.2
L0.8 0.6

a) Find the images under T of the points
0, A, B, C whose coordinates are (0,0),
(1,2), (3,1) and (2,—i) respectively.

b) Draw a sketch on squared paper
showing the figure OABC and its image
O'A'B'C'.

c) Prove that all points on the line with
equation

y = 2x
are invariant under T.

d) Describe fully the geometrical effect of
the linear transformation T.

e) Determine the images of the points A
and C under the linear transformation
7—i.

(88 S)
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CHAPTER EIGHT

Transformations of
Conics
Conics are all around you—the path of a ball thrown through the air; the
shape of a cross section of the reflector used in a TV satellite dish or in an
automobile headlight; the arch of a bridge; the path of the planets around
the sun; the path of a space vehicle, etc.

The diagram shows possible conical paths of a space vehicle launched
from the surface of the earth.

The parabolic path A is taken by a space vehicle that falls back to earth.
The circular path B is followed by a space vehicle sent into orbit around
the earth. Path C, which may be an ellipse, a hyperbola or a parabola, is
that of a space vehicle with sufficient velocity to escape the gravity of the
earth and go into orbit around the sun.

In actual space travel, any one of the conical paths A, B, or C may need to
be transformed into another conical path by a translation, a rotation, a
dilatation, or some combination of these transformations.

In this chapter you will study the transformation of conics under
translations and rotations.
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8.1 Conics in Standard Position

In previous grades you met the conic sections, namely, the circle, the
ellipse, the hyperbola, and the parabola.
The following chart will remind you of some of the information that you
learned about the conics.

conic equation centre verti(es graph
circle x2 + y2 = r2 (0,0) none radius = r, r> 0

2

x

ellipse — + = 1 (0,0) (a,0)(—a,0) major axis along x-axis

a>b>0 Y

(—a,O) (a,O)

b> a> 0 (0,0) (0,b)(0,—b) major axis along y-axis

(O,b)

x

2 2 (0,—b)

hyperbola — = I (0,0) (a,0)(—a,0) transverse axis along v-axis

a>0,b>0

(—a,O
— = (0,0) (0,b)(0,—b) transverse axis along v-axisa b \yI /

a>0,b>0 (O,b)""4/'
x

parabola y = kx2 none (0,0) axis of symmetry is y-axis
k>0:opensup \Y
k < 0: opens down

x
x = ky2 none (0,0) axis of symmetry is x-axis
k> 0: opens right y
k < 0: opens left

x
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The circle, ellipses, and hyperbolas with equations given in the chart have
their centres at the origin (0,0) and their major axis or transverse axis
along the x-axis or y-axis. These conics are called central conics. The
central conics and the parabolas with equations given in the chart (vertex
at the origin (0,0) and axis of symmetry along the y-axis or x-axis) are said
to be in standard position, and their equations in standard fonn.

Equations of conics do not have to be in standard form. They can also be
in general form.

An equation of a conic written ax2 + by2 + 2gx + 2fy + c= 0 is in
general form.
Some examples of standard form and general form follow.

conic standard form general form a 1' g C

ellipse + = 1 9x2 + 4y2 — 36 = 0 9 4 0 0 —36

hyperbola ' = 1 5x2 — 3y2
— 15 = 0 5 —3 0 0 —15

ellipse — + = 1 9x2 + 16y2 — 144 = 0 9 16 0 0 —144

hyperbola _= —1 9x2 — 4y2 + 36 = 0 9 —4 0 0 36

circle x2 + ,2 2 + 4y2 — 9 = 0 4 4 0 0 —9

parabola y = 4x2 4x2 — y = 0 4 0 0 — 0

2 2 1parabola x = —3y 3y + x = 0 0 3 — 0 0

Example Describe the graph of each of the following conics.
a) 9x2+9y2=16 c) 25x2—16y2=400
b) 16x2+9y2=144 d) 4x2—y=0

Solution 16. .
a) 9x2 + 9y2 = 16 or x2 + y2 = — is an equation of a circle with centre (0,0)

[4and radius = — = —.
V9 3

b) 16x2+9y2= 144 D
can be divided by 144 to obtain

+y=1.
9 16

The conic is an ellipse with a2 = 9, a = 3 and b2 = 16, b = 4. Since b> a, the
major axis is on the y-axis.
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Alternatively, you can find the x-intercepts and y-intercepts and then
sketch the graph of the ellipse.
x-intercepts: let y = 0 in G3 y-intercepts: let x = 0 in D
16x2 = 144 9y2 = 144

x2=9 y2=16
x=3orx=—3 y=4ory=—4
The graph of 1 6x2 + 9y2 = 144 is as shown below.
c) 25x2 — 16y2 = 400
Each side can be divided by 400 to obtain

16 25
The conic is a hyperbola with a2 = 16, a = 4 and b2 = 25, b = 5. Since this is

of the form - — I, the transverse axis is on the 'axis.
a2 b2

Alternatively, you can find the x-intercepts and y-intercepts and then
sketch the graph of the hyperbola.
x-intercepts: let y = 0 in ® y-intercepts: let x = 0 in ©
25x2=400 —16y2=400

x2 = 16 Since y2> 0 for y R, no real value of
x = 4 or x = —4 y satisfies this equation.
Hence, the x-intercepts are 4 and —4 but the hyperbola does not intersect
the y-.axis.
The graph of 25x2 — 16y2 = 400 is as shown below.
d) 4x2 — y = 0 can be written y = 4x2, which is an equation for a parabola

with vertex at (0,0), axis of symmetry the y-axis, and opening upward.
The graph of 4x2 — y = 0 is as shown below.

b) 16x2+9y2=144 c) 25x2—16y2=400 d) 4x2—y =0

X 2 1
X

Note I Sketching a conic in this context means to find the x-intercepts
and y-intercepts, if they exist, and to show the direction of
opening for a hyperbola or a parabola.

2 If more points are desired, obtain points near the vertices. In part
c) above, x = 5 gives y = ±3.75, and x = —5 also gives y = ±3.75,
which produce the four points (5,3.75), (5,—3.75), (—5,3.75), and
(—5,—3.75).
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The general form of the equation of a conic is ax2 + by2 + 2gx + 2fy + c = 0.

(Do not confuse these a's and b'swith those of, say, + = 1.a b
The two sets are different.)

By comparing the standard form equation of a conic with the general form
you can obtain some useful information.
circle
The equation 9x2 + 9y2 = 16 from Example 1 can be rewritten

9x2 + 9y2 — 16 = 0.
Each term of the equation can be multiplied by any non-zero number kto
obtain 9kx2 + 9ky2 — 16k = 0.
Comparing this equation with ax2 +by2 + 2gx + 2fy + c = 0
gives a = b = 9k,g =f= 0, c * 0.
Note that (a)(b) = (9k)(9k) = 81k2, a positive number.
You will learn that the important fact to remember about a circle is
ab> 0, a = b.

The equation 1 6x2 + 9y2 = 144 from Example 1 can be rewritten
16x2 + 9y2

— 144 = 0.
Comparing this equation with ax2 + by2 + 2gx + 2fy + c = 0
givesa= 16,b=9,g=f=0,c*0.
Note that (a)(b) = (16)(9) = 144, a positive number.
You will learn that the important fact to remember about an ellipse is
ab> 0, a * b

Ii vperboli
The equation 25x2 — 16y2 = 400 from Example 1 can be rewritten

25x2 — 16y2 — 400 = 0.
Comparing this equation with ax2 +by2 + 2gx + 2fy + c = 0
gives a =25, b= —16,g =f= 0, c * 0.
Note that (a)(b) = (25)(—16) = —400, a negative number.
You will learn that the important fact to remember about a hyperbola is
ab < 0.

pa ral,ola
The equation 2 — y = 0 from Example 1 is in general form.
Comparing this equation with ax2 + by2 + 2gx + 2fy + c = 0

gives a = 4, b = 0,g = c = 0,f= Note that (a)(b) = (4)(0) = 0.

You will learn that the important fact to remember about a parabola is
ab = 0.
You should check the truth of the following summary as you do Exercises
8.1 and 8.2.

SUMMARY conic ax2+by2+2.qx+2fy+c=0
circle ab>0,a=b
ellipse ab> 0, a * 1,

hyperbola ab < 0
parabola ab = 0.
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8.1 Exercises

1. Sketch the graph of each of the following
conics.
a) x2+y2=4
b) x2+9y2=9
c) 4x2—y2=4

2. Sketch the graph of each of the following
circles.
a) x2+y2—16=O
b) x2+y2—9=O
c) 4x2+4y2—16=O
d) 3x2+3y2—15=O
e) —2x2—2y2+8=O
f) —5x2—5y2+1O=O

Indicate the value of a, b, c,g, and fin the
general equation for a conic
ax2 + by2 + 2gx + 2fy + c = 0. In each case
verify that ab> 0, a = b.

3. Sketch the graph of each of the following
ellipses.
a) 9x2 + 16y2 — 144= 0
b) 25x2+4y2—100=0
c) 4x2+25y2—100=0
d) —4x2—9y2+36=O
e) —32x2 — 18y2 + 144 = 0

f) —2x2—3y2+18=0
Indicate the value of a, b, c, g, and fin the
general equation for a conic
ax2 + by2 + 2gx + 2fy + c = 0. In each case
verify that ab> 0, a * b.

4. Sketch the graph of each of the following
hyperbolas.
a) 9x2 — 1 6y2 — 144 = 0
b) 9x2 — 16y2 + 144= 0
c) 4x2—y2+4=0
d) —8x2+2y2+8=0
e) —x2+y2+9=0
f) 3x2—5y2—30=0

Indicate the value of a, b, c, g, and fin the
general equation for a conic
ax2 + by2 + 2gx + 2fy + c = 0. In each case
verify that ab < 0.

5. Sketch the graph of each of the following
parabolas.
a) x2—y=0
b) 4x2—y=0

d) —x2+2y=0
e) 4y2+x=0
f) 5y2—x=0

Indicate the value of a, b, c, g, and fin the
general equation for a conic
ax2 + by2 + 2gx + 2fy + c = 0. In each case
verify that ab = 0.

6. Identify each of the following equations as
representing a circle, an ellipse, a
hyperbola or a parabola.
a) x2+y2=25 e) x2+y2—16=O

b) 94
c) y = 9x2 g) 16x2 — 9y2 = 144

d)4x2—25y2+100=Oh)3y2-i-x=O
For each circle, state the coordinates of the
centre and the length of the radius.
For each ellipse, state the coordinates of the
centre, the coordinates of the vertices and
the name of the major axis.
For each hyperbola, state the coordinates of
the centre, the coordinates of the vertices
and the name of the transverse axis.
For each parabola, state the coordinates of
the vertex and name the axis of symmetry.

7. For each of the following equations of
conics, compare the equation with the
general equation
ax2 + by2 + 2gx + 2fy +c= 0
and determine the values of a and b.
Calculate the value of ab and use this value
to determine the type of conic.
a) x2+7y2—8=0
b)
c)
d)
e)
f)
g)
h)
i)
j)

3x2 — 5y2
— 1 = 0

4x2 + 5y = 0
8x2 + 8y2 — 5 = 0
3y2 — 4x = 0
3x2 — 16y2 + 1 = 0
5x2 + 6y2 — 2 = 0
tx2+ty2— 14=0,t*O
tx2+my2— 14=0,t>0,m<0
tx2+ my2— 14=0,t*m,t> O,m>O

d) y=4x2
e) x=2y2

c) 3x2+y=0

f) -+-=i94
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8.2 Translations of Conics

In section 1.1 you observed the relationship between vectors and
translations. Each vector a = (h,k) defines the translation that maps each
point P with coordinates (x,y) into the point P' with coordinates
(x + h,y + k), that is,

point P(x,y) — point P'(x + h,y + k).

In earlier grades you learned that a translation is an isometry, that is,
every line segment maps into a congruent line segment, which means that
any figure is congruent to its image figure. A special property of a
translation is that a line L and its image line L' are parallel.

In this section you will learn how the equation of a conic changes when a
conic is translated from its standard position.

Example 1 Given the points P(2,3), Q(—1,5), and R(O,—2)
a) find the image of LPQR under the translation defined by the vector

a = (4,—2)
b) sketch LPQR and its image LP'Q'R'.

Solution For the translation defined by vector a = (4,—2), the point (x,y) maps into
the point (x + 4,y — 2), that is,

(x,y) — (x + 4,y — 2).

Thus,
P(2,3) —* P'(2 + 4,3 — 2) = (6,1)

Q(—1,5) —* Q'(—l + 4,5 — 2) = (3,3)
R(O,—2) — R'(O + 4,—2 — 2) = (4,—4)

b) LPQR and LP'Q'R' are graphed as shown.

y

Note: LPQR LP'Q'R',
PQ P'Q',
PR II P'R',
QR Q'R'.
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Example 2 Given the ellipse E: 9x2 + 4y2 = 36.
a) Find, in general form, an equation for E', the image of E, under the

translation (x,y) — (x + 2,y — 5).
b) Sketch a graph of the ellipse E and its image ellipse E'.
c) By comparing the given equation with the general equation

ax2 + by2 + 2gx + 2fy + c = 0, find the values of a, b, c, g, f. Calculate ab
for both the equation of E and the equation of E', and note the sign in
each case.

Solution a) To avoid confusing the coordinates of a point P on the ellipse E and a
point F' on the image ellipse E', a point P on E will be called (x,y) while
a point F' on E' will be denoted (u,v).

P(x,y)

P (u,v)
x

Thus, under the translation, P(x,y) — P'(u,v)
But under this translation (x,y) —* (x + 2,y — 5) = (u,v)
Therefore,u=x+2andv=y— 5
To find the relationship between u and v on E' you must solve D for x and
y in terms of u and v, then substitute these values into the equation for E,
namely, into 9x2 + 4y2 = 36
From u —2, andy = v+ 5
Substituting into ® gives

9(u — 2)2 + 4(v + 5)2 = 36
or 9(u2 — 4u + 4) + 4(v2 + lOv + 25) — 36 = 0

or E': 9u2 + 4v2 — 36u + 40v + 100 = 0.

Because it customary to write the equation of a conic using x and y you
should replace u by x and v by y to obtain the following equation for E'

E': 9x2 + 4y2 — 36x + 4Oy + 100 = 0.

b) To sketch image ellipse E' you should find the images of the centre,
and of the points of intersection of E: 9x2 + 4y2 = 36 with the x-axis
and y-axis.
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x-intercepts: let y = 0
9x2 + 0 = 36

x2 = 4
x = 2 or x = —2

(2,0)
(—2,0)
(0,3)
(0,—3)

y-intercepts: let x = 0
0 + 4y2 = 36

y2 = 9

y= 3 ory= —3

)

image ellipse E'

centre (2,—5)
(4,—5)
(0,—5)
(2,—2)
(2,—8)

c) Comparing the general equation ax2 + by2 + 2gx + 2fy + c = 0 with each
equation gives

forE: 9x2 + 4y2 — 36 = 0 forE': 9x2 + 4y2
— 36x + 4Oy + 100 = 0

Under the translation (x,y) —* (x + 2,y — 5)

ellipse E

centre (0,0) -
-

The graphs of E and E' are as shown.

E

x

a = 9, b = 4,
g =f= 0,
c = —36
ab = 36 is positive

a = 9, b = 4,
= —36, sog = —18; 2f= 40, sof= 20,

C = 100
ab = 36 is positive U



352 Chapter Eight

Example 3

o1ution a)

a) Given the hyperbola H: x2 — 1 6y2 = 16, find, in general form, an
equation for H', the image of H, under the translation
(x,y) —* (x — 3,y + 2).

b) Sketch a graph of the hyperbola H and its image hyperbola H'.
c) By comparing the given equation with the general equation

ax2 + by2 + 2gx + 2fy + c = 0 find the values of a, b, c, g, f. Calculate ab
for both the equation of H and the equation of H', and note the sign in
each case.

As in Example 2, a point P on H will be called (x,y) while a point F' on
H' will be denoted (u,v).

x

Thus, under the translation, P(x,y) - P'(u,v)
But under this translation (x,y) —k (x — 3,y + 2) = (u,v)
Therefore, u = x — 3 and v = y + 2 GJ

As in Example 2, solve J for x andy, then substitute into
x2—16y2=16 ®
From GJ,x= u + 3,andy = v —2
Substituting into ® gives
(u+3)2—16(v—2)2=16
oru2+6u+9— 16(v2—4v+4)— 16=0

orH': u2 — 16v2 + 6u + 64v— 71 = 0.

As in Example 2, replace u by x and v by y to obtain the following equation
for H'.

H':x2— 16y2+6x+64y—71 =0.

b) To sketch image hyperbola H' you should find the images of the centre
of H: x2 — 16y2 = 16 and of the points where H intersects the x-axis and
the y-axis.

y
P'(u,v)

P(x,y)
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x-intercepts: let y =0
x2 + 0 = 16
x = 4 or x = —4

y-intercepts: let x = 0
0 — 16y2 = 16

— by2 = 16 which has no solution in
real numbers.

The x-intercepts are 4 and —4. The hyperbola does not intersect the y-axis.
Hence, the hyperbola opens along the positive x-axis and the negative
x-axis.

Under the translation (x,y) -÷ (x — 3,y + 2)

hyperbola H

centre (0,0)
(4,0)
(—4,0)

-
-*

image hyperbola H'

centre (—3,2)
(1,2)
(—7,2)

The graphs of H and H' are as shown.

1I I I I 1 r I x

c) Comparing each equation with the general equation
ax2 + by2 + 2gx + 2fy + c = 0 gives

for H: x2 — 16y2 —16 = 0

a = 1, b = —16,

g =f= 0,
C = —16
ab = —16 is negative

for H': x2 — 16y2 ÷ 6x + 64y —71 =0

a = 1, b = —16,
2g = 6, sog = 3; 2f= 64, sof= 32,
c = 71
ab = —16 is negative U

From Example 2 and Example 3 you can see that, under a translation, the
image of an ellipse or hyperbola in standard position has an equation of
the form

ax2+by2+2gx+2fy+c=0
Note: As you saw in Section 8.1, for an ellipse ab> 0 with a * b, and for a

hyperbola ab <0. In 8.2 Exercises, you will find ab> 0 with a =b

for a circle, and ab = 0 for a parabola.

y
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8.2 Exercises
- (C'

1. Find the image of the given point under the
given translation.
a) point (3,5)

translation (x,y) — (x + 3,y + 6)
b) point (—2,4)

translation (x,y) —* (x — l,y + 7)
c) point (8,0)

translation (x,y) — (x — Ly — 2)
d) point (—4,—5)

translation (x,y) — (x + 4,y + 5)

2. Given the ellipse E: 25x2 + 9y2 = 225.
a) Find, in general form, an equation for

E', the image of E, under the translation
(x,y)—. (x+ 3,y+ 1).

b) Sketch a graph of the ellipse E and its
image ellipse E'.

c) Find the values of a, b, c, g, f, and the
sign of ab for both the equation of E
and the equation of E'.

3. Repeat the previous question for the
following ellipses and translations.
a) ellipse 9x2 + 16y2 = 144

translation (x,y) —* (x + 3,y + 6)
b) ellipsex2+4y2= 16

translation (x,y) — (x — l,y + 7)
c) ellipse 8x2 + 200y2 = 1600

translation (x,y) — (x — 3,y — 2)
d) ellipse 4x2 + 9y2 = 36

translation (x,y) — (x + 4,y + 5)

4. a) Given the hyperbola H: x2 — 16y2 = 16,
find, in general form, an equation for
H', the image of H, under the
translation (x,y) — (x — 3,y + 2).

b) Sketch a graph of the hyperbola H and
its image hyperbola H'.

c) Find the values of a, b, c, g, f, and the
sign of ab for both the equation of H
and the equation of H'.

5. Repeat the previous question for the
following hyperbolas and translations.
a) hyperbola 9x2 — 16y2 = 144

translation (x,y) —* (x — 3,y + 5)

b) hyperbolax2 — 4y2 = —16

translation (x,y) — (x + l,y + 7)
c) hyperbola 8x2 — 50y2 = 800

translation (x,y) -÷ (x — 3,y — 2)
d) hyperbola x2 — y2 = 36

translation (x,y) —* (x + 4,y — 3)

6. Given the parabola F: 4x2 —y = 0.
a) Find, in general form, an equation for

F', the image of F, under the translation
(x,y) — (x + 3,y + 1).

b) Sketch a graph of the parabola P and its
image parabola F'.

c) Find the values of a, b, c, g, f, and the
value of ab for both the equation of P
and the equation of F'.

7. Repeat the previous question for the
following parabolas and translations.
a) parabolax2—y=0

translation (x,y) -* (x — l,y + 6)
b) parabola4y2—x=0

translation (x,y) — (x — l,y — 3)
c) parabola8y2+x=0

translation (x,y) -+ (x + 2,y — 2)
d) parabola4x2+y=0

translation (x,y) —÷ (x — l,y + 3)

8. Given the circle C: x2 +y2 = 25.
a) Find, in general form, an equation for

C', the image of C, under the translation
(x,y) — (x — 3,v + 1).

b) Sketch a graph of the circle C and its
image circle C'.

c) Find the values of a, b, c, g, f, and the
sign of ab for both the equation of C
and the equation of C'.

9. Repeat the previous question for the
following circles and translations.
a) circlex2+y2= 144

translation (x,y) —.. (x + 3,y — 1)
b) circlex2+y2=25

translation (x,y) — (x — 5,y — 2)
c) circle 8x2 + 8y2 = 16

translation (x,y) -+ (x + 3,y — 2)
d) circle 2 — 4y2 = —16

translation (x,y) — (x + 4,y + 5)
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10. Examine your results of questions 2—9 to
show that for any particular conic the value
of ab and hence the sign of ab is invariant
under a translation. That is, observe the
value of ab before and after translation for
each conic to see the following are true.
for an ellipse, ab> 0 and a * b
for a hyperbola, ab < 0
for a parabola, ab = 0
for a circle, ab> 0 and a = b

11. GiventhecurveC: 4x2 —y+3=Oandthe
translation (x,y) — (x,y — 3).
a) Find an equation of its image under the

given translation.
b) Name the type of curve.
c) Sketch the image curve C'. Then sketch

the given curve C by using the inverse
translation to the given translation.

12. Repeat the previous question for the
following curves and translations.
a) curvex2+y2+4x+6y—12=O

translation (x,y) —+ (x + 2,y + 3)
b) curve 2x2+8x+y=O

translation (x,y) — (x + 2,y — 8)
c) curve9x2+4y2+72x+24y+36=0

translation (x,y) —* (x + 4,y + 3)
d) curve — y2 + 16x — 6y + 3 = 0

translation (x,y) -+ (x + 2,y + 3)

13. a) Show by factoring, that the conic
4x2 — y2 = 0 is a degenerate conic
representing a pair of straight line.

b) Find an equation of the image of this
degenerate conic under the translation
(x,y)—*(x+ 5,y+2)

c) Graph the degenerate conic and its
image under the translation.

d) Why is this conic called a degenerate
conic?

14. a) Find the equation of the image of the
conic ax2 + by2 + t = 0 under the
translation (x,y) — (x + h,y + k).

b) Use your results of part a) to show that
the sign of ab is invariant under a
translation.

15. Find the translation under which the curve
x2+y2+4x+6y—3=Omapsintothe
circlex2+y2= 16.

16. Given the conic C: ax2 + by2 + c = 0, where
a, b * 0;
and the translation (x,y) — (x + h,y + k),

show that the image of C under the
translation is the conic
C': Ax2 + By2 + 2Gx + 2Fy + C = 0, where
A = a, B = b, G = —2ah, F = —2bk,
C = ah2 + bk2 + c.

17. a) The conic + = 1 is translated under
a b

the translation (x,y) —* (x + h,y + k).

Show that the image conic has
the equation

(x — h)2 + (y — k)2 = 1.
a2 b2

b) Give the coordinates of the centre of the
image curve.

c) State the lengths of the major axis and
the minor axis for the image conic.

18. a) The conic — = 1 is translated under
a b

the translation (x,y) —+ (x + h,y + k).
State an equation for the image curve in
a form similar to that of question 17.

b) Repeat part a) for the curve y =ax2.

19. You will see in a later section that the
equation ax2 + 2hxy + by2 + c = 0 defines an
ellipse or a hyperbola for a * 0, b * 0, and
a * b. Suppose the conic maps into
2 + 2Hxy + By2 + C =0 under a
translation. Prove the following
a) a+b=A+B
b) b2—4ac=B2—4AC

20. Prove that a translation is an isometry by
showing that the length of the line segment
joining P1(x1,y1) to P2(x2,y2) equals the
length of the line segment joining the
images of P1 and P2.
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8.3 Translat ig Conics into Standard
Position

The equation ax2 + by2 + 2gx + 2fy + c = 0 represents some conic.

If g = 0 andf= 0, the conic is a circle, an ellipse, or a hyperbola,
in standard position: for example, x2 + y2 — 9 = 0 represents a circle,
4x2 + 9y2 — 36 = 0 an ellipse, or 16x2 — 25y2 — 400 = 0 a hyperbola.
If a = f= c = 0, or b = g = c = 0, the conic is a parabola
in standard position: for example, 4y2 + x = 0 or 9x2 — y = 0.

For conics in standard position, graphs can be drawn as in section 8.1.

If the coefficients indicate that the conic is not in standard position,
then the conic is graphed by first translating it into standard position,
then using the inverse translation on the standard position graph.

You will remember from section 8.1 that terms in x and y in non-standard
equations arise from perfect squares such as (x + 3)2= x2 + 6x + 9. To
reverse the process of translating back into standard position you will
need to be able to complete a square.

Recall that x2 + mx becomes a perfect square by the addition of ()

Then the following is true.
2 2

+ 111k + (ni) = ( + in)

For example:/ \2 / \2

X2+8X+() =(x+) =x+4)2

- 12x + (_12)2 = ( )2 = (x - 6)2

x2+7x+(_ =(+—\21 \ 2

Recall that, in standard position or not, the following is the relationship
among a, b, and the conic.

1/n i ipli /i.v /'i 2q r 2/v - c 0

circle ab>0,a=b
ellipse ab> 0, a * b
hyperbola ab < 0
parabola ab = 0

The following example will demonstrate a method of graphing a conic
with equation ax2 + by2 + 2gx + 2fy + c = 0, that is, when the conic is not in
standard position.
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Example 1 Given the conic C: 9x2 + 4y2 + 36x — 8y + 4 = 0
a) Name the type of conic.
b) Determine the translation that changes the equation into standard

form.
c) State an equation for the image curve C'.
d) Graph the image conic C' and given conic C.

Solution a) Herea = 9, b = 4andab = 36.
Hence ab> 0 and a * b, and so the conic is an ellipse.

b) g * 0, f * 0, so the conic is not in standard position. The translation
can be obtained by completing the squares of the terms in x and also of
the terms in y.

9x2 + 4y2 + 36x — Sy + 4 = 0 can be written
9(x2 + 4x) + 4(y2 — 2y) = —4, or

9(x2+4x+4)+4(y2—2y+1)=—4+36+4
or 9(x+2)2+4(y— 1)2= 36

Replacing x + 2 by u andy — 1 by v (to avoid confusing a point on C and a
point on C') gives an equation in standard form, namely
9u2 + 4v2 = 36
Thus, the translation moving 9x2 + 4y2 + 36x — 8y + 4 = 0 into standard
position is
(x,y)— (u,v) or

(x,y)—. (x+ 2,y— 1)=(u,v)

c) The equation 9u2 + 4v2 = 36 of the image conic C' should be rewritten
using x andy, as 9x2 + 4y2 = 36.

d) The curve 9x2 + 4y2 = 36 intersects the x-axis atA'(2,0) andB'(—2,0)
and they-axis atP'(0,3) and Q'(0,—3). The graph of C' is shown below.

To obtain the equation of C', you have applied the translation
(x,y) — (x + 2,y — 1). Hence, to graph C, you must apply the inverse
translation (x,y) —* (x — 2,y + 1) to the points A', B', F' and Q' on the image
ellipse C'.

Under this inverse translation
(x,y) — (x — 2,y + 1)
A'(2,0) —*A(0,1)

B'(—2,0)--* B(—4,1)
P'(0,3) — P(—2,4)

Q'(0,—3) —* Q(—2,—2)
The graph of C is shown on the
same axes as the graph of C'.

add 9()2 and ( 0 )t 1
sides of equatior
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llternate Solution fr parts b) and c,iof Example 1

b) Let the required translation be (x,y) — (x + h,y + k).

If (x,y) is a point on C and (u,v) is the image point on C' then
u=x+h v=y+k
Hence,
x=u—h y=v—k
But 9x2 + 4y2 + 36x — 8y + 4 = 0.
Substituting for x andy gives
9(u—h)2+4(v—k)2+36(u—h)—8(v—k)+4r0
or 9(u2 — 2hu + h2) + 4(v2 — 2kv + k2) + 36u — 36h — 8v + 8k + 4 = 0
or 9u2 + 4v2 + u(—18h + 36) + v(—8k —8) + 9h2 + 4k2 — 36h + 8k + 4 =

This equation will be in standard form if the coefficients of u and v
are 0.
Hence, —18h + 36 = 0 and —8k — 8 = 0,
that is, h = 2 and k = —1.

c) To obtain the equation of E' you should substitute h = 2, k = —1 into
equation* giving
9u2 + 4v2 + u(0) + v(0) + 9(2)2 + 4(1)2 — 36(2) + 8(—l) + 4 = 0
or 9u2 + 4v2 — 36 = 0.

Example 2 Given the conic C: 4x2 — — 8x - 9 0.
a) Name the type of conic.
b) Determine the translation that changes the equation into standard form.
c) State an equation for the image curve C'.
d) Graph the image conic C' and given conic C.

Solution a) Here a = 4, b = —1 andab = —4.

Hence ab < 0, so the conic is a hyperbola.
b) The translation can be obtained by completing the squares of the terms

in x and also of the terms in y.
4x2—y2 —8x—6y—9=0canbewritten
4(x2—2x)—(y2+6y)=9or
4x2—2x+1)—(y2+6y+9)=9+4—9 aad no
or 4(x — 1)2 — (y + 3)2 = 4 sidE s f n ilion

Replacing x — 1 by u and y + 3 by v (to avoid confusing a point on C
and a point on C') gives an equation in standard form, namely
4u2 — v2 = 4
Thus, the translation moving 4x2 —y2 — 8x + 6y — 9 = 0 into standard
position is
(x,y) —*. (u,v) or
(x,y) —* (x — l,y + 3)

c) The equation 4u2 — v2 = 4 of the image conic C' should be rewritten
using x and y, as 2 — y2 =
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d) The curve 4x2 — y2 = 4 intersects the x-axis at A' (1,0) and B' (—1,0) and
does not intersect the y-axis. Since the hyperbola C' is in standard
position and intersects the x-axis, the conic opens right along the
positive x-axis and left along the negative y-axis. The graph of C' is as
shown below.

To graph C, you must apply the inverse translation (x,y) — (x + l,y — 3) to
the points A' and B' on the image hyperbola C'.

Under this inverse translation
A'(l,O) —* A(2,—3)
B'(—l,O) —* B(0,—3)
The graph of C is shown on the
same axes as the graph of C'.

Example 3

Solution

Given the conic C: 3x2 — 24x — y + 46 = 0.
a) Name the type of conic.
b) Determine the translation that changes the equation into standard

form.

U

a) Herea=3,b=0.
Since ab = 0, the conic is a parabola.

b) Note that there are no y2 terms, so that the translation can be obtained
by completing the square for the terms in x.

3x2 — 24x — y + 46 = 0
can be written
3(x2 — 8x) = y — 46
3(x2 — 8x + 16) = y — 46 + 48 add 3( to both sides of the equation

3(x — 4)2 = y + 2
Replacing x — 4 by u and y +2 by v gives an equation in standard form,
namely 3u2 = v.
Thus the translation changing 3x2 — 24x2 — y + 46 = 0 into standard form is
(x,y) —* (u,v) or
(x,y) — (x — 4,y + 2) U

/4
1\ 7

-c
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8.3 .xIbises

1. For each of the following conics, indicate
whether the conic is an ellipse, a circle, a
hyperbola or a parabola.
a) 3x2+2y2—4x—7y— 10=0
b) 5x2—2y2--3x--2y—3=0
c) 4x2—3x—7y—I=0
d) 4x2+4y2—8x+7y+3=0
e) x2+4y2—3x—8y-- 10=0
f) x2—y2—2x—3=0

2. Given the conic
C: 4x2+y2+ 8x— 6y+ 9=0.
a) Name the type of conic.

b) Determine the translation that changes
the equation into standard form.

c) Find an equation for the image
curve C'.

d) Graph the image conic C' and given
conic C.

3. Repeat the previous question for the
following conics.
a) 4x2—9y2—8x— 18y—41 =0
b) x2+y2—6x+IOy--2=0
c) 4x2+25y2—48x+200y+444=O
d) x2+8x—16y+32=0
e) 9x2+y2+18x—6y+9=O
f) 4x2—4y2+8x—16y+13=0
g) 2x2+2y2+8x+12y+1=0
h) y2 + 4x — 12y + 4 = 0

4. GiventheconicC:4x2—y2—8x—4y=0.
a) Determine the translation that changes

the equation into standard form.
b) By factoring the image equation show

that the image curve C' consists of two
lines that intersect at the origin.

c) Find equations for the two lines that
make up the conic C.

d) Explain why C is called a degenerate
hyperbola.

5. Show that the sign of ab is invariant when
the conic ax2 + by2 + 2gx + 2fy + c = 0 is
translated under the translation
(x,y) -+ (x + h,y + k).

6. a) Use translations to show that the conic
x2 + y2 + 2gx + 2fy + c = 0 is a circle
with centre (—g,—J) and radius

Jg2 + — c
b) Under what conditions ong,f, and c

will the circle have a non-real radius?
Such a circle is called an imaginary circle.

c). Under what conditions on g, f, and c

will the circle have a radius that is zero?
Such a circle is called a point circle.

7. Given the conic
C:ax2+by2+2gx+2fy+c=0.
a) Show that C maps into ax2 + by2 = k

under the translation

(x,y) (x
+ ,y + f)

b) Show that C is an ellipse if

+ — c> 0 and ab> 0.
a b

c) Show that C isa hyperbola if

+ — c 0 and ab < 0.a b
8. Given the conic

C: ax2 + by2 + 2gx + 2fy +c= 0
where b = 0.
a) What type of conic is C?
b) Show that the conic is translated into

standard position by the translation

(x,y)-*(x+,y+------a 2f 2af
9. Show that the equation

(x—h)2 (y—k)2+ = 1, a> b, determines an
a2 b2

ellipse with centre (h,k) and having major
axis y = k and minor axis x = h.

10. Show that the equation
(x—h)2 )2______ — = —1 determines an

a2 b2

hyperbola with centre (h,k) and transverse
axisy=k.

11. Show that the equationx — h = m(y — k)2
defines a parabola with vertex (h,k) and
axis of symmetry y = k.
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8.4 Matrices, their Transposes
and tle Central Conics

So far you have studied the effect of a translation on conics. Next you will
consider what happens to the equation of a central conic (an ellipse or
hyperbola) under a rotation.

In section 7.4 you discovered that a rotation transformation can be
described using a matrix. One way to study the effect of a rotation
transformation on an ellipse or a hyperbola will be to write such conic
equations using matrices.

Consider the equation of ellipse 4x2 + 9y2 = 36, and the matrices

T=[x y]M=[4 0],V=[X],andK=[36]
Because matrix multiplication is associative, the matrix product TMV can
be performed either as (TM)V or T(MV). Using the latter,

TMV= [x i([: :][;])
F4x + 0

=[x yJi
LO + 9y

= [4x2 + 9y2]

Hence, the conic equation 4x2 + 9y2 = 36 is equivalent to
the matrix equation [4x2 + 9y2] = 1361 which is written TMV = K.

When a central conic in standard position is rotated about the point (0,0)
you will see (in section 8.5) that the conic has an equation with an xy term.
The form of such an equation is ax2 + 2hxy + y2 = k. You will now learn
how to express such an equation using matrices.

Example 1 Show that the quadratic expression ax2 + 2hxy + by2 is equivalent to the

matrix product TMVwhereT= Ix yJ,M= ía hi = IxLh bj LY

Sohi ti on The product TMV =T(MV
/1a hlFx= [x 1Lh biLy
Fax + hy=[x 1i
Lhx + by

= [ax2 + 2hxy + by2J

Hence, the quadratic expression ax2 + 2hxy + by2 is equivalent to

the matrix product TMV= [x y]a hiIxl •
Lh bJLyJ
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Note: The determinant of M, det(M), equals ab — h2. You will learn that the
value of this determinant is significant in determining the type of
central conic represented by the matrix equation TMV K.

If K = Lk], then Example 1 shows you that the quadratic equation
ax2 + 2hxy + by2 = k is equivalent to the matrix equation

TMV = K, or
ía hllxl

X
Y1[J b]Ly]

= [k]

Observe that the matrix T and the matrix V contain the same elements but
the row in T is a column in V.
T is called the transpose of matrix V and is denoted Vt.

The quadratic expression ax2 + 2hxy + by2 = k is equivalent to the matrix

equation VtMV = K where V = = = [kJ, and Vt = [x y]
LYJ Lh bj

E F I NI TI ON The transposeAt of an mx n matrixA is then x m matrix formed by
interchanging the elements in rows and columns, that is,
A = [au] = At = [ar]

The following are some examples of a matrix and its transpose.
[5 4 11

matrixA F 1 Fm kl 3 2 6 I F6 5 4
L3 2] Lk ci ['' 8 9] L7 8 9

[5 3 71 [6 7
transpose At F 1 Fm k1 4 2 8 5 8

L4 2J Lk ci Li 6 9] L4 9

Note: The symmetric matrix Fm kl equals its transpose.Lk cJ
One important property of the transpose of a matrix is the following.

R , E R T If A and B are matrices such thatAB exists then (AB)t =BtAt.
The proof of this property for 2 x 2 matrices follows.

lab] lmtProof: Let A=I iandB =1Lc dJ Lr s
ThenAt=F' Cl dBtFm r

Lb di Lt

AB = F' blFm tl WA1 = Fm rlFa c
Lc diLr si Lt siLb d

Jam+br at+bsl Jam+br cm+drl(AB)(
Lcm+dr ct+ds] Lat+bs ct+ds]

Hence, (AB)t = B1A1.
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In the next section you will be performing rotations on conics about the
IcosO —sin 0

point (0,0) using the rotation matrix R =
Lsin0 cosO

In 8.4 Exercises you will be asked to prove the following property of the
rotation matrix R and its transpose Rt.

A E A T
If R is the rotation matrix and I is the 2 x 2 unit matrix, then RRt = R1R = I.

This property means that R', the inverse of R, and RL, the transpose of R,
are equal matrices.

Example 2 a) Write the Cartesian form of the matrix equation VtMV = Kwhere
v=IXl,M=I 2 iandK=[7].

Lyi L—3 6J
b) Write the matrix equation for the Cartesian equation

3x2 — 5xy — 7y2 = 10.

Solution a) ,Jetho/ /
From the first property on page 362, the matrix form of the equation
ax2 + 2hxy + by2 =k is the matrix equation VtMV = k

whereM=Ii hi V= IXi andK= [kJ.Lh hi LyJ

But M = 2 1 so a = 2, h = —3 and b = 6. Also, K = [7], so k = 7.
L—3 6J

Hence, the matrix equation VtMV = Kbecomes the Cartesian equation
ax2 + 2hxy + by2 =k or 2x2 — 6xy + 6y2 = 7.
Method 2
The matrix equation VtMV = Kbecomes

[x Y1[ ][;]=E71

([x yj[2 ])[] = [7]

2x—3y _3x+6y1[X]=[71y
[2x2 — 3xy — 3xy + 6y2] = [7]
[2x2 — 6xy + 6y2J = [7]
Hence, the Cartesian equation is 2x2 — 6xy + 6y2 = 7.

b) From the first property on page 362, the matrix M for the Cartesian

equation ax2 + 2hxy + y2 = k is M = [ ], andK = [k].

Butfor3x2_5xy_7y2=10,a=3,h=—or_2.5,b=_7,k=10.
Thus the Cartesian equation 3x2 — 5xy — 7y2 = 10 becomes the matrix

equation VtMV= K. That is, [x y][ 23][x] = [10]. •
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8.4 Exercises

1. Calculate the matrix product.

a) [7 8112 1 b) 12 1I
L4 3J L4 3JL1

2. For each of the following matrices M, write
the Cartesian equation of the conic whose
matrix equation is V'MV = K.

3. For each of the following conics
ax2 + 2hxy + by2 = k, write the matrix M and
the matrix K for its matrix equation
VMV= K.

a) 4x2+6xy+5y2=3
b) 7x2—8xy+3y2=1
c) —2x2+y2=9
d) 5x2—3xy—7y2=8
e) 9x2—11y2=—5
f) x2—xy+5y2=3

4. Write the matrix equation V'MV = K for
each of the conics in question 3.

5. Write the transpose of each of the
following matrices.

a) Calculate the matrix product AB.
b) Write (AB)'.
c) Write the matrix A' and the matrix B'

and then calculate WA'.
d) Use your results of parts b) and c) to

verify that (AR)' = WA.

7. Repeat the previous question using the
following pairs of matrices

1231 13—1a) A=i iandB=iL3 5J L—1 4

b) A=I landB=I[02] L—1 4

15 ii 12 4c) A=I iandB=iLi 4J L4 1

8. For each of the following values of 0, write
Icos 0 —sin 01the rotation matrix R = I i for
LsinO cos0J

the rotation of 0 about (0,0). Find the value
of each element, correct to 2 decimal places.
a) 30° b) 20° c) 140° d) 90°

9. For each of the following values of 0, write
Icos 0 —sin 01the rotation matrix R = I I for
Lsin0 cos0j

the rotation of 0 about (0,0). Find the exact
value of each element using the table on
page 543.
a) 30° b) 45° c) 60°

10. Suppose that R is the rotation matrix
corresponding to a rotation of 0 =40° about

the point (0,0), andM =
[4 0]

Calculate the matrix product RM. State the
value of each element of RM, correct to 2
decimal places.

11. Repeat the previous question for the
following values of M and 0.

13 iia) M=I iand0=30Li 5J
b) M=I land0=60°L3 2]

12. Repeat question 11 but find exact values
for each element of RM.

17 8a) I
L8 9

b)I6
0

[0 —1
1 4 —5

c) I
L—5 2

d) 12 —4

[—4 3
112 10e) I
[10 2

f) 1_2 9
L9 1

17 8a) i[8 9

b)I6 7
[0 —1
13 1c) iL5 4

d) 1—2
—4

[—4 3
112 0e) L10 2

f) 11 4 3
L7 1 2

12 31 Fi 26. Given A = i I and B = I
L4 5J [3 0

13. Given that R is the rotation matrix
Icoso —sin 0
Lsin0 cos0

aridlisthe2 x 2unitmatrixP 0
[0 1

a) Prove that R'R = RR' = 1.

b) Explain why you can conclude that
R' = R'.
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8.5 Rotations of Central Conics

Suppose a central conic C (an ellipse or a hyperbola) in standard position,
with its axes of symmetry along the x-axis and y-axis, is rotated through an
angle 0 about the origin (0,0) as in the figure.

y

H

Then a point Pon the conic C maps into a point F' on the image conic C'.
If OP = Vand OF' = U, then under the rotation matrix R, V —* U, where

RV=U

Rt(RV) = RtU (multiplying on the left side both sides by Rt)

(RtR)V = RtU (matrix multiplication is associative)

Thus, IV = RtU (from section 8.4, RtR = I)

Or, v = RI (for any 2 x 2 matrix W, WI = 1W = W)

Also, Vt = (RtU)t (taking the transpose of the matrices on each side)

or v' = UR ((AB)t = BAt, and the transpose of At is A)

Thus, under a rotation 0 about the point (0,0),
v becomes RI]' and , becomes u R
Hence, upon applying the rotation transformation,
the matrix equation M = Kbecomes
the matrix equation(I'R) M(R'U) = Kor Ut(RMRt)U= K.

Once this equation has been obtained it is customary to replace U by V and
U by V. Hence, you now have the following property.

, R E R T
Under the rotation defined by the rotation matrix R
the conic VMV = K maps into the conic V'M'V =K,
where M' = RMRt, and

lcosO —sin 01 lxi ía h
R=i i,V=I i,andM=I

LsinO cos0i LyJ Lh b

y
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Example 1 Given the ellipse E: 4x2 + 9y2 = 36.
a) Write the corresponding matrix equation V1MV = K.
b) Find the matrix equation forE', the image of E under a rotation of 200

about the point (0,0). Round off numbers to 1 decimal place.
c) Write the Cartesian equation for the image of E.
d) Sketch a graph of E and E'.

ition a) For the curve ax2 + 2hxy + by2 = k,M = ía hi
Lh hi

ForE:2+9y2=36,a=4,b=9andh=O.Thus,M=[4 °1Lo i
Therefore the matrix equation for E is

V°MV = K or

[x i[: :][;] = [36]

b) The matrix equation forE' is V1M'V = K, where M'
rotation angle about (0,0) is 20°, thus

[cos 20° —sin 20°]the rotation matrix R = I I and,
Lsin 20 cos 20 J

R = F cos 20° sin 20°
[—sin 20° cos 20°

correct to 1 decimal place.

VM'V = K, or [x :][;1 = [36].

c) For the image ellipse E',
M' = ía h 1, thus a' = 4.6,b' = 8.4 and h' = —1.6

Lh' b'J
Since the equation of E' is a'x2 + 2h'xy + b'y2 =
the Cartesian equation for the image ellipse E' is

4.6x2 — 3.2xy + 8.4y2 = 36
d) For 4x2 + 9y2 = 36: the x-intercepts are 3 and —3, while the y-intercepts

are 2 and —2. The graph of E is shown in the diagram.

The graph of E' is the graph of E rotated 20° counterclockwise about
(0,0), shown on the same axes as that of E.

= RMR1. But the

Thus, M' = RMR

= [cos 20° —sin 20°1[4 011 cos 20° sin 20°
[sin 20° cos 20°j[0 9jL—sin 20° cos 20°
([cos2o° —sin2o°1[4 °1[ cos20° sin2O°
'[sin 20° cos 20°j[0 9j)L—sin 20° cos 20°

= 1 cos 20° —9 sin 20° [ cos 20° sin 20°
[4 sin 20° 9 cos 20°jL—sin 20° cos 20°

= [4 cos2 20° + 9 sin2 20° 4 cos 20° sin 20° — 9 sin 20° cos 20°
[4 sin 20° cos 20° — 9 cos 200 sin 20° 4 sin2 20° + 9 cos2 20°

4.6 —1.6
[—1.6 8.4

Thus, the matrix equation for E' is
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Note: Once you have had some practice using the method of Example 1,
the equation of the rotated conic can be found simply by calculating

the matrix M' = RMR' = [, ,] and then substituting into the

image equation a'x2 + 2h'xy + b'y2 =k.

A P E A T
Under a rotation of 0 about the point (0,0) with rotation matrix R, the
conic ax2 + 2hxy + by2 = k maps into the conic a'x2 + 2h'xy + b'y2 =k,

where h
1 = RMRt.

Lh' b'J

Example 2 The hyperbola H: x2 — by2 = 5 is rotated through an angle of 300. Find an
equation of H', the image of H after rotation. Use exact values for the sine
and cosine of 30°.

Solution The image H' has equation a'x2 + 2h'xy + b'y2 =k, where [", ,] RMRt
andk= 5.
For H: x2 — 16y2 = 5, so a = 1, h = 0, b = —16. Also 0 = 30°. Thus,

11 ol Icos 30° —sin 30°] 1 cos 30° sin 30°
M=i i,R=i iandR=i

LO 16] Lsin 30 cos 30 J L—sin 30 cos 30
flcos 30° —sin 30°11 1 O1'\1 cos 30° sin 30°ThusM =ji ii iii
\Lsin 30 cos 30 JLO —16J/L—sin 30 cos 30

= [cos 30° 16 sin 30°1F cos 30° sin 30°
Lsin 30° —16 cos 30°jL—sin 30° cos 30°

= Fcos2
30° — 16 sin2 30° cos 30° sin 30° + 16 sin 30° cos 30°

Lsin 30° cos 30° + 16 cos 30° sin 30° sin2 30° — 16 cos2 30°

[ 13 ___

17Z=

L

using ii Lab!e on page 543

4 4

13 , 47 , 17fThus, a = ——, b = —— and h =
4 4 4

132 34f 472Hence, the equation of H is ——x + —xy — —y = 5 or
4 4 4

13x2 — 34/xy + 47y2 = —20. •
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In Examples 1 and 2 above, examine ab — h2, the value of the determinant M,
for the original curves E and H. Compare these values with the value of the
determinant of M' = a'b' — h'2 for the image curves E' and H'.

forE: ab — h2= (4)(9) — = 36;
forE': a'b' — h'2 = (4.6)(8.4) — ()2 36
Thus ab — h2 and a'b' h' are both positive in value.
for H: ab — h2 = (1)(—16) — 2 = —16;

for H': a'!,' — h'2 = (_4) — (iiiI)2 = —16.
Thus ab — h2 = a'b' — h'2, and this value is negative.
This demonstrates, but does not prove, that the value, and hence the sign,
of ab — h2 is invariant for rotations. For an ellipse, ab — h2> 0. For a
hyperbola, ab — h2 <0.

Even though the value of ab — h2 is invariant (provided neither conic
equation has been multiplied by a constant), all that you need to remember
is that the sign of ab — h2 does not change under a rotation.

In 8.5 Exercises you will be given the opportunity to check that the sign of
ab — h2 is invariant under a rotation. You should observe that this
invariant sign is the same as for translations, that is, the sign of ab —
when h = 0.

In Search of a Proi h t ak' — h2 s
Invariant Under a Fjtion
Consider the conic ax2 + 2hxy + by2 = k. This conic has the matrix equation

VMV = K, where v =
[xJ,

M =
[a

h} and K = 1k].v I, b
The determinant of matrix M is ab — h2, that is det(M) = ab — h2.
Under a rotation of 0 about the point (0,0), this conic maps into the conic
VtM' V = K where M' = RMR'.
If this new conic has equation a'x2 + 2h'xy + b'y2 = k, then the matrix

M' = RMRt would equal [, ,]. Hence, det(M') = a'b' — h'2.

To prove that the value, and therefore the sign, of ab — h2 is invariant, you
need to prove that det(M) = det(M')

IcosO —sin 0Now det(R) = deti
LsinO cosO

= cos2 0 — (—sin2 0) = cos2 0 + sin2 0 = 1 (see page 542)
Similarly, det(Rt) = I
From chapter 7, for matrices A, B, and C and the matrix product ABC,
det(ABC) = det(A) x det(B) >< det(C).
Thus, det(M') = det(RMR1) = det(R) x det(M) x det(Rt)

= 1 x det(M)>< 1
Thus, det(M') = det(M).
Thus the value of ab —h2, and hence its sign, is invariant under a rotation.
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8.5 Exercises

Round off all numbers to 1 decimal place where
appropriate.

1. Given the ellipse E: x2 + 4y2 = 4.
a) Write the corresponding matrix

equation V1M'V = K.
b) Use the fact that M' = RMRt to find the

matrix equation V'MV = K, forE', the
image of E under a rotation of 300 about
the point (0,0).

c) Write a Cartesian equation for the
image of E.

d) Sketch a graph of E and E'.

2. a) The ellipse E: 4x2 + y2 = 16 is rotated
through an angle of 450 about the point
(0,0). Find an equation of E', the image
of E after rotation.

b) Sketch a graph of E and E'.

3. Repeat question 2 for the following ellipses
and rotation angles 0.
a) x2+9y2=9, 6=120°
b) 4x2+25y2= 100, 6=250°
C) 25x2 + 9y2 = 200, 0 = —40°

d) 3x2+y2=4, 0=60°

4. For each of the ellipses in questions 2 and 3
check to see that the value of at' — h2 is
invariant under the given rotation and that
its sign is positive.

5. Repeat question 2 for the following ellipses
and rotation angles 0. Use exact values for
the sines and cosines of 0, from the table on
page 543.
a) 4x2+y2=16, 0=45°
b) 9x2+y2=9, 0=120°
c) 3x2+y2=4, 0=60°

6. a) The hyperbola H: 9x2 — y2 = 9 is rotated
through an angle of 30° about the point
(0,0). Find an equation of H', the image
of H after rotation.

b) Sketch a graph of H and H'.

7. Repeat question 6 for the following
hyperbolas and rotation angles 0.
a) x2—4y2=—4, 0=30°
b) 16x2—25y2=400, 0=120°

8. For each of the hyperbolas in questions 6
and 7 check to see that the value of ab —
is invariant under the given rotation and
that its sign is negative.

9. Repeat question 6 for the following
hyperbolas and rotation angles 0. Use exact
values for the sines and cosines of 0, from
the table on page 543.
a) 9x2—y2=9, 0=30°
b)
c)

10. Find an equation of each of the following
after rotation of 90° about the point (0,0).
a) 4x2+9y2=36
b) x2—9y2=9
c) 4x2+y2=16

11. a) A rotation of 90° about (0,0) is
equivalent to interchanging the x-axis
and the y-axis. Explain.

b) Make use of part a) to write the image
equations for the previous question,
without making any calculations.

12. Given the curve C: 17x2 + l6xy + 17y2 = 225
and the rotation of 45° about the point
(0,0).
a) Name the type of curve.
b) Find an equation of C', the image of C

under the given rotation.
c) Sketch the image curve C'. Then sketch

the given curve by using the inverse
rotation to the given rotation.

13. Repeat the previous question for the curve
x2 + 3.5xy — y2 = 1 and a rotation of 60°.

14. The method of this section can not be
applied to a parabola in standard position.
Why not?

c) x2—y2=—1,
d) x2—3y2=—3,

0 = —40°
0 = 60°

16x2 — 25y2 = 400, 0 = 120°

x2—3y2=—3, 0=60°.



MAKING
Earth Satellites

Each flight of a satellite about the earth is achieved by launching a rocket
vertically. Eventually the trajetory of the rocket must be tilted. This is
necessary so that flight of the rocket is parallel to the surface of the earth at
the time that the orbital velocity at the desired altitude is reached. The
space vehicle attached to the final stage of the rocket is then in free fall
about the earth.

Communication satellites and meterological satellites work best if they
remain fixed above one place on the surface of the earth. This will occur
when the time for the satellite to move about the earth is equal to the time
for the earth to make one complete rotation about its axis. In this case the
satellite appears to be stationary in the sky. Such an orbit is called
geostationary or geosynchronous.

What is the height h km above the earth of a satellite in a geosynchronous
orbit?

Newton's first law of motion indicates that a body will continue in its
state of rest or uniform motion in a straight line unless acted upon by
some external force. Thus a rocket launched in a straight line would
continue forever along that line, unless some force caused it to change its
direction. The force that is continually changing the direction of the rocket
and the satellite, causing them to make a circular orbit about the earth, is
the gravitational pull of the earth on the rocket and satellite.

Now the force required continually to change the direction of a satellite of
mass m (causing the satellite to move in a circular orbit) is called centripetal
force. For a satellite moving along a circle of radius r with a tangential

velocity v, this force equals

But Newton showed that the gravitational pull of the earth that provides

this centripetal force equals

where E is the mass of the earth, r is the distance between the centre of the
earth and the centre of the satellite, k is a constant number whose value
depends only on the units chosen forE, rand m.

Thus, centripetal force = gravitational force, or = or v2r = kE.

Since k and E do not change, v2r =constant.

This formula is true for all earth satellites. Since the value of v and r are
known for the moon, which is an earth satellite, the value of this constant
can be calculated.
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Now the moon rotates about the earth every 27.3 22 days, along a circle of
approximate radius 3.844 x io km.

Thus the tangential velocity of the satellite

= distance travelled
time taken to travel this distance
circumference of the orbit of the moon

time for one orbit of the moon

= 2ir x 3.844 X iO km/h or 3.683 32 x iO km/h
27.322 x 24

Thus, for the moon, v2r = (3.683 32 x 103)2 x 3.844 x i05
= 5.2151 x 1012

Thus, for any earth satellite, and in particular, a geosynchronous satellite,
v2r= 5.2151 x 10 @
But for a geosynchronous satellite the speed is

circumference of orbit 2irr
v = km/h or km/h

24 24

For a satellite at a height h km above the earth, the distance from the centre
of the satellite to the centre of the earth equals
r = the mean radius of the earth + h, so r = 6371 + h.

Substituting into 0J gives

2m(6731 + h)]2 x (6371 + h) = 5.2151 x 1012 or
L 24 J

6731 + h = (5.2151
x 1012 X 242

/
Thus, 6371 +h=42 375,orh=36004km.
Thus, a geosynchronous satellite must be about 36 000 km above the
surface of the earth.
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86 Rotations that Eiiminate xy Terms

In section 8.5 and 8.5 Exercises you saw that the rotation of an ellipse or
hyperbola in standard position changed the equation from the form
ax2 + by2 = k to a'x2 + 2h'xy + b'y2 = k where h' 0, thus introducing a
term in xy.

In this section you will determine the rotation that you must apply to
a'x2 + 2h'xy + b'y2 = k to return the equation to the form ax2 + by2 = k, that
is, the form ax2 + 2hxy + by2 = k, where h = 0.

If the conic C' with equation a'x2 + 2h'xy + b'y2 = k, with h' * 0, maps into
the conic C with equation ax2 + 2hxy + by2 = k, with h = 0, then

the matrix equation V1M'V = K where M' = [, ,j withh' 0 must become

the matrix equation VtMV K where M = ía hiwith h = 0.Lh bJ
If C' maps into C under the rotation defined by matrix R, then C will have
matrix equation VtMV = Kwhere M = RMRt.

To determine the rotation that will eliminate the xy term in
ax2 + 2hxy + by2 = k you only need find the element h in the first row and
second column of M and decide what value of 0 will make that term zero.

Fcos0 —sinOlla' h'lF cosO sin0NowM=RMR=i ii ii
Lsin0 cos6JLh' b'JL—sinO cos0

= ía' cos 0 — h' sin 0 h' cos 0 — b' sin 01j cos 0 sin 0
La' sin0+h' cos0 h' sin0+b' cosOJL—sin0 cos0

must become Ii hi where h = 0.Lh bi
The element h in the first row and second column of this product is the dot
product of the elements in the first row of the left hand matrix with the
elements in the second column of the right hand matrix.

That is, h = (a' cos 0 — h' sin 0, h' cos 0 — b' sin 0).(sin 0, cos 0)
= a'cos 0 sin 0 — h' sin2 0 + h' cos2 0 — b' sin 0 cos 0
= (a' — b') sin 0 cos 0 + h'(cos2 0 — sin2 0)

sin2O 2 •2But sin 0 cos 0 = , and cos 0 — sin 0 = cos 20
2

,sin2OThus, h = (a — b) 2
+ h cos 20

h = 0 means that

(a' — b)sm
2O + h' cos 20 = 0,that is, (a' — b)5m

2O = —h' cos 20

sin 20 —2h'Thus =
cos20 a —b'

2/i'or tan2O= I

b'—a'
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This formula assumes that b' * a'. If b' =a', then tan 20 is undefined, so
that 20 is 900 or 270° (or any angle having the same initial arm and
terminal arm with either one). This means that 0 is 45° or 13 50
In using this formula it is customary to ignore the primes on a', b' and h',
obtaining the following.

F R M L A To remove the xy term from the conic equation ax2 + 2hxy + by2 = k, rotate
the conic through an angIe 0 about the point (0,0) where

if a * b, then tan 20= ——andifa = b, then 0=45° or 135°.
b—a

When a * b, 0 can be found using your calculator by keying -— then
b—a

using the inverse tangent function key. This keying will give 20, so you must

divide this number by 2. If ——> 0, then 0> 0. If <0, then 0 < 0.
b—a b—a

These are not the only rotation angles that will eliminate the xy term. Any

one of the infinite number of solutions of tan 20 = can be divided
b—a

by 2 to give a suitable angle of rotation. In particular, if your calculator
gives you m° for 20, another value for 20 is 180° + m°.
One rotation angle brings the major or transverse axis to the x-axis while
the other brings it to the y-axis.

Example 1 Determine, correct to 1 decimal place, an angle of rotation about the point
(0,0) needed to remove the xy term from each of the following.

a) 9x2—4xy+6y2=35 b) x2+xy+y2=6

Solution a) Fortheconic9x2_4xy+6y2=35,a=9,h==_2,b6.
2h 2(—2) 4Thus,tan20=—=b—a 6—9 3

Usingyour calculatoryou obtain 20 = 53.1301°.
Hence, 0 = 26.565° = 26.6°, correct to 1 decimal place. Hence, an angle of
rotation of 2 6.6° about the point (0,0) will eliminate the xy term.

b) Fortheconicx2+xy+y2=6,a= 1,h=1,b= 1.
Since a = b, a rotation about the point (0,0) of 0 = 45° or 0 = 1350 will
eliminate the xy term. U

Note: In part a), 20 could be 180° + 53.1301° =233.1301°. Thus another
angle of rotation would be 116.6°.

Before you eliminate an xy term it will be helpful to know the form of the
standard equation of the conic to help you to detect errors in your
calculations. Hence, you should make use of the following information
that you verified in section 8.5 and in 8.5 Exercises.
The GrapI 'I i \ - 2hi k

ellipse: ab — h2> 0 hyperbola: ab — hi2 < 0
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Example 2 Given the conic C: —5x2 + 8xy + y2 = 21.
a) Determine the type of conic.
b) Find an angle of rotation about the point (0,0) to eliminate the xy term.
c) Find an equation of the image curve C'.
d) Sketch the graph of the image curve C', then of the original curve C.

Solution 8a) Herea=—5,h=—=4,andb= L
2

Thus, ab — h2 = (—5)(1) — 16 = —21 <0. The conic is a hyperbola.

b) Since a * b, the angle of rotation about (0,0) that will eliminate the
2h (2)(4) 8 4xy term is a solution of tan 20 = = = — or —

b—a 1—(—5) 6 3
Using your calculator, 20 = 53.130 102...' Thus, 0 = 26.565 051..

c) The image C' has equation a'x2 + 2h'xy + b'y2 = k where

M=Ia hl=RMRtandk=21Lh' b'j
1—5 41 IcosO —sin 0But here, M = and R = IL 4 ii Lsin0 cos0

Icos 0 —sin 011—5 411 cos 0 sin 0ThusM =1 II II
LsinO cos OiL 4 1JL—sin0 cosO

=I5cosO4sinO 4cose—sinOlI cos0 sinO
[—5sinO+4cos0 4sinO+cos0jL—sin0 cosO

= 1— cos2 0 — 8 sin 0 cos 0 + sin2 0 —4 sin2 0 + 4 cos2 0 — 6 sin 0 cos 0
L_4sin2O+4cos2O_6sinOcos0 —5sin2O+8sin0cosO+cos20

= 1 01 use the memory key or o
L 0 3i

Hence the equation of C' is —7x2 + 3y2 = 21 or — 2 = 1

d) The image curve C' is a hyperbola with centre at (0,0) that intersects
the y-axis at (0,fl) and (0,—fl).

Since C maps into C' c' ' / c
under a counterclockwise rotation - /
of approximately 26.6° about (0,0), <—-- 26.6
C' will map back into C 1

under a clockwise rotation
of approximately 26.6° about (0,0). / 1 A'

Note: The angle 0 = 26.6° rotates the transverse axis of C onto the y-axis.
The other solution, 20= 180° + 53.13 = 233.13° gives 0 = 116.6°.
This rotation maps the transverse axis of C onto the x-axis. •
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In Search of a Methuo of Eliminating
the xy Term using Characteristic Values

On page 333, when looking for invariant lines, you learned about
characteristic values of a matrix. Recall that the characteristic values k of
the matrix M are obtained by solving det(M — kI) = 0.

You also proved the following facts in the activities on page 335.
1. A symmetric matrix always has real characteristic values.

2. The characteristic vectors corresponding to each characteristic value of
a symmetric matrix are orthogonal.

Using these facts, you will now prove a theorem about diagonalizing a
symmetric matrix, that is, changing the elements of the matrix, so that all
non-zero elements are along the leading diagonal. An application of this
theorem will allow you to eliminate the xv term in a quadratic form,
remarkably quickly.

T H E 0 R F M Given the symmetric matrix M = [ ] that has characteristic values c

andd.

Prove that this matrix can be diagonalized as Ic
0

LO d

Proof: Let u = I1 be a unit characteristic vector associated with the
Lu2J

value c. (That is, u is such that Mu =cu.)

Let v = 11 be a unit characteristic vector associated with the
Lv2 j

value d. (That is, v is such that Mv =dv.)

LetH=[i vi] Th Ht[u1 u2]U2 V2 i'i V2

Matrix M can be diagonalised by computing H'MH.

You will show that H'MH= IC 0

LO d
[a hlFu1l 1uFirst note thatMu =cu =- I II I=CI
Lh bjLu2j Lu2

=-au1+hu2=cu1
and hu1 + bu2 = cu2

ía hl[v11 [viAlso, Mv = dv, so I II I = di
Lh bjLv2J Lv2

av1+hv2=dv1 ®
and hv1 + by2 = dv2 ®
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NowHtMH.= [ui u2][a h][ui v1]v1 v2 h b u2 v2
= Iaui + hu2 hu1 + bu2ilui v1

Lav1 + hv2 hv1 + by2 iLu2 v2

= Icui cu2lIui vii rnd J
[dv1 dv2jLu2 v2j

— Icu + cu cuivi + cu2v2
—

Lduivi + du2v2 dv + dv

=1uhI2 c(u.v)

Ldu.v dlvI2
Ic 0
Lo d

since u and v are orthogonal unit vectors (because M is symmetric).

Application to the Rotation of a Conic

In section 8.6 you learned that the conic ax2 + 2hxy + by2 =k can have its
xy term eliminated (h =0) under a rotation of 0 about the origin 0, where

2htan 20 =
b—a

If the equation of the rotated conic is cx2 + dy2 = k, then
Ic 0

the matrix RMR equals LO d
where R is the rotation matrix for a rotation 0 about the origin 0.

But from the theorem, HtMH = Ic 0
LO d

This implies that the matrix H and the matrix Rt are the same matrix.

Thus H = Rt = I cos 0 sin 0] = Icos(0) —sin(—0)

[—sin 0 cos 0] Lsin(—0) cos(—O)

(since sin(—0) = —sin 0, and cos(—0) = cos 0)
Hence H corresponds to a rotation of —0 about the origin 0, where

2htan 20 =
b—a

Example a) Eliminate thexy term from 41x2 — 24xy + 34y2 = 100, and describe the
conic.

b) Find the rotation that maps the conic to its new position.

Solution 1 41 —12
a) The defining matrix is M =

L—12 34

Thus the characteristic values are the solutions of
41 — c —12 = 0
—12 34—c
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(41 — c)(34 — c) — (_12)2 = 0
c2 — 75c + 1250 = 0
(c — 25)(c — 50) = 0

c = 25 or c = 50.

Hence the conic can be rotated so that its equation without the xy term is
exactly 25x2 + 50y2 = 100

or x2+2y2=4
The rotated conic is an ellipse which intersects the axes at (±2,0), (0,±V).

b) To find the rotation, you need unit characteristic vectors of the
matrix M.

1 41 —1211x1 IxMu=25u=i ii i=251
[—12 34iLyi Ly
41x—12y=25x

and —12x + 34y =

thatis, 4x - 3y :0 SOU= []ande:

[fl
Mv=50v =50

[—12 34iLyJ Ly
41x—12y=50x

and —12x + 34y = 5Oy, [4
that is, 3x + 4y = 0 so v = 11 and e = IL3i I 3

[5
[3 4

The columns of the rotation matrix R are e and e,, that is R = IIL
(Notice that if the columns were interchanged, you would not have a
rotation matrix.)

This is the matrix of a rotation through —0,
4 3

where sin(—O) = — and cos(—O) = —

Therefore —o = 53.1°, so that 0 —53.1° •

Note: Using the formula tan 20 =—--- = gives 0 36.9° or 0 —53.1.
b—a —7

—5 3.1° rotates the major axis of the ellipse onto the x-axis, while
36.9° rotates the major axis onto the y-axis.
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8.6 Exercises

Round off all numbers to 1 decimal place where
appropriate.

1. Given theconicx2—2xy+3y2= 1.
a) Name the type of conic.
b) Determine an angle of rotation about

(0,0) needed to remove the xy term.

2. Repeat question 1 for the following conics.
a) 4x2—3xy—2y2=8
b) x2—xy+y2=1
c) 3x2—4xy+4y2=3
d) 2x2+9xy+y2=4
e) 2x2_2Rxy+y2=4
f) 4x2+3xy+5y2=8

3. Given the conic C: 5x2 + 6xy + 5y2 = 8.
a) Determine the type of conic.
b) Find an angle of rotation about (0,0)

that will eliminate the xy term.
c) Find an equation of the image curve C'.
d) Sketch the graph of the image curve C',

then the graph of C, the original curve.

4. Repeat question 3 for the following conics.
a) 23x2 — l6xy + 42y2 = 180
b) 1175x2 — 1472xy + 325y2 = —500
C) 170x2 — 1970xy — 170y2 = —1000

d) 225x2 — 135xy + 65y2 = 1000
e) 200x2 — 346xy = 300
f) 184x2 — 158xy + 156y2 = 2000

5. Given the conic C: 17x2+ l6xy + 17y2 = 225.
a) Determine the type of conic.
b) Find an angle of rotation about (0,0)

that will eliminate the xy term.
c) Using exact values for sines and cosines

from the table on page 543, find an
equation of the image curve C'.

d) Sketch the graph of the image curve C',
then the graph of C, the original curve.

6. Repeat question 5 for the following conics.
a) x2+2xy_y2=_2
b) 13x2 + lOxy + 13y2 = 8

c) 5x2+2,/xy+3y2=36

7. In section 8.6 you showed that the conic
a'x2 + 2h'xy + b'y2 = k maps into the conic
ax2 + 2hxy + by2 = k, with h = 0,
under a rotation 0 about (0,0) where

h = (a' — b)sm
20 + h' cos 20.

2

a) Show that

'a' +
b,)

+
(a'

—
a=( Jcos2O—h'sin2O\ 2 2/
and that

b) Use your results of part a) to verify that
a'b' — h'2 = ab — h2.

8. Given the conic C:
130x2 + lOOxy + 130y2 + 481x + 28y = 0.
a) Determine the type of conic.
b) Find an angle of rotation about (0,0)

that will eliminate the xy term.
c) Find an equation of the image curve C'

under this rotation.
d) Translate C' so that the equation of the

image C" of C' is in standard form.
e) Sketch the graph of the final image

curve C".
f) Use the inverse translation to that in

part d) to graph C'.
g) Use the inverse rotation to that in

part b) to graph C.

9. Repeat the previous question for the
following conic.
5x2—oxy+5y2-f-5.7x— l7y+8=0

10. Repeat question 8 for the conic

5x2_6xy+5y2+4.Jir_12,iiy+8=o,
using the exact values for the sines and
cosines from the table on page 543.

11. Write a computer program to transform a
conic C: ax2 +2hxy + by2 = k into the
standard conic C': a'x2 + b'y2 = k. You may
wish to use the results of question 7.

b = (a' + b' — (a' — b'
cos 20 + h' sin 20
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Summary

conic cqualion centre vertices grdj)h
circle x2 + y2 = r2 (0,0) none radius = r, r> 0

x

x2 2 I

ellipse —i + = 1 (0,0) (a,0)(—a,0) major axis along x-axisa b
a>b>0 YI

(_a,0)y--(a 0)

b> a> 0 (0,0) (0,b)(0,—b) major axis along y-axis

(0,b)

x

2 2 (0—b)

hyperbola — = (0,0) (a,0)(—a,0) transverse axis along k-axis

22 ')
— = I (0,0) (0,b)(0,—b) transverse axis along v-axis

a b \yI /
a>0,b>0

(Q
parabola y = kx2 none (0,0) axis of symmetry is y-axis

k>-0:opensup Y

k<0: opens down

x = ky2 none (0,0) axis of symmetry is x-axis
k> 0: opens right y
k < 0: opens left

x
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• The circles, ellipses, and hyperbolas with equations given in the chart
have their centres at the origin (0,0) and their major axis or transverse
axis along the x-axis or y-axis. Also, the parabolas with equations given
in the chart have their vertices at the origin (0,0) and their axes of
symmetry along the y-axis or x-axis. Such conics are said to be in standard
position, and their equations in standard form.

• An equation written ax2 + by2 + 2gx + 2fy + c = 0 is in general form.
• Any vector a = (h,k) defines the translation that maps each point P with

coordinates (x,y) into the point F' with coordinates (x + h,y + k), that is,
point P(x,y) — point P'x + h,y + k).

The Graph 0/ tiv Itv + 2q.v + 2fr c = ()

ellipse ab> 0, a * b
circle ab>0,a=b
hyperbola ab < 0
parabola ab = 0
• A conic that has an equation ax2 + by2 + 2gx + 2fy + c = 0 with at least one

of g andf not zero is not in standard position. To translate the conic into
standard position you should complete the square of the terms in x andy.

• The expression x2 + mx becomes a perfect square by the addition of (v),

thenx2+mx+( =(+\2/ \ 2
• The transpose At of an m x n matrix A is the n x m matrix formed by

interchanging the elements in rows and columns, that is,
A = [aJmxn At =

[aji1,xm

• If A and B are matrices such that AB exists, then (AB)t = BtAt.

• The conic ax2 + 2hxy + by2 = k has matrix equation VtMV =K where

V=11,M=Ia hlandK= [k].
Lyi Lh hi

Icos 0 —sin 0• Under the rotation defined by the rotation matrix R =
Lsin0 cosO

the conic VtMV =K maps into the conic Vt(M')V= K, whereM' =RMRt.
• Under a rotation of 0 about the point (0,0) with rotation matrix R, the

2 2 Ia/ilconic ax + 2hxy + by = k having M =
Lh

hi maps into the

conic a'x2 + 2h'xy + b'y2 = k where [, ,] = M' = RMRt.

• If R is a rotation matrix and I is the 2 x 2 unit matrix, then RRt = RtR = I.
f/IL Graph of a.v -— 2Iixe -t— hv = k
ellipse: ab — h2> 0 hyperbola: ab — h2 <0
• To remove the xy term from the conic equation ax2 + 2hxy + by2 =k, rotate

the conic through an angle 0 about the point (0,0) where

if a * b, tan 20 = and if a = b, 0 = 45° or 135°.
b—a
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Inventory
1. The conic x2 + y2 = 16 is a(n) with _____ at (0,0) and equal

to 4.

2. The conic 9x2 + 4y2 = 36 is a(n) with ____ at (0,0) and
x-intercepts , andy-intercepts

3. The conic 9x2 — 4y2 = 36 is a(n) with _____ at (0,0) and
x-intercepts , andy-intercepts

4. The conic 9x2 — 4y2 = —36 is a(n) with _____ at (0,0) and
x-intercepts , andy-intercepts

5. The conic 9x2 = y is a(n) with _____ at (0,0) and axis of symmetry
along

6. The conic 4y2 = x is a(n) with ____ at (0,0) and axis of symmetry
along

7. To transform the conic with equation 4x2 + 9y2 + 6x + lOy + 1 = 0 into
standard position you must perform a transformation that is a _____
This transformation can be obtained by completing the ____of the
terms 4x2 + _____ and also of the terms _____ + lOy.

8. Ifx2+6x+w=(x+p)2,thenp= andw= ____
9. If the conic C maps into the conic C' under the translation

(x,y) — (x + 2,y + 3), then the conic C' maps back into the conic C
under the translation (x,y) — _____

10. If the conic ax2 + 2hxy + by2 = k is an ellipse, then _____ is _____ 0. If
the conic is a hyperbola, then _____ is _____ 0.

11. To transform the conic with equation 4x2 + 6xy + 5y2 = 10 into
standard position you must perform a transformation that is a _____
This transformation will eliminate the _____term.

12. A rotation of U about (0,0) that will eliminate thexy term from the
equation ax2 + 2hxy + by2 = k is given by the formula tan_____ =_____
if a h. If a b, then 0 = 45° or 0

13. The rotation matrix for a rotation of 0 about the point (0,0) is
R = ____. The transpose of R, that is Rt = ____

14. Fortheconic4x2+6xy+ 5y2=7,a= ,b= ,andh .The
matrix equation is VtMV =K where V , M , and K____

15. Under a rotation of 20° about the point (0,0) the conic
5x2 + 6xy + 7y2 = 2 maps into the conic a'x2 + 2h'xy + b'y2 = k where

h 1 = RMRt. For this conic, R = ____, and M = _____
Lh' b'J
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Review Exercises

Round off all numbers to 1 decimal place where
appropriate.

1. Sketch the graph of each of the following
conics.
a) x2+y2=4
b)
c)
d)
e)
f)
g)
h)

4x2 — 25y2 = —100
9x2 — y2 = 36
4x2 — y2 = 4
16x2+y2= 16
y = 8x2
9x2 + 9y2 = 25
x = —2y2

2. Given the ellipse F: 25x2 + y2 = 25.
a) Find, in general form, an equation for

E', the image of E, under the translation
(x,y) -+ (x + 13,y + 1).

b) Sketch a graph of the ellipse E and its
image ellipse E'.

3. Repeat the previous question for the
following conics and translations.

conic translation

a) 9x2— 16y2= 144 (x,y)—(x—3,y— 1)
b) x2+y2=16 (x,y)—(x—2,y+3)
c) y = (x,y) — (x — 3,y — 2)

4. For each of the following, indicate
whether the conic is an ellipse, a circle,
a hyperbola or a parabola.
a) 2x2—3y2—5x—7y—1O=o
b) 5x2+5y2+3x—2y—3=0
c) 8x2+3x—7y—1=0
d) 4x2+9y2—3x+7y+3=0
e) 8x2—4y2—6x+8y—0=0

5. Given the conic
C:x2+8y2+8x— lóy+9=0.
a) Name the type of conic.
b) Determine the translation that changes

the equation into standard form.
c) State an equation for C', the image of C.
d) Graph the image conic C' and then the

given conic C.

6. Repeat the previous question for the
following conics.
a) x2+y2+6x+12y—2=0
b) x2—12x+4y+4=0
c) 9x2—4y2—18x—8y—31=o
d) 4x2+y2+8x—lOy+13=o
e) 4x2—4y2+16x—8y+13=O
f) x2+25y2—4x—200y+40
g) y2—8x+4y—36=0
h) x2+y2—8x+6y—1=O

7. For each of the following conics
ax2 + 2hxy + by2 = k,
write the matrix M and
the matrix K for its
matrix equation VtMV = K.
a) 5x2—6xy+4y2=7
b) 3x2—6xy—y2=1
c) 2x2+3xy—y2=9
d) 3x2+2xy—5y2=8
e) 4x2—12y2=15
f) 5x2—4xy+5y2=13

8. Write the matrix equation V'MV = K for
each of the conics in question 7.

9. For each of the following matrices M, write
the Cartesian equation of the conic whose
matrix equation is VtMV = K.

1 4 —3a) i
[—3 9

b)I 0
LO —'
1—7 —4

c)
L—4 3

d) 117 10
[10 7

10. Write the transpose of each of the
following matrices.145a) i

L—3 9
b) [—4 3J

12 x11. GivenA=i
LO y

a) write At
b) find values of x andy so that A =At.
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12. Given the ellipse E: 9x2 + 4y2 = 36.
a) Write the corresponding matrix

equation VtMV = K.
b) Find the matrix RMRt for E', the image

of E under a rotation of 300 about the
point (0,0).

c) Write a Cartesian equation for the
image of E.

d) Sketch a graph of E and E'.

13. Repeat the previous question for the
following conics and rotation angles 0.
a) x2+4y2=9, 0=50°
b) 4x2—9y2=36,0=100°
c) x2+9y2=36, 0=—20°
d) 3x2—y2=4, 0=60°

14. a) Given the ellipse E: 9x2 + 4y2 = 36, find
the image of E under a rotation of 30°
about (0,0). Use exact values, from the
table on page 543.

b) Sketch the graph of E and E'.

15. a) A circlex2 + = 25 is rotated about the
point (0,0). Explain why an xy term
will not be introduced into the image
equation.

b) Will an xy term be introduced in the
image equation if the circle
x2 + y2 — 4x + 8y — 1 = 0 is rotated about
the point (0,0)? Explain.

IcosO —sin016. For the rotation matrix R =
LsinO cos0

ía oland M = i show that
LO bJ

[a+(b_-a)sin2O 1
RMRt=I 122.

L a+(b-.a)cos2Oj

17. Given the conic x2 + 2xy + 5y2 = 4.
a) Name the type of conic.
b) Determine an angle of rotation about

(0,0) needed to remove the xy term.

18. Repeat the previous question for the
following conics.
a) 5x2+2xy—3y2=4
b) 3x2—2xy+y2=2
c) x2—3xy+4y2=4
d) 3x2+4xy+3y2=1
e) 3x2—l6xy+5y2=4
f) 6x2—3xy+2y2=8

19. Given the conic C: 17x2 — l5xy + 17y2 = 32.
a) Determine the type of conic.
b) Find an angle of rotation about the

point (0,0) that will eliminate the
xy term.

c) Find an equation of the image curve C'.
d) Sketch the graph of the image curve C',

then the graph of C, the original curve.

20. Repeat question 19 for the following
conics.
a) x2—xy+y2=2
b) 100x2—173xy=600
c) 20x2 — 69xy — 20y2 = 40
d) 30x2 — 17.3xy + 50y2 = 360
e) 29x2 + 6xy + 21y2 = 120
f) 22x2 — l2xy + 17y2 = 65
g) 5x2+l8xy+5y2=26
h) 9x2+l6xy+21y2=50
i) 47x2—24xy+57y2=195
j) x2—lóxy—11y2=—30
k) x2—24xy—6y2=—30
1) 4x2—2xy+4y2=15

21. Repeat question 19 for the following
conics. Use exact values of the sines and
cosines of the rotation angles, from the
table on page 543.
a) 17x2 — l5xy + 17y2 = 32

b) 13x2 + 34./xy + 47y2 = 20

Given the conic
C:10x2+20y+10y2—28X+28y0.
a) Find an angle of rotation about (0,0)

that will eliminate the xy term.
b) Find an equation of the image curve C'.
c) Determine the type of conic.
d) Sketch the graph of the image curve C',

then the graph of C, the original curve.

a—b sin 20
2
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CHAPTER NINE

Mathematical
Induction

There is a story told of a prince who had been disobedient. The prince was
taken to a large room with a lock on the door. Inside that room was a
second room and a key that opened the lock on the door of the second
room. Inside this second room was a third room and a key that opened the
lock on the door of the third room. Inside the third room was a fourth
room and a key that opened the lock on the door of the fourth room. These
rooms continued forever, with each room containing the key to open the
lock on the door of the next room. His punishment was to open lock after
lock and open door after door forever. Would the prince be able to
continue in this way if he lived forever?
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Another story is told of a queen who enjoyed playing with dominoes. She
would place one domino on its end, then place a second on its end beside
it, then a third beside the second and so on. Each domino was positioned
so that it would knock over the next domino if it fell. The queen would
push over the first domino which would push over the second which
would push over the third, which would push over the fourth, and so on,
until all the dominoes were knocked over. She continually added more
and more dominoes in order to see them fall over. Then the queen
wondered if she could continue to add dominoes forever so that her push
on the first would cause all of the others to fall over. The queen offered a
prize of 100 gold pieces to whomever could answer this question.

A third story is told of a cow who wanted to reach the moon using a very
long ladder. She observed that she could get on the first rung of the ladder.
She also realized that once she was on any rung she knew how to climb to
the next rung. She wondered if this was enough to ensure that she could
climb the ladder to the moon, and perhaps beyond the moon forever.

The topic of mathematical induction which you will study in this
chapter will help you to solve the problems introduced in these stories.

I.

iIII'
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9.1 Making Conjectures
Proof is a very important part of mathematics. But, in the order of time,
proof is generally the final event in a mathematical discovery.
Mathematicians spend much of their energy trying to discover new
mathematical truths. They make guesses or conjectures about what seems
to be true then try to prove or disprove their conjectures. Some of these
proofs or disproofs come immediately after the conjecture. Other
conjectures are shown to be true or false a long time after their discovery.
Some conjectures are still awaiting proof or disproof. Some examples of
such conjectures are presented in the following paragraphs.

T/u' Four L 'lotir Pr'h/'n,

What is the minimum number of colours needed to colour the map of
countries on a surface so that no two countries with the same boundary
will be coloured with the same colour?

The following diagrams show some maps that have been coloured with
five colours. Each of the five colours is indicated with a different number.
Can you colour either map using fewer than five colours?

The Four Colour Problem goes back to October 23, 1852 when Francis
Gutherie posed it to his teacher, De Morgan, who wrote to W.R. Hamilton.
[reference: Stein: The Man-Made Universe, page 220] In 1890, P.J. Heawood
proved that five colours were sufficient to colour any map. Most
mathematicians conjectured that four colours were enough. Indeed, no
one was able to draw a map that needed more than four colours.
Nevertheless, it was not until 1976 that Kenneth Appel and Wolfgang
Haken of the United States proved, using a computer, that four colours are
sufficient.
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I'll ' I\ ''ii It/s/)'rq Bri Ij' P,'/ilen,

In 1735 the Swiss mathematician Leonhard Euler described this problem
as follows.

In the town of Koenigsberg there is an island called Kneiphof, with two
branches of the river Pregel flowing around it. There are seven bridges
crossing the two branches. The question is whether a person can walk in
such a way that he will cross these bridges once but not more than once.

Here is a diagram of the seven bridges of Koenigsberg. Can a person plan a
walk that will take the person across each bridge exactly once?ll B

II J,'::::

The problem had been around a long time before Euler. The townspeople
used to spend their Sunday afternoons on such a walk, wondering if they
could cross all of the bridges without repeating any bridges. They never
succeeded in doing so. Euler showed in the same year that such a walk
was impossible.

1 ' i'm ii 'c íA 1 c! 'I 'Ii i' n'iii

You know that the Pythagorean theorem states that for any right triangle
with hypotenuse c and other two sides a, and b, that a2 + t'2 = c2.

Mathematicians wondered if a similar fact were true for any other power.
For example, they tried to discover natural numbers a, b, and c such that
a3 + b3 = c3. The French mathematician Pierre de Fermat (1601-1665) wrote
about this problem in the margin of a book he was reading. He said that
he had discovered a truly wonderful proof that the equation a + If =

does not have a solution in integer values of a, b and c for n 3. He wrote
that the margin of the book he was reading was too small to contain the
proof. Since that tune mathematicians have tried to rediscover Fermat's
proof. But no one has been able to prove or disprove Fermat's statement!

Note how the simplicity of the statement of these problems gives no clue as
to their difficulty.

In this section you will be given the opportunity to make your own
conjectures about various mathematical ideas. You will not prove your
guesses in this section. You will learn how to prove some of them in the
next section 9.2.
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Example 1 Conjecture a formula for the sum of the first n odd numbers, that is, for the
sumS=1+3+5+7+...+(2n—1).

Solution To help find a pattern you should list and examine the values of S1, S2, S3.
S4.

S = 1 = 1

S2 = 1 + 3 = 4

S3 = 1 + 3+ 5 = 9

S4 = 1 + 3 + 5 + 7 = 16

Observe that Si = 12

S2 = 2
53 = 32

= 42

One conjecture or guess would be S =

The conjecture should now be checked for other values of n.

Letn = 6.

S6= 1+3+5+7+9+16=36=62
as it should be, according to the conjecture. •

Note: It is important for you to realize that the fact that a formula checks
for particular values of n does not mean that the formula is true for
all values of n.

Fortheseries 1+2+3+4+5+...
51= 1,52=3,S3=6,54= 10.

The formulaS= ''± 1) +(n — 1)(n — 2)(n —3)

produces the following values

S.= 1,52=3,S3=6,54= 16.
The formula checks for n = 1, 2, and 3 but not for n = 4.
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Example 2 Guessa formula for the sum S of the series
1 1 1 1 1

1x2 2x3 3x4 4x5 n(n+1)

Solution To try to guess this sum you might list the partial sums as follows.

1x2 2

= + = + = =
1x2 2x3 2 6 6 3

S3 = + + = + =I =
1x2 2x3 3x4 3 12 12 4

S4= + + + = + _i_ = =
1x2 2x3 3x4 4x5 4 20 20 5

n
These values for Sn suggest the formula Sn = n+1
Checking the conjecture for n = , 5,, should equal or5+1 6
S5 = + + + + = + = =

1x2 2x3 3x4 4x5 5x6 5 30 30 6
as required. •

Example 3 Make a conjecture about the values of n tki, for which 2 <n!, where
n! = n(n—1)(n—2)(n—3). . . (3)(2)(1) and 0! = 1 (n! is read "n factorial").

Solution Try values of n eN beginning with n = 1.
Letn = 1: L.S. = 2' = 2, and R.S. = 1! = 1

Since L.S. > R.S., the statement is false.

Letn = 2: L.S. = 22 =4, and R.S. = 2! =(2)(1)= 2
Since L.S. > R.S., the statement is false.

Letn = 3: L.S. = 2= 8, and R.S. = 3!=(3)(2)(1)=6
Since L.S. > R.S., the statement is false.

Let n = 4: L.S. = 2 = 16, and R.S. = 4! = (4)(3)(2)(1) = 24
Since L.S. <R.S., the statement is true.

Let n = 5: L.S. = 2 = 32, and R.S. = 5! = (5)(4)(3)(2)(1) = 120
Since L.S. <R.S., the statement is true.

Thestatement appears to be true for n 4.

Try further values of n to check the conjecture that 2 <n!, for n 4. •
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9.1 Exercises d) Evaluate the 5-term product

(1+1)
1. Conjectureaformulaforthesumofnterms ( 2)( +)(i +)(+)

of the series e) Conjecture a formula for value of the
n-term product1 1__12 4 8 16 "2
(1+1)(i+1)(1+i)(1+i)...(l+1)2. Conjecture a formula for the sum of n terms

of each of the following series. 7. Conjecture a formula for the value of each
a) 2 + 4 + 8 + 16 + 32 + ... + 2, for n> 1 of the following n-term products.
b)1+2+4+8+l6+...+2'

a)(l_)(l_)(l__L"(l__L"161\ 25)3. Giventheseries 1+2+3+... +n.
a) ListS,,S2,S3, and S4. (i — , n> i
b) List 25, 252 253 2S4and

b) (i+(i+(i+z"(i+)...1 23 4
1J\ 41\ 91\ 16c) Guess a formula for Sn.

4. Conjecture a formula for the sum of n terms (1 + 2n 1)
of the series

1 1 1 n3+3n2+2n+ + — + ... 8. Givenf(n)1x3 3x5 5x7 3
1+ a) Evaluatef(1),f(2),f(3), andf(4).

(2n — 1)(2n + 1)
b) Make a conjecture concerning the

5. Conjecture a formula for the sum of n terms values of n N for whichf(n) is a
of each of the following series, natural number.LL 1
a) + +

1 x 5 5 x 9 9 x 13 9. Make a conjecture concerning the values of
1 n€rJforwhich

+ 5n_n(4n — 3)(4n+ 1) =

b) 2 x 3 3 x4 4x 5 isanaturalnumber.

1+ 10. Make a conjecture concerning the values of
(n + 1)(n + 2) n RJ, for which each of the following is a

c) + + + ... + natural number.2' 22 2 2
n(n+1) d)

tin
6. a) Evaluate the 2-term product a)

2 5

_________ n2+2n
(1-l-1)(1+-i)

b) n(n+1)(n+2) e
8

b) Evaluate the 3-term product n3 — n
f)

fl3 + 20n

(1+1)(i+1)(i+1)
c) 6 48

c) Evaluate the 4-term product ii. Make a conjecture concerning the values of

(1+1)(i+!Yi+2/\ )(i+ n€R,forwhich
41 2?n2
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12. Make a conjecture concerning the values of
n E for which each of the following
inequalities is true.
a) 3n<n!
b) 3l>2+1

f5\fl 5
c) —j <—

\61 n

13. GiventheseriesS= 1 + 8+27+... +n3
a) List S1. S2. S3. S4. S5. S6. and S7

b) List 'I, and
c) Compare your answers to part b) with

S1. S2. S3. S4. S5. S6. and 5-,
of question 3.

d) Guess a formula for S,.

14. a) Mark 3 non-collinear points on a paper.
How many different lines can you draw
joining two of the points?

b) Mark another point on the paper not
collinear with the first 3 points of
part a). You now have 4 non-collinear
points on the paper. How many
different lines can you draw joining
two of the points?

c) Mark another point on the paper not
collinear with the 4 points of part b).
You now have 5 non-collinear points
on a paper. How many different lines
can you draw joining two of the
points?

d) Conjecture a formula for the number of
lines you can draw joining any two
points among n non-collinear points,
n R. (If you need a hint read part e) of
this question.)

e) Completing the following table should
help you to guess a formula for part d).

15. a) Draw any quadrilateral and its
diagonals. How many diagonals does a
quadrilateral have?

b) Draw any 5-gon, that is, a closed figure
with 5 sides, and its diagonals. How
many diagonals does a 5-gon have?

c) Repeat part b) for a 6-gon and a 7-gon.
d) Conjecture a formula for the number of

diagonals that an n-gon has.

16. Draw a circle and any one chord of the
circle. The interior of the circle is divided
into 2 non-overlapping regions.
a) Draw a second chord in the circle

intersecting the first chord. What is the
maximum number of non-overlapping
regions into which the interior of the
circle can be divided?

b) Draw a third chord in the circle,
intersecting the first and second chord.
What is the maximum number of
non-overlapping regions into which
the interior of the circle can be divided?

c) Draw a fourth chord in the circle,
intersecting the three previous chords.
What is the maximum number of
non-overlapping regions into which
the interior of the circle can be divided?

d) Conjecture a formula for the maximum
number of non-overlapping regions
into which the interior of the circle can
be divided by n chords.

number of
points (n)

number of
lines n2 n2 — n

1

2
3

4
5

0
1

3
*
*

1

4
9
*

*

0
2
6
*

*
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9.2 The Principle of Mathematical
Induction

In the introduction you met three stories, each of which involved
starting an activity and trying to continue the activity forever. In each case
the activity was repeated over and over. It was assumed that any one
activity was followed immediately by the next one. You are now seeking a
proof that these activities can indeed continue indefinitely.

Examine the story of the dominoes. Suppose the dominoes are numbered
consecutively using the set of natural numbers N ={i, 2, 3, 4,. . .). Suppose
further that D is the set of numbers corresponding to the dominoes that
will fall over after the queen has knocked over the first domino. Since the
queen pushed over the first domino, you know that the number 1 is in D.
Thus, D = {1,. . .}. Now the dominoes are positioned in such a way that the
kth domino falling over will push over the next, that is, the (k + 1)th
domino. In other words, if the kth domino falls over the (k + 1)th will also
fall over. Thus, if the number k is in D then the number k + 1 is also in D.

But the dominoes are infinite in number and marked with the natural
numbers 1, 2, 3, 4 Thus, if you can show that D is actually the set
N = (1, 2, 3, 4,...) then you will know that all the dominoes have their
numbers in D. Hence all the dominoes will fall over.

Now the set of natural numbers N has a very special property called the
inductive property of N. This property is as follows.

fi E A T
Let T be a subset of the natural numbers N. Then T is the entire set N, if and
only if both of the following are true.
a) lisamemberofT.
b) Ifk is a member of T, thenk + 1 is also amemberofT.

But both of these are true for set D.
a) 1 is in D because the queen knocked over the first domino.
b) If the kth domino falls over it will push over the next domino, that is,

the (k + 1)th domino. Thus, k being in D implies that k + 1 is also in D.

Hence by the inductive property of N, the set D and the set N
are the same set.

This process of using the inductive property of the set of natural numbers
to prove something is true is called a
proof using mathematical induction.

A proof using mathematical induction shows that a statement involving
natural numbers is true. To help understand the method of proof,
the inductive property of N is restated as
the principle of mathematical induction.
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R , N / L E
A statement involving the natural number n is true for every n
provided the following are true.
a) The statement is true for n = 1.

b) The truth of the statement for n = k implies the statement is true for
n = k + 1.

The principle of mathematical induction can be derived from the
inductive property of N. Suppose S is the set of natural numbers for which
a statement is true. Then a) implies that 1 S. But b) shows that k S
implies that k + 1 S. The inductive property of allows the conclusion
that S =

M E 1 H
In practice, you should use three steps in a proof by mathematical
induction.

Step 1: Show the statement is true for n = 1.

Step 2: Assume that the statement is true for n = k.
Step 3: Prove the statement is true for n = k + 1, using the result of step 2.

The principle of mathematical induction can only be used to prove a given
formula is true. The principle does not help you to obtain such a formula.
In Examples 1 and 2 and in Exercises 9.2 and 9.3 you will be given the
opportunity to prove some of the conjectures you made in section 9.1 and
in 9.1 Exercises.

Example 1 Use mathematical induction to prove the following formula for n Er.
1+3+5+...+(2n—1)=n2.

Solution Step 1: Prove the statement is true for n = 1.

Forn=1,L.S.=1, R.S.=12=1
Since L.S. = R.S., the statement is true for n = 1.

Step 2: Assume the formula is true for n = k. That is,
assumel+3+5+...+(2k—1)=k2. ®

Step 3: Prove the formula is true for n = k + 1. That is, you have to prove
that 1+ 3 + 5 + ... + (2k + 1) = (k + 1)2.
L.S. =1+3+5+ +(2k+1)

= 1 + 3 + 5 + + (2k — 1)+ (2k + 1) the same as LS. ®
= [1 + 3 + 5 + . . . . + (2k — 1)]+ (2k + 1) with (2A -i- 1) added

= [k2] + (2k + 1) by step 2
= k2 + 2k + 1

= (k + 1)2 = R.S.

Thus, by the principle of mathematical induction,
1+3+5+...+(2n—1)=n2,foralln=€RL U
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Example 2 Prove, by mathematical induction

+ + + + + 1 = n
1x2 2x3 3x4 4x5 n(n÷1) n+1

Solution Step 1: For n = 1, L.S. = —p—— = -, R.S. = = = L.S.1x2 2 1+1 2
Step 2: Assume + + + + 1 = _!__ ®

1x2 2x3 3x4 k(k+1) k+1
1

1x2 2x3 3x4 (k+1)(k+2) k+2

L.S. = + + + + + 1

1x2 2x3 3x4 4x5 (k÷1)(k+2)
= + + + + + 1 + 1

1x2 2x3 3x4 4x5 k(k+1) (k+1)(k+2)

= I _L_ + + + + + 1 1 + 1

[1x2 2x3 3x4 4x5 k(k+1)j (k+1)(k+2)

k+1(k+1)(k+2) usng1ep
k(k + 2) + 1 Ihis s the -.

—

(k+ 1)(k+2) witi

— k2 + 2k + 1
(k (ki- 2j

(k+1)(k+2)
e

(k + 1)(k + 1)

(k + 1)(k + 2)

= = R.S.
k+2

Thus, by the principle of mathematical induction, the formula is true. •

Example 3 Usemathematical induction to prove the following formula for n 'J.

[2k — 1] = n2
k1

Solution First write the sum explicitly by letting k equal successively 1, 2, 3, 4 n.

[2k — 1] = n2 becomes
k= I

[2(1)—i] + [2(2)—i] + [2(3)—i] + [2(4)—i] + ... + [2(n) —1] =2
orl+3+5+7+...+[2n—1]=n2.
But this now is exactly the same problem as that of Example 1, so the
solution is the same. This solution will not be repeated here. U
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9.2 ExercL 'S

1. State the three steps in a proof using
mathematical induction.

2. Prove the following statement using
mathematical induction, where n 1%1.

1 1 1 1 1_i2 4 8 16 2n2n
3. Prove the following statements using

mathematical induction, where n
a)2+4+8+16+32+...+2n=22

[You will need to use the fact that2' + 2k+1 = 2k+2 Why is this true?]
b) l+2+4+8+l6+...+2'=2'—l
c)6+12+18+...+6n=3n(n+1)
d) 3+5+7+...+(2n+1)=(n+1)2—1

4. Prove the following statements using

mathematical induction, where n

a) —-—+—--—+...1x3 3x5

+ 1 = n

(2n — 1)(2n + 1) 2n + 1

1 1
b) —+--—---+..1x5 5x9

1+ =
(4n — 3)(4n + 1) 4n + 1

5. All three steps are essential in a proof by
mathematical induction, as the following
will demonstrate.
A certain mathematician thought that he
had a formula that produced prime
numbers. (A prime number has exactly two
divisors, 1 and the number itself.) He said
that n2 + n + 41 is always a prime number
for n He demonstrates the proof of his
formula for n = 1, 2, 3,... 40.
a) Verify that the statement is true for

n= 1,n=2,n=3,andn=4.
b) If you have the inclination you can

show that the statement is true for all n
from 1 to 40, inclusive. Nevertheless,
do prove n2 + n + 41 does not produce a
prime number for n = 41.

c) Which step(s) in a proof by
mathematical induction is (are) missing
in the demonstration given by the
mathematician?

6. A friend tells you that the formula
7 + 9 + 11 + ... + (2n — 1) = n2 is true. He
demonstrates this with the following
argument.
Assume the formula is true for n = k,
that is,
7+9+11 + ... +(2k— 1)=k2@
Prove the formula is true for n = k + 1,
that is, prove that
7 + 9 + 11 + ... + (2[k + 1]— 1) = (k + 1)2 *

L.S. of * = [7 + 9 + 11 +
+ (2k — 1)] + 2k + 1

(the L.S. of G, with 2k + 1 added)

= [k2] + 2k + 1 = (k + 1)2 = R.S. of *

(from @)
a) Which step(s), if any, in a proof by

mathematical induction are missing in
your friend's proof?

b) Is your friend's formula true for all
n Ri?

7. Prove the following formulas by
mathematical induction.

a) .n(n+1)
s=1 2

b) 2 = n(n + 1)(2n + 1)
5=1 6

c) s3=(h11))

8. Use mathematical induction to prove that
the sum of n terms of an arithmetic series
with first term a and common difference d

is S,, = 42a + (n — 1)dl

9. Use mathematical induction to prove that
the sum of n terms of a geometric series
with first term a and common ratio r

a(r"-l)iS Sn=
r— 1
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9.3 Using Mathematical Induction
In section 9.1 and in 9.1 Exercises youmade conjectures about formulas
for the sum of series. In section 9.2 you learned how to use mathematical
induction to prove your true conjectures. But in 9.1 Exercises you made
conjectures about products, inequalities and geometrical conclusions. In
this section you will learn how your true conjectures can be proven using
mathematical induction.

The first example will deal with question 6 of 9.1 Exercises.

Example 1 Use mathematical induction to prove that

1\ 2/\ 3/\ 4/\ 5/ \ n/

Solution Step 1: Prove the statement is true for n 1.
Forn = 1,L.S. =(1 + 1)= 2,R.S. = 1 + 1 = 2
Since L.S. R.S., the statement is true for n = 1.

Step 2: Assume the statement is true for n = k. That is, assume

(1+1)(1+)(1+!)(1+!)(1+)...(1+!)k+1 ®
Step 3: Prove the statement is true for n = k + 1. That is, prove

(1 + 1)+ 1\ 2/\ 3/\ 4/'., 5/ \ k+1/
L.S.=(1+1)(1+(1+(l+Vl+A (+_±-\ 2/\ 3/\ 4/\ 5/ \ k + 1

=(1+ i)(i+1(i+(i+A(i+A ...\ 2/k 3/k 4/k 5/ \ k/k k+1/

he sime is e L S. of® multiplied on the right by (i j 1

)k + 1

=[(1+1)(1+)(1+)(i+1)(i+)...(i+)](i+±)
ystep

k k+1

1+ 1)=k+2=R.S.

Thus, by the principle of mathematical induction,

(1+ 1,
\ 2/k 3/\ 4/k 5/ \ n/

foralln€. U

In Example 2 you will prove a true conjecture about question 8

of 9.1 Exercises.
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Example 2 Usemathematical induction to prove that
n3 + 3n2 + 2nf(n) = is a natural number for all n

Solution Step 1: Prove the statement is true for n = I.
(i) + 3(1)2 + 2(1) 6For n = 1,f(1) = = — = 2, which is a natural

number. Thus, the statement is true for n = 1.

Step 2: Assume the statement is true for n =k. That is,
k3 + 3k2 + 2k.assumef(k) = is a natural number.

Step 3: Prove the statement is true for n = k + 1. That is,
(k + i) + 3(k + 1)2 + 2(k + 1).prove f(k + 1) = is a natural number.

But f(k+l)_k+3k+3k+l+3+2k+l)+2'2
3

= k3 + 3k2 + 2k + 3k2 + 9k + 6
=f(k) + k2 + 3k + 2

3 3

From step 2 you know thatf(k) is natural number. Also, because k is a
natural number, k2 + 3k + 2 is also a natural number.

Thus, f(k) + k2 + 3k + 2 = f(k + 1) is a natural number.

Thus, by the principle of mathematical induction,
n3 + 3n2 + 2n.f(n) = is a natural number for all n

The next example shows how to prove your true conjectures about
inequalities by studying the inequality of Example 3, section 9.1.

Example 3 Use mathematical induction to prove that 2" < n! for n 4, n
Solution This statement is not true for n = 1, 2, and 3 as you can easily check. So

step 1 must begin with n = 4.

Step 1: Prove the statement is true for n = 4.
Forn =4,L.S. = 2= 16, R.S. =4! =(4)(3)(2)(1)= 32.
Therefore L.S. <R.S., so the statement is true for n = 4.

Step 2: Assume the statement is true for n = k. That is, assume <k!
Step 3: Prove the statement is true for n =k + 1. That is, prove 2k+1 < (k + 1)!

But from step 2 you know that 2k <k!
Multiplying both sides by 2 gives 2'<' <2(k!)
Sincek4,2<k+ 1,so 2(k)!<(k+ 1)(k!)=(k+ 1)!
Thus, 2' < (k + 1)!, as required by step 3.

Thus, by the principle of mathematical induction, 2" < n! for n ? 4, n •
Note: If the statement to be proved is not true for the first few natural

numbers, then step 1 must be done for the first number for which
the statement is true.
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9.3 xercises 10. a) Show that
5k+1_SXSk_ 3X5k+2xSk

1. Use mathematical induction to prove that b) Use mathematical induction to prove
5fl — 2that is a natural number

3

(1 +
2n + 1)

(ii + 1)2
foralin €I%L

n / 11. Given a set of n points, no three of which

2. Use mathematical induction to prove that are collinear, prove that the number of line

for n 2 segments that can be drawn joining these

(1 — i'\(i — i\( — — i points in pairs is
n(n — 1)

\ 41\ 9)\ 16/'. 25/ 2

(1
+ 1 [See question 14, 9.1 Exercises.]

— =
2n 12. Use mathematical induction to prove that

3. Use mathematical induction to prove that an n-gon has n(n— 3) diagonals.

\ 11\ 9A 25). [See question 15, 9.1 Exercises.]

(
1

(2n — 1)2 2n — 1 circle, show that the maximum number of
— 4

)
= 2n + 1 13. Given a circle and a set of n chords of this

4. Use mathematical induction to prove that
non-overlapping regions into which the

each of the following is a natural number circle can be d + n + 2ivided is
forallnEN. 2

n(n + 1) — [See question 16, 9.1 Exercises.]
a) c)

62 14. Prove that 1 1+ + + +—<n
b) n(n + 1)(n + 2) d

— n 2 2 3 4 2
6 5

15. Prove that 1k3 < - <'k3
5. Use mathematical induction to prove that k=1 4 k=1

each of the following is a natural number,
provided n is an even natural number. 16. Use mathematical induction to prove the

(hint: let n = 2m, m following.

n2+2n n3+20n
8 b) 48 a) k2 = n(n + 1)a)

k=1(2k — 1)(2k + 1) 2(2n + 1)

6. Use mathematical induction to prove that = 6n5 + 15n4 + iOn3 — n
2>n2 forn>4,n€R. b)

k=I 30

7. Prove the following where n r. 17. Prove the following about matrixa) 3<n! forn7 multiplication.b) 3>2"' forn2
c) (V < for all n a) i' ]1( = Fa'< 01

\6/ n LO bj LO bk
8. Provethat(i +x)"> 1 +nxforx> Oand b) 1 x]Il kxl

n>l,xEl,n€. LO ii LO ii
9. Prove that (1 + )> 1 + nx + nx2 forx>0 _______ _____________

and n> 2, x 11, n '.J.
18. Prove =

(n — k)!k! =Ti (i — k + 1)!(k — 1)!
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In Search of A Solution
to the Tower of Hanoi Problem

There is an interesting and challenging puzzle called the Tower of Hanoi.
The puzzle consists of three pegs and a set of graduated discs, as shown in
the figure.

1. Only one disc may be transferred at a time from one peg to another peg.

2. A larger disc may never be placed upon a smaller disc.

This problem can be solved using the principle of mathematical induction.
Indeed, you can use this principle to calculate the minimum number of
moves that would be needed for a given number n of discs.

Examine the problem for one disc, then for two discs, and finally for three
discs to get some idea of the pattern involved.

One disc It is clear that one disc can be transferred in one move.

Two discs First transfer one disc leaving a peg free for the second disc.
You then transfer the second disc. Finally cover the second disc with the
first disc. This takes three moves.

Three discs First transfer the top two discs as above in three moves. This
leaves a peg free for the third disc which is moved in one more move.
Then the top two discs can be transferred onto the third disc in three
moves, as above for two discs. This gives a total of seven moves.

The pattern for moving any number of discs is now clear. If you can
transfer k discs you can easily transfer k + 1 discs. First you transfer the k
discs leaving the (k + 1)th disc free to move to a new peg. Then the top k
discs can be moved onto the (k + 1)th disc. Thus, the problem can be
solved for any number of discs.

To determine the minimum number of moves needed to transfer n discs,
observe that no disc can be moved until all of the discs above it have been
transferred. Then a space is left free to which you can move that disc.

The problem posed is to transfer the discs from any one peg to another peg
under the following rules.
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Suppose the minimum number moves for k discs is m(k). To move the
(k + 1)th disc, you will need m(k) moves to the transfer the discs above it to
another peg. Then you can transfer the (k + 1)th disc to the free peg. Now,
to move the k discs over, to be on top of the (k + 1)th disc, will again take
m(k) moves.
Thus the total number of moves to transfer k + 1 discs is
m(k) + 1 + m(k), or 2m(k) + 1. That is, m(k + 1) 2m(k) + 1.

To use mathematical induction to determine the minimum number of
moves for n discs you must now try to guess a formula for m(n).

The following table gives values of m(n) for n from 1 to 5.

n 12345
m(n) 1 3 71531

Adding a disc appears to double' the number of moves, so that this
sequence of numbers should be compared with the doubling sequence
1, 2, 4, 8, 16, 32. It appears that m(n) =2 — 1.

A proof of this formula follows.
Step 1. The formula is true for n = 1 because 21 — 1 = 1 = m(1).
Step 2 Assume the formula is true for n = k.

Thus the minimum number of moves for k discs is 2' —1.

Step 3 Prove the formula is true for n =k + 1, that is show that the
minimum number of moves for k + 1 discs is 2k +1 — 1.

Proof: You showed above that
m(k + 1) = 2m(k) + 1.

Using step 2, you can say that
m(k+ 1)2(2k 1)+ 1

= 21 —2 + 1

= 2' — 1

Hence, by the principle of mathematical induction, the minimum number
of moves needed to transfer n discs is 2l — 1.

Activity

Try the puzzle with three discs to see if you can match the minimum
number of moves. Then do the same for 4 and 5 discs.
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9.4 The Binomial Theorem

There is.a very important and useful formula that involves the natural
numbers and the binomial (a + x). This formula is called the
binomial theorem.

The formula gives a short cut for finding values of products such as
(a + x)2, (a + x)3, (a + x)4, (a + x)5, and so on.

You may already know the following products.
(a + x)2 = (a + x)(a + x) = a2 + 2ax + x2
(a+x)3=(a+x)(a+x)(a÷x)=a3+ 3a2x+ 3ax2+x3

The binomial theorem is stated as follows.

T H E R (a + x) = C(n,O)ax° + C(n,l)a"'x' + C(n,2)a'2x2 + C(n,3)a'3x30 E M + ... + cn,raxr + ... + C(n,n—1)a'x' +C(n,n)a°f,
where n rN

Note 1 ThevalueofC(n,r)is
fl

,wheren!=n(n—1)(n—2)...(3)(2)(1).(n — r)! r!

2 The expansion of the product has n + 1 terms.

Example 1 Expand the product (a + x)4.

Solution Use the binomial theorem

(a + = C(n,O)ax° + C(n,l)a''x' + C(n,2)a'2x2 + C(n,3)a'3x3
+ ... + C(n,r)ax' + ... + C(n,n—l)a'x'' +C(n,n)a°f.

Here n= 4.

Thus,

(a + x)4 = C(4,O)a4x° + C(4,1)a4'x' + C(4,2)a42x2+ C(4,3)a43x3 + C(4,4)a44x4

Now C(4,O) =
4! =

I
(4 — O)!O! recall hat 0.

C(4,1)=
4! 4x3x2x1_4

(4—1)!!! 3x2xlxl

C(4,2)=
4! _4x3x2x16

(4—2)!2! 2xlx2xl

C(4,3)=
4! =

(4 — 3)!3!

C(4,4) = 4! = 1
(4 — 4)!4!

Therefore, (a + x)4 = a4x° + 4a3x' + 6a2x2 + 4a'x3 + la°x4
=a4+4a3x+6a2x2-i-4ax3+x4 •
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I',saI 's TrianqiL'
Observe the coefficients of the expansion of (a + x) for n = 1, 2, 3, and 4.

value of n expansion of (a + x)'1 Pascal's triangle
1 lat+lx' 11
2 1a2+2ax+1x2 1 2 1
3 + 3a2x + 3ax2 + 1x3 1 3 3 1

4 1a4+4a3x+6a2x2+4ax3+ 1x4 1 4 64 1

Note: In Pascal's triangle, the numbers on the left and right of each row
are both 1. Each of the other numbers is the sum of the two numbers
on each side of it in the line above.

Thus, the next line in the triangle, corresponding to n =5, will be
1,1+4,4+6,6+4,4+1,1 orl,5,1O,1O,5,1
Each line of Pascal's triangle can also be written in terms of C(n,r).

C(1,O) C(1,1) For C(n,r)'s the note above
C(2,O) C(2,1) C(2,2) means that, for example,

C(3,O) C(3,1) C(3,2) C(3,3) C(4,2) = C(3,1) + C(3,2)and
C(4,O) C(4,1) C(4,2) C(4,3) C(4,4) C(3,1) = C(2,O) +C(2,1)

In general, the following is true: C(n + 1,r) = C(n,r — 1) + C(n,r)

Youwill be given the opportunity to prove this in the exercises that follow.

Example 2 Expand (3m — 2yft.

Solution Since n = 6 the expansion you need is
(a + x)6 = C(6,O)a6x° + C(6,1)a6'x1 + C(6,2)a62x2 + C(6,3)a63x3

+ C(6,4)a64x4 + C(6,5)a65x5 + C(6,6)a66x6
where a = 3m and x = —2y. Thus,
(3m + (—2y))6 = C(6,O)(3m)6(—2y)° + C(6,1)(3m)6'(—2y)' + C(6,2)(3m)62(—2y)2

+ C(6,3)(3m)63(—2y)3 + C(6,4) (3m)64(—2y)4
+ C(6,5)(3m)65(—2y)5 + C(6,6)(3m)66(—2y)6

= 1(729)m6 + 6(243)m5(—2)y + 15(81)m4(4)y2
+ 20(27)m3(—8)y3 + 15(9)m2(16)y4 + 6(3)m'(—32)y5 + 1(1)(64)y6

= 729m6 — 2916m5y + 4860m4y2 — 4320m3y3
+ 2160m2y4 — 576my5 + 64y6 •

Check that the value of the C(n,r)'s, make up line n = 6 of Pascal's triangle.

Because the binomial theorem involves the natural numbers ,you can
prove the theorem using mathematical induction. The theorem will be
stated using the sigma notation L

In proving the theorem you will make use of the formula
C(n + 1,r) = C(n,r — 1) + C(n,r)
You will also use a property of the sigma notation about changing the
limits of sigma, namely,
m m+d= a
r=t r=t+d
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Example 3 Usemathematical induction to prove the binomial theorem

(a + x) =

So1uti Step]: Letn = 1.L.S. =(a +x)',R.S. =1C(n,r)axr, that is,

R.S.= C(1,O)a'x° + C(1,1)a°x' = la + lx = a + x = L.S.
Step 2: Assume the formula is true for n = k.

Assume (a + x)'< = >C(k,r)axr ®
Step 3: Prove the formula is true forii = k + 1, that is,

k-fl

prove (a + x)'<1 = >C(k + 1,r)arxr

But (a + x)'1
= (a + x)(a + x)k fs s he L S. ot liult pled iy a .
= (a-i- x)C(k,r)ak_rxt using ;tep 2

= aC(k,r)a/<_xr+ xyC(k,r)axr
rO

k k
= C(k,r)a' lxr + C(k,r)a_rx

r-O rO

Now by changing the limits of the summation,
k k+I

the second summation C(k,r)ax1 can be written >C(k,r — 1)ak_rixt
r=O r1

Thus (a + x)' = C(k,r)a_lxr + >C(k,r — 1)arxr
r=1

In order to combine these two summations you must write each
summation so that each has the same limits. You can accomplish this by
removing the first term from the first summation and the last term from
the second summation.

k k

(a + x) = C(k,0)ak+Ixo + C(k,r)ak_rdlxr + >C(k,r — 1)ak_xr + C(k,k)a°x1

= C(k,0)ak*lxo + [C(k,r) + C(k,r — 1)]a*xr + C(k,k)a°

This expression may be simplified using the following facts.
1. C(k,0) = 1 = C(k + 1,0)
2. C(k,k) = 1 = C(k+ 1,k + 1)
3. C(k,r) + C(k,r — 1) = C(k + 1,r)

(a + x) = C(k + 1,0)ax0 + >C(k + 1,r)a*lxr + C(k + 1,k + 1)aox

This may be combined under one summation giving

(a + x)k*l = IC(k + 1,r)a' IXr which is what needed to be proven. •
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The term C(n,r)axr is called the general term in the expansion of (a + x)'.
You will find questions on the general term in the exercises.

n! n(n—1)(n—2)...(n—r+1)Note that since C(n,r) = =
(n — r)!r!

then C(n,O) = 1, C(n,1) = n, C(n,2) = n(n 1), C(n,3) = n(n — 1)(n — 2)

C(n,n
— 1) = n, C(n,n) = 1

Hence an alternative form for the binomial theorem is

(a + x) =a+ na''x + n(n a_2x2 + n(n — 1)(n — 2a'x +
2! 3!

+n(n_ 1)(n—2)...(n—r+ 1)nrr +nax''+x

TI t' Bi, ioin ía/ J'Iie'i ii r an 'f a Va in ra / Vuin/c'r

The binomial theorem has been proven for n a natural number. A similar
result is true when n is not a natural number. In this case, however, there
are three important differences.

First, the alternative form of the expansion of (a + x), with factorials,
must be used.

Second, instead of a series with a finite number of terms, you will have an
infinite series.

Thirdly, the expansion is true only for certain values of a and x. Indeed,

the expansion is true only for values of a and x such that —1 < 1.
a

The result (which will not be proven) is the following,
wereflElbUtflJ.
(a + x)" =

ax° + na"'x + n(n — l)22+ n(n — 1)(n — + ... +
2! 3!

n(n 1)(n — 2).. .(n — T + 1) n-r r+ a x + . . . (an infinite number of terms)

Frequently this statement is written for a = 1 to give the following, where
flEllbutflOand—1<X<1.
(1 + x) =

1 + nx + n(n — 1)2 + n(n — 1)(n —
+ +

2! - 3!

n(n—1)(n—2)...(n—r+1) r+ — x +. . . (an infinite number of terms)
r!
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9.4 Exercises

1. a) Write the rows of Pascal's triangle for
n = 1 to n 8.

b) Evaluate 4! and 6!
c) Evaluate C(7,3).
d) Evaluate C(5,O), C(5,1), C(5,2), C(5,3),

C(5,4), C(5,5).
e) Check that your answer for part d) is

the same as your answer for row n = 5

in part a).

2. Expand each of the following. Do not
simplify the C(n,r)'s.
a) (a+x)4 c) (a+x)6 e) (a+x)8
b) (a+x)5 d) (a+x)7 f) (a+x)9

3. Rewrite each part of question 2 by
substituting the values for the C(n,r)'s.
You may find these either by using the

formula C(n,r) = n!
or by using the

(n —

appropriate row in Pascal's triangle.

4. Expand each of the following and simplify.
a) (a+y)4 c) (rn+z)3 e) (a+ 1)8
b) (b — c)4 d) (2 + x)5 f) (3 — b)4

5. Expand each of the following and simplify.
a) (a + 2b)4 c) (3 — 2rn)3 e) (2x + 3a)5
b) (3a + 4b)4d) (4a — 5)3 f) (1— rn2)6

6. Find the first four terms in the expansion
of each of the following. Do not simplify.
a) (a + b)4° c) (3 + x)23 e) (2rn — 3t)25

b) (m — k)39 d) (4 + 2a)85 f) (1 + b2)36

7. Expand.

a) (+1) b) (x_4)

8. a) Find the general term for (x2+
1)6

b) Find the term containing x9 in the
expansion of the binomial in part a).

c) Find the term containing x° in the
expansion of the binomial in part a).
This term is called the term
independent of x.

9. Prove each of the following facts about the
relationship among an element of one row
in Pascal's triangle and the elements above
it to the left and right.
a) C(4,2) = C(3,1) + C(3,2)
b) C(8,5) = C(7,4) + C(7,5)
c) C(n + 1,r) = C(n,r —1) + C(n,r)

10. Show each of the following is true by
writing each sum explicitly. For example,

>a. = a1 + a2 + a3.

8 12

a) >a. = >ar_4
m m+d

b) ar= >.ar_d
r=i r=t+d

11. The first two terms in the expansion of
(3 + kx)7 are 2187 + 20 412x.
Find the value of k.

12. By substituting a =x = 1 in the expansion
of (a + x)' show that

C(n,0) + C(n,1) + C(n,2) + C(n,3) +
+ C(n,n — 1) + C(n,n) = 2

13. Use the expansion of (a + x) to show that

C(n,0) — C(n,1) + C(n,2) — C(n,3) +
+ (—1)C(n,n) = 0.

14. a) Find the first four terms in the
expansion of (1 + x)2.

b) Find the first four terms in the
expansion of (1 + x).

15. In your answers to question 14 a) and b),
give x the value 0.02. Simplify these
expressions to obtain approximate values
for (1.02)_2 and (1.02). How do these
values compare with the values of (1.02)
and (l.02)i found using the key of your
calculator?

16. a) Write a computer program for the
expansion of (a + x), n

b) Use your program to check your
answers for questions 2, 4, 5, and 6.

c) Adjust your program so that it will
handle the first few terms in the
expansion of (a + n
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Graph Theory
The graphs of graph theory are different from the graphs of lines,
parabolas, circles, etc, with which you are familiar. In graph theory a
graph is defined as a set of points called vertices, and a set of lines called
edges, that connect pairs of vertices. The figure shows several graphs.
Notice that the edges do not have to be straight lines.

The systematic study of graph theory began in the 18th century with the
famous problems of the seven bridges of Koenigsberg, which you met in
the introduction to this chapter.

Graph theory is used extensively to solve problems involved in the
management of complex systems such as those in business and industry.
The following is a simple example.

II I I I I

ppppp ppppp ppppp pi,i)ppppp ppp
* ppp ppp_1

I II I I Ii I

figure la figure lb

The map in figure la shows a section of a city where there are two blocks
containing parking meters.

You are hired to find the most efficient route that a parking control officer
should travel (on foot) to check the meters. You must consider two things.
1. The parking control officer must patrol all of the meters without

retracing steps any more than is necessary.
2. The route should end at the same point it started, where the officer's car

is parked.

To solve this problem you need to draw graphs. One such graph is
indicated in figure lb. Notice that each Street intersection is a vertex and
each sidewalk is an edge. Two possible routes covering this graph are
indicated in figure 2a and 2b. It is clear that figure 2b is a better solution
because it covers every edge (sidewalk) only once. A route that covers every
edge only once is called an Euler circuit, provided that the route starts and
finishes at the same vertex.

10
5
1 ___________ 9 1 ——- 44 2 618 8 2

figure 2a figure 2b
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One of the first discoveries made in graph theory was that there are some
graphs that do not have any Euler circuits. Two examples of such graphs
are shown in figure 3, where it is impossible to start at a vertex and return
to the same vertex unless you cover the same edge more than once.

A._o:
figure 3a figure 3b

Euler was able to determine the conditions under which a graph had an
Euler circuit. He used the concepts of valence and connectedness. The
valence of a vertex in a graph is the number of edges meeting at that point.
(Point A has valence 1, points C, D, G, and H have valence 2, while points
B, E and F have valence 3.) A graph is connected if every pair of vertices is
joined by at least one edge. The graph in figure 3a is not connected
because points A and C are not joined by an edge.

Euler proved that a graph G has an Euler circuit if and only if the
following two conditions are true.
1. G must be connected
2. Each vertex must have an even valence.

If you examine the graph for the parking control officer given above in
figure lb. you will see that both of these conditions are fulfilled.

It is interesting to note that the graph of the seven bridges of Koenigsberg
does not have an Euler circuit. (See page 387.)

The following problems are among the many that can be solved using
graph theory.

Computers, radios and TVs make use of printed circuits. These circuits are
conductive paths on a sheet of nonconductive material. What conditions
must hold for such a circuit to be able to be printed on a single
nonconductive sheet?

A telephone company wishes to send long distance messages between
cities at the least possible expense in transmission and in the construction
of interconnecting telephone lines. What cities should be joined directly by
telephone lines? What path should a telephone signal take to travel from
cityA to city B?

A salesperson must visit several cities always starting and ending at the
same city. What route should be taken so that the cost of the trip will be a
minimum?

What is the best way to prepare an airplane so that the airplane is on the
ground for the least amount of time? Remember that passengers and
baggage must be loaded and unloaded, the cabin must be cleaned, food
must be brought on board and the airplane must be refueled.
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Summary
• The inductive property of N: let T be a subset of the natural numbers N.

Then T is the entire set N, if and only if both of the following are true.
a) lisamemberofT.
b) IfkisamemberofT,thenk+ 1 isalsoamemberofT.

• The principle of mathematical induction: a statement involving the natural
number n is true for every n E N provided the following are true.
a) The statement is true for n = 1.

b) The truth of the statement for n = kimplies the statement is true for
n = k + 1.

• The three steps in a proof by mathematical induction.
Step 1:Show the statement is true for n = 1.

Step 2: Assume that the statement is true for n= k.

Step3: Prove the statement is true for n = k + 1, using the result of step 2.

If the statement to be proved is not true for the first few natural numbers
then step 1 must be done for the first number for which the statement is
true.
• The principle of mathematical induction can only be used to prove a

given formula is true. The principle does not help you to obtain such a
formula. If a formula is not given you can try to guess a formula by
examining results for n = 1, 2, 3, and 4. When you guess a formula you
are making a conjecture.

• The binomial theorem for n N:

(a +x) = C(n,O)ax° +C(n,1)a''x' + C(n,2)a'2x2 + C(n,3)a'3x3
+ ... + C(n,r)axr+ ... + C(n,n— 1)a'x' + C(n,n)a°f

n! n(n—1)(n—2)...(n—r+1)Note 1 The value of C(n,r) is =
(n—r)!r! r!

2 The expansion of the product has n+ 1 terms.
3 Using the sigma notation, the binomial theorem may be written

(a + x)"
r=O

• Pascal's triangle and the binomial theorem

value Pascal's
of n expansion of (a +x)' triangle

1 la'+lx' 11
2 1a2+2ax+1x2 1 2 1

3 Ia3 + 3a2x + 3ax2 ÷ 1x3 1 3 3 1

4 1a4 + 4a3x + 6a2x2 + 4ax3 + 1x4 1 4 6 4 1

Note: In Pascal's triangle, the numbers on the left and right of each row
are both 1. Each of the other numbers is the sum of the two numbers
on each side of its in the line above.

• C(n + 1,r) = C(n,r— I) + C(n,r)

C(1,O) C(1,1)

C(2,O) C(2,1) C(2,2)
C(3,O) C(3,i) C(3,2) C(3,3)

C(4,O) C(4,1) C(4,2) C(4,3) C(4,4)
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Inventory

Complete each of the following statements.

1. Step 1 in the principle of mathematical induction usually shows that a
statement is true for ________

2. In step 2 in the principle of mathematical induction you assume that
the statement is true for n = _______, then in step 3 you
the statement is true for n = _______

3. Select the word in the bracket to make the statement true.
a) If a formula is true for n = 1, n = 2, and n = 3, then the formula is

(always, sometimes, never) true for all n N.

b) If you assume that a formula is true for n = k and then are able to'
prove that it is true for n = k + 1, then the formula is (always,
sometimes, never) true for all n N.

4. Youconjecturethatl + 3+5+ ... +(2n— 1)=n2.
a) For n = 1, the L.S. equals , and the R.S. equals
b) For n = k, theL.S. equals , and the R.S. equals
c) For n = k + 1, the L.S. equals ,and the R.S. equals

5. You conjecture that

(i+i)(i+(l+(l+Yl+
\ 21\ 31\ 41\ 5.1 \ nI

a) For n = 1, the L.S. equals , and the R.S. equals
b) For n= k, the L.S. equals , and the R,S. equals
c) For n= k + 1, the L.S. equals , and the R.S. equals

n3+3n2+2n.
6. You conjecture thatf(n) = is a natural number for all

n N.

a) For n 1, the statement becomes
b) For n= k, the statement becomes
c) For n= k + 1, the statement becomes

7. You conjecture that 2' < n! for n 4, n N.

a) For n = 4, the statement becomes
b) For n = k, the statement becomes
c) For n = k+ 1, the statement becomes

8. In the expansion of (a + x)5, there are _______ terms. Unsimplified,
these terms are

9. Row n = 8 in Pascal's triangle is
1 8 28 56 70 56 28 8 1
Therefore, row n =9 is
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Review Exercises b) >2 = n(n + 1)(2n +1)
6

1. State the three steps in a proof using
c) = (n(n

+ 1)\2
mathematical induction. , \ 2 )

2. Prove the following statements using 6. Prove the following by mathematical

mathematical induction, where n J• induction

a)4+11+18+...+(7n_3)=7fl+1)
4+14+30+52+...+(3n2+n)=n(n+l)2

2 7. Prove by mathematical induction

b) 1+3+5+...+(2n—1)=n2
c) 1+2+4+...+21=2n1

3! 4! 5! (2n+1)!
d) 1(2)+2(3)+3(4)+...+n(n+1) 1 n+1

n(n+1)(n+2) 2(n+2)!
3

e) 1(2) + 2(4) + 3(6) + ... + n(2n) 8. Use mathematical induction to prove that

= n(n + 1)(2n + 1)
each of the following is true.

3 a) 3J' 4, \ n+1/f) 1(2)3 + 2(3)4 + 3(4)5 +
n(n+1)(n+2)(n+3) = 1

+ n(n + i)(n + 2) — 4 (n+1)!
b)3. Conjecture and prove a formula for the sum of n 3/\ 4i \ n+1i

terms of the series , + 2
1+7+19+...+(3n2—3n+1)

4. Prove the following statements using 9. Prove the following where n J.
mathematical induction, where n a) 2n <2n for n 3

a) 1+1+ 1
b) (1.1)">1+—'-—forn21x4 4x7 7x10 10"

1 _____ 10. Where does mathematical induction fail+ =
(3n — 2)(3n + 1) 3fl + 1

when you try to use it to prove that

b
1 1 1 100n<n2foralln€IJ?

1x5 5x9 9x13
11. Use mathematical induction to prove that

1 n+ = 6n5-s-i5n4-1-10n3—n.(4n — 3)(4n + 1) 4n + 1 is a natural number
30

c)—-—+-----—+—1---+-—--—÷... foralln€RL1x2 2x3 3x4 4x5
+

1 = n 12. Use mathematical induction to prove that

n(n+1) n+i 9"—4"

d)÷+ ...+ isanaturalnumberforallnei'.
31 32 3n 2\3) 13. a) Show that if you falsely assume that

e) 4s+l)=4o 1+5+9+...+(4n—3)=2n2—n+32
is true for n = k, then the statement is

5. Prove by mathematical induction
also true for n = k + 1.

b) Is the formula true for n = 1? for alln
n(n + 1)

a) >s= n€R?
2
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14. Suppose that n circles are drawn in a plane
so that each circle intersects all of the
others. No two circles are tangent. No three
circles pass through the same point. Prove
that the plane is divided into

— n+ 2 non-overlapping regions.

15. Expand each of the following and simplify.
a) (a+x)4 c) (2+x)3

b) (3a + b)5 d) (2k — 5m)6

16. Show that the formula

1!+2!+3!+...+fl!=3'
is true for n =1, n = 2, and n = 3.

Is the formula true for all n

17. a) Turn back to the introduction to this
chapter on page 384. Read again about
the prince who had to open door after
door. Use mathematical induction to
prove that if the prince lived forever
then he would be able to continue
unlocking rooms.

b) Try to use mathematical induction to
convince the cow with the ladder that
she could climb the ladder to the moon,
and beyond the moon.

18. Use mathematical induction to prove that
a) (1)1! + (2)2! + (3)3! + (4)4! +

+ (n)n! =(n + 1)!
— 1

b) (1)(2) + (2)(3) + (3)(4) +

n(n 1)
n(n l)(n 2)

3

c) 3 9 27 3fl 2\ 3'
1 1 1 1 if 1d) +—+—+...+---—(1—
5 25 125 5fl 4\ 5fl

19. Given n lines in a plane so that each line
intersects all the other lines but no three
lines are concurrent, show that the lines
divide the plane into
n2+n+2

2
non-overlapping regions.

20. Use mathematical induction to prove that
each of the following is a natural number
for all n

21. Three consecutive terms in the expansion
of (1 +x) have coefficients 21, 35, and 35.
Find the value for n.

22. Prove, by mathematical induction or
otherwise, that

(1 + x)" = 1 + (x + (x2 +
\1/ \2/

+
(n)r

+ ... + f,wheren is a positive

integerandforO<r< = n!

\r/ r!(n — r)!
By using this result, or otherwise, and

taking (n) = 1 find the values of

a)
>(').

b) (_1y(fl). c)

(80 I-I)

23. i) The diagram represents a pile
of cylindrical logs; if there are n
logs in the lowest row, how many logs
are in the pile?

ii) Showthat—- =!__-1—_forall
r(r+1) r r+1

positive r. Hence prove that
1 = n

r=ir(r+1) n+1

iii) Assuming that >r2= !n(n+ 1)(2n + 1)
r=I 6

show that

(r+ 1)2 = 1(n + 1)(n + 2)(2n + 3)and
r=O 6

determine the value of '(r + 2)2

(82 SMS)

6—2" 7—2
a) b)4 5

8 — 3fl
c) 5
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CHAPTER TEN

Complex Numbers
Is a number?

You know that = 5,fi = 1, Jii = 0, 'fi = 0.7, etc. Also, you know
that ./ cannot be written as a terminating or periodic decimal, but it is
quite close to L732 050 808. Where could fTpossibly fit in? You know
that both positive and negative real numbers square to positive numbers.
(For example, 22 = 4, which is positive, and (_1)2 = 1, which is positive.)
Zero squares to zero. So what could possibly square to —1?? These
considerations indicate that no place can be found for V':ion the real
number line.

-1 ?

—5 —4 —3 —2 —1 0 1 2 3 4 5
• • • • • • • • • • • >- IR

The mathematicians who first encountered "JT" quite naturally called it
"imaginary". And so the name continues to this day, although these types
of numbers are frequently used in mathematics and physics. Such
numbers are now considered to be no more imaginary than irrational
numbers, points, vectors, or any other mathematical object with which
you are familiar.

This change came about very slowly. In general, the time-lag is such that
the first person to make an important discovery does not see it fully
accepted in his or her lifetime. As for many new ideas in mathematics, the
introduction of numbers containing an "imaginary" component, now
called complex numbers, had to go through at least three stages.

1. The ground had to be prepared for the discovery to take place. (In this
case, simple "negative numbers" had to be accepted first.)

2. The discovery itself had to occur and be used. This meant going beyond
writing "VTi", and actually attempting to 'work' with it. (This took a
lot of courage, because it required going against accepted practice at the
time.)

3. The new discovery had to be applied by other mathematicians—
preferably well-respected mathematicians—before it could be fully
accepted.
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It may surprise you to learn that negative numbers did not gain a foothold
in Europe until 1544, through the German mathematician Michael Stifel
(1486—1567). The theory of negative numbers had in fact been completely
developed more than 800 years before that, in India. However, in Europe,
until the 1500s, the difference a — b was deemed meaningful only for a
greater than b. A first-degree equation such as x + 3 = 7 could be solved,
but x + 7 = 3 was avoided because a solution was considered to be
'impossible'. And amazingly, this belief was not eradicated until the
1800s!

The theory of second-degree equations (that is, quadratic equations) was
even more muddled. Writing such equations in the form ax2 + bx + c = 0
did not appear until 1631, through a posthumous publication by Thomas
Harriott (1 560—1621). Indeed, 0 was not really considered a number that
could be used like the others.

Before Harriott, quadratic equations were broken down into 'types' as
follows, each with its own set of rules.
Iax2=bx+c II ax+c=bx IIIax2+bx=c.
Writing these equations in the form ax2 + bx + c = 0 takes care of all
possibilities as well as simplifying the theory of quadratic equations. This
is a good example of the way that the discovery of a new entity can
sometimes lead to a simplification of an entire theory.

As well as extending the concept of 'number', the acceptance of negative
numbers led mathematicians to try 'solving' equations for which no real
solutions could be found, such as x2 + 1 = x. You will see that the solution

to such an equation contains

The first appearance of an imaginary number was in a publication by
Girolamo Cardano, in his quest for a solution to a cubic equation. The time
span between this first appearance, in 1545, until the full acceptance of
complex numbers by the mathematical community in the mid-1800s,
exceeded 300 years.

As you work through this chapter, you will have an opportunity to
understand how these 'non-real' numbers grew into full acceptance. At
the same time, you will extend your concept of number, and unify some of
your theories in algebra.
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10.1 What is a Complex Number?

The discovery of complex numbers was likely linked to the analysis of the
problem of finding two numbers, knowing their sum and their product.
The following will guide you through this discovery process.

Example 1 Find two numbers whose sum is 4 and whose product is 3.

Solution Let one number be x, then the other number must be 4 —x. The product of
the numbers is 3, thus

x(4 — x) = 3
4x — x2 = 3

x2 — 4x + 3 = 0
(x — 1)(x — 3) = 0

x —1 = 0 orx —3 = 0
x=lor x=3.

If x = 1, then (4— x) = 3, and
ifx = 3, then (4 — x) = L
Thus the required numbers are 1 and 3.

A very important part of this discovery process is the following.
Check: the sum is 1 + 3 = 4, and

the product is (1)(3) = 3, as required. U

The next example yields a more complicated solution.

Example 2 Find two numbers whose sum is 6 and whose product is 3.

So I ut ion Let one number be x, then the other must be 6 —x.
Thus x(6 — x) = 3

6x — x2 = 3
x2 — 6x + 3 = 0.

But this quadratic expression will not factor over the integers. By
completing the square' (as in section 8.3, page 356),
x2 — 6x + 9 t) + 3 = 0

(x — 3)2 — 6 = 0

(x — 3)2 = 6

(x—3)=v or(x—3)=--/
x=3+'Jor x=3—V.

Thus the numbers required are (3 + f) and (3 or approximately
5.44948.. .and 0.55051... .Once again, although the numbers are
irrational, check the result, using the exact values.
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Check: the sum is (3 + + (3 — = 6, as required, and
the product is (3 + .f)(3 — = 32 — 3f + 3J — = 9 — 6 = 3,
as required. •

In the next example, it will appear that no numbers exist to give the
required sum and product. Most mathematicians did not attempt to go
beyond the seemingly insurmountable difficulty encountered, but simply
classified the problem as unsolvable. Then the Italian mathematician
Girolamo Cardano (1501—1576) made a breakthrough in 1572, as you
shall see presently.

Example 3 Find two numbers whose sum is 6 and whose product is 10.

Solution Let one number be x, then the other is 6 —x.
Thus x(6 — x) = 10

6x — x2 = 10
x2—6x+10= 0.

Completing the square, x2 — 6x + 9 — 9 + 10 = 0

(x—3)2+1= 0
(x — 3)2 =

This appears to be 'impossible'. Indeed, the square of any real number,
whether positive, negative, or zero, is always greater than or equal to zero.
Thus, no real number has a square of —1. Now Cardano had the insight
and the courage to simply 'carry on regardless', as follows.

x —3 = TTorx —3 = —/T.
Thus the numbers 'are' (3 + fii) and (3 — Jii). U
Although these numbers may appear to be meaningless, attempt the
following check. Assume that fi is a number with the usual algebraic

properties, including (.JTi)2 =

Check: the sum is (3 + fi) + (3 — ./T) = 6, and
the product is (3 + Ti)(3 —

=9- 3/::j + 3Ti - ([j)2
= 9 — (—1) = 10.

These 'numbers' seem to work!

As pointed out in the introduction, this breakthrough did not have
immediate results. The world had to wait more than 200 years before these
inventions were fully accepted. Cardano's ideas were finally formalized by
Jean Argand, Leonhard Euler, Karl Friedrich Gauss and other
mathematicians towards the end of the 18th century.

The Acceptan1 e I'hicise
To simplify matters, the symbol i will be used to represent a number
(which does not belong to ) that has the property i2 =—1.
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It is now tempting to write" i = Ti", and by analogy,
= = (i)(2) = 2i","/ = fi'f = etc. However, great

care must be exercised in the use of the symbol "T" when dealing with
roots of negative numbers. Examine the paradox illustrated by the two
following 'simplifications'.

orfi=(2i)(l)=2j2=2(_1)= —2
Two different results are obtained. Which of these is correct?

uses the familiar algebraic property of real positive numbers

3 makes use of the symbol i, where i2 = —1.

The paradox is resolved as follows.

The algebraic property = is true only for non-negative real numbers
a, b.
Thus, because a = —4 and b = —1, aj isfalse, but® is correct.

All positive numbers have two square roots. For example, the two square
roots of 9 are J5 = 3 and —/ = —3.

Negative numbers also have two square roots. One must accept that i can
represent either fior —fi. You will have an opportunity to verify this
allegation in the exercises.

DEFINITIONS Imaginarynumbers
• i, and the scalar multiples of i, that is 3i, hli,—41, etc. shall retain their

original name of imaginary numbers.
• The set of imaginary numbers will be denoted by I.

Complex numbers
• The sum of a real number and an imaginary number, that is, z = a + bi,

where a and b IL will be called a complex number.
• The set of complex numbers will be denoted by C.

Real and imaginary parts
Given the complex number z= a + bi, where a Ii, b Ii,
• a is called the real part of z,or a = Re(z)
• b is called the imaginary part of z, or b = Im(z)
If b = 0, z is real. If b * 0, z is non-real.
Thus it appears that the real numbers form a subset of the complex numbers.
Equality
• Two complex numbers z = a + bi and w = c + di, where a, b, c, and dare

real, are equal if and only if a = c and b = d.

In the following example, you will save time by obtaining the solutions
with the quadratic formula, instead of completing the square.
You will use the fact that the solutions of az2 + bz + c = 0 are given by the

formula z = —b Vb2 — 4ac

2a
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Example 4 Solvea) 2z2+2z+5=O b) z2—2z+3=O.

Solution a) Herea=2,b=2,c=5.
Substituting in the quadratic formula gives the roots

= _2±s122_(4)(2)(5)_ —2±T3 —2±6i —1
2(2) 4 4 2

Thus the solutions are z = — + or z = — — i.22 22
b) Here, a = 1, b = —2, c = 3. Using the formula, the roots are

2(1) 2 2
—

2
Note that, although these solutions are correct, they can be simplified

by writing .fas a mixed radical, as follows.

2 2 2 2
Thusthesolutionsarez= 1 +i'uiorz= 1 —v.Ji. •

The previous discussion leads to the following formulas for the addition
and multiplication of complex numbers.

• Complex numbers can be added as follows:
(a + bi) + (c + di) = (a + c) + (b + d)i

• Complex numbers can be multiplied as follows:
(a + bi)(c + di) = ac + adi + bci + bdi2

but recall that i2 = —1, thus
(a + bi)(c + di) = (ac — bd) + (ad + bc)i

Note: that it is easier to use the processes that employ the usual rules of
algebra, together with the fact that i2 = —1, than to learn the above
formulas.

Thus, when complex numbers are added, or multiplied, other complex
numbers are produced. This can be verified in the following example.

Example 5 Given z = 3 — 5i and w = 1 + i, calculate the following.
a) z+w
b) zw

Solution a) z+w=3—5i+1+i=4—4i.
b) zw = (3 — 5i)(1 + i)

= (3)(1) + (3)(i) — (5i)(1) — (5i)(i)
= 3 + 3i — 5i — 5i2
= 3 — 2i — (5)(—1)
=8—21. U

You will be looking at operations in Cmore formally, and in more detail,
in the next section.
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10.1 Exercises

1. Simplify the following.
a) (4+i)+(5+2i)
b) (4—3i)+(—3+3i)
c) (3 + 2i)(5 — i)
d) (3+i)(3—i)
e) (1+21)2
f) (1 — 2i)2
g) i(6+4i)
h) (I + 2i)3

2. Find two numbers whose sum is 7 and

whose product is 18--.

3. Find two numbers whose sum is 4 and
whose product is 5.

4. Find two numbers whose sum is —1 and
whose product is 2.

5. Find the roots of the following equations.
a) z2—8z+25=0
b) z2+4z+5=0
c) 3z2=5z—7

6. The roots of an equation satisfy that
equation. By substitution, verify that each
of the following is a root of the given
equation.
a)
b)
c) z=—i;z2+1=0
d) z=2 — f;z24z+ 1=0
e) z=4+3i;z2—8z+25=o
f) z = 21; z2+ (I — 2i)z — 2i = 0

2g) z=- ——-;3z —5z+,z=033
7. Consider the expressions z = 4 + and

w = 4 — /i• Show that z + w = 8 and
zw = 25 with either of the following
interpretations.
a) let'f=3i
b) let /ii=3

8. The equation az2 + bz + c = 0 is such that
b2 — 4ac < 0, where a, b, and c are real. Find
the sum and product of the roots of this
equation in terms of a, 1, and c.

9. Find the roots of the following equations.
a) z2—4iz=0
b) z2—3iz+4=0
c) z2=iz—3
d) z2—(I+i)z+2+2i=O

10. Solve the following for the real numbers x
andy.
a) x+yi=4+6i
b) x+yi=7i
c) x+yi=(3—i)(2+3j)
d) x+yi=(5+i)(5—i)
e) x+yi=(1+i)2
f) (x+yi)=(4—3i)2

In the remaining questions of this exercise, use
z = a + ib, w = c + id, andu = e + if, wherea, b, c,
d, e, fare all real numbers.

11. a) Calculatez+wandw+z.
b) Draw a conclusion concerning the

commutativity of the addition of
complex numbers.

12. a) Calculate(z + w) + uand z + (w + u).
b) Draw a conclusion concerning the

associativity of the addition of complex
flu mbers.

13. a) Calculatezwandwz.
b) Draw a conclusion concerning the

commutativity of the multiplication of
complex numbers.

14. a) Calculate (zw)u and z(wu).
b) Draw a conclusion concerning the

associativity of the multiplication of
complex numbers.

15. a) Calculate zw + zu
b) Calculate z(w + u)
c) Draw a conclusion concerning the

distributivity of multiplication over
addition of complex numbers.

z = 2; z2 + 3z 10 = 0
z = —5; z2 + 3z — 10 = 0
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10.2 Operations in C

Through the discovery of complex numbers in section 10.1, you learned
that complex numbers could be added and multiplied. In questions 11—15
of 10.1 Exercises, you proved certain properties of these operations inC.

In particular, multiplication in C is associative. That is, for any complex
numbers z, w, u,

(zw)u = z(wu)

This means that a product such as zwu can be calculated without worrying
about the order of the operations. Powers can be calculated in a similar
fashion, as in the following example.

Example 1 Calculate a) i8 b) (—i)3

Solulion a) i8= ix ix ix ix ix ix ix i=i2 x i2 x i2 x i2= (—i)= 1.
b) (—i)3 = (—i)(-—i)(—i) = —(1 x i x i) = —(i2)i = —(—1)1 = i.

You will now see that other operations can be defined in C. The first
person to use the four operations of addition, subtraction, multiplication,
and division of complex numbers was Raffaello Bombelli. A contemporary
of Cardano, Bombelli published his work in Bologna, Italy, in 1572.

The Sii/fl ro lien 0/ Co niplev Nfl in h'er.c
The usual rules of algebra are applied to define the subtraction of complex
numbers as follows.

(a+bi)—(c+di)=a +bi—c —di=(a —c)+(b —d)i.

Example 2 Calculate (3 + 4i) — (5 — 21).

Solution As before, it is easier to go through the process than to learn the formula.
(3 +4i) —(5— 2i)= 3 + 4i —5 + 21= —2 + 61. U

I/u' I)iiision of Couui'/e iVuuiuihei
One operation that has not yet been mentioned in C is division.

Attempting to divide', say, 6 + 21 by i might yield
6 + 21 = + 2z = + 2.

This answer is not in the form a + bi. Is it a complex number, or something
new?
Observe the following strategy.

= x = = —61
i 1 i —1

Thus, division by i does yield a complex number!
6+2i

Hence, =—6z+2,or2 —6,.
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A similar trick is used to divide a more general complex number, as in the
following example. Observe the solution carefully.

Example 3 Divide (3 — 8i) by (1 — 2i).

Solution 3_8i_(3_8i)(1+2j)3+oi_81_16i23_2i+16l9_2i
1—2i (1—2i)(1+2i) 1—(—4) 1+4 5

S
5 5

The numbers (1 + 2i) and (1 — 21) are known as complex conjugates, or
simply conjugates.

E F I N T N
The complex conjugate of z = a + bi is = a — bi.

The quotient of two complex numbers z = a + bi andw = c + di is obtained
as follows.

a+bi(a+bi)(c—d1)(ac+bd+bc—adiac+bd bc—ad.
c + di (c + di)(c — di) c2 — d2(—1) c2 + d2 c2 + d2

Again, the above formula represents the definition of the division of two
complex numbers, but it is much easier to learn the process rather than the
formula. In the work above, you have used one of the important properties
of conjugates. That is, given z = c + di, then = c2 + d2 is real.

In the exercises, you will have an opportunity to prove the other properties
of conjugates that are listed at the end of this section.

Example 4 Simplify the following, a) +
1 — 31

b) —-— 31

411 4—5i 1—i 2+31

Solution a) +
1 — 31 = (2 + 1) + (1 — 3i)(4 + 5i)

41i 4 — Si 411(1) (4 — 5i)(4 + Si)
2i— 1 4+5i— 121— 15(—1)

—41 16—(—25)

= 2i— 1
+ 19—7i185

41 41 41 41

b)
2 31 2(1 + 1) — 31(2 — 31)

1—i 2+31 (1—i)(1+i) (2+3i)(2—3i)
= 2 + 21 — 61 + 9
1+1 4+9

= + — (9 + 61)
13

— 13+ 13i—9—6i •—
13 13 13
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Here is a summary of the essential properties of C with respect to the
operations of addition and multiplication.

SUMMARY
E. Equality a÷bi=c+diifandonlyifaCandbd
S. Sum (a+bi)+(c+di)=(a+c)+(b+d)i
P. Product (a + bi)(c + di) = (ac — bd) + (ad + bc)i

Given any numbers z, w and u of C,
1. Closure z + w and zw belong to C
2. Commutativity z + w = w + z and zw = wz
3. Associativity (z + w) + u = z + (w + u) and (zw)u = z(wu)
4. Distributivity z(w + u) = zw + zu
5. Neutral elements z + 0 = 0 + z = z and (z)(1) = (1)(z) = z
6. Inverse elements z + (—z) = (—z) + z = 0 and

zQ-) = () = 1, provided that z * 0

Note 1 The neutral elements of C are defined as follows.
For addition: 0 = 0 + Oi For multiplication: 1 = 1 + Oi

2 All of these properties apply to real numbers. You can check this
by letting the imaginary part of each complex number be zero.

3 By virtue of satisfying all these properties, the set C is called afield.

Properties involving conjugates
Consider two complex numbers z, w, and their conjugates ,.
1. z+=2Re(z)
2. z—z= 2iIm(z)
3. ñ = [Re(z)12 + [Im(z)12
4. (z + w) = z + w
5. (zw)=zw
6. =z

z zw zw7. Division: — = =
1w21
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10.2 Exercises For questions 5 and 6, refer to the properties
listed in section 10.2.

1. Simplify the following (n 1J). 5. By making the imaginary part zero, verifya) 1 d) i6 g) j4fl that the following properties in Calso hold
1b) i4 e) — h) 4fl+l true in R.

a) properties E, S and P.
c) i5 f) i2 i) 42 b) the properties of conjugates 1,2, and 3.

c) Is the set Iii also a field?2. Simplify the following.
6. Prove the properties of conjugates 1, 2, 4, 5,a) (5—i)--(4+3i) and 6.

b) (—1+i)—(1 —i)
c) 4(3+2i)—2(6+i) 7. Provethatifzw=0,thenz=Oorw=0.
d) (2+z)2—(3—2i)2 (Hint:ifz=a+biandw=c+di,youmust
e) (5+3i)(3 —i)+3(1 +i)(1 —1) —4(3+7i)i provea=b=Oorc=d=0.)

3. Express in the form a + ib, where a 11 and i — +b€i. 8. a) Prove thatz+ —
1+4i 1a) . b) Simplify3—2i+1 3—21

b)
1 + 41

9. The equation az2 + bz + c 0 is such that2+i
b2 — 4ac < 0, where a, b, and c are real.7 — 31

c) . Prove that the roots of the equation are
—l

complex conjugates.
d) 5+21

5 — 21 10. Solve the following for the real numbers x
1 andy.e) 2+3i X+yia) =4—i

f) 4+i
3+4i 6—21b) x+yi=

g)
1 + 1 3+5i

3 + 4t — 41 11. Find the real and imaginary parts of
h)

1 — 1 2+1 ____6+5i (6+51)2 a) +
1+51 1—51

4. Givenz=cosO-i-isinOand b) (1 +i)
w = cos 0 — isin 0, prove the following. 5z—4 31—412 Given z = + , find the real and
(Use the formulas on page 542.) i 1 — 2i
a) z + w = 2cos 0 imaginary parts of z, and of z2.

b) z — w = 2isin 0 13. Simplify (1 + i)4(4 —
31)2(1

— i)(4 + 31)2.
c) zw=1

Id) z2 = cos 20 + isin 20 14. Find the number b such that
2 — 3i/ = 2.

e) w2 = cos 20 — isin 20 I 6 + bi

f)
1 = + --tan0 15. Find z in terms of cos a and sin a, if1+w 2 2 2 z2—2zcosa+1=0.
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10.3 Geometric Representation of a

Complex Number

The previous sections have shown you that there is some validity in
working with non-real numbers. However, there is still one major
difficulty.

You know how to represent an integer, a rational number, even an
irrational number on a number line. Where can i be placed? Where can the
multiples of i, and other non-real numbers, be represented? These
questions will be answered in this section.

There is a parallel between the history of civilization and the growth of the
number sets used. However, the partial list below follows a logical rather
than a historical thread.

The simplest number set is the set of natural numbers,

. . . . >— [N

1 2 3 4
Next is the set of integers,
7L=C..,—3,—2,—1,O,1,2,3,...)

I • I S I • • I >-
—3 —2 —1 0 1 2 3 4

(The symbol Z comes from the German "zahlen", to count.)

Then the set of rational numbers,

Q=[ aE7Landb€}
* *

—3 —2 —1 0 1 2 3 4

(The symbol Q comes from the word "quotient".)

It appears that the most complete set is the set of real numbers, l, which is
the union of Q and the set of all irrational numbers.

IT;

S S • • - - • • > ER
—3 —2 —1 0 1 2 3 4

Recall that the representation of the real number line IR is
indistinguishable from Q. However, for example, the irrational numbers

—V', m, JT are elements of l, but they do not belong to Q.
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Note: Each of the number sets described is a subset of its successor,
as follows.
C7LCQCI!

I?

As observed in the introduction to this chapter, there is certainly no
appropriate spot on the real number line for i. However, R C C, the set of
complex numbers. Indeed, note that x l can be written lx + Oi C. A
brilliant idea came from the Swiss mathematician Jean Argand
(1768-1822), from a work published in 1806. He simply let the non-real
numbers burst out of the real number line 0, by drawing another line II
through 0, bearing the purely imaginary numbers.
Hence, any point in the entire plane thus created will represent a complex
number. The origin, 0, represents the number 0 (that is, 0 +Oi).

II

(C 43i
2,

I t * $

DR

His invention bears the name complex plane or Argand diagram.
Similar methods of picturing complex numbers were invented
independently, at about the same time, by a Norwegian surveyor,
Caspar Wessel (1745-1818), and by the famous German mathematician
Karl Friedrich Gauss (1777-185 5).
Note: The real number line, or real axis, is a subset of the complex plane.

That is, all numbers can be represented by a point in this plane.

• If a number is on the Il-axis then it is real. It could be a natural number,
an integer, a rational number, or an irrational number. [example: —4]

• If a number is on the 0-axis, then it is imaginary. [example: 2i]
• If a number is not on the Ill-axis, then it is non-real. [example: 4 + 3i1

Venn diagram
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Example 1 Locateeach of the following numbers in the complex plane.
z=—i,w= 3 —2i,u=—4.5

Solution To plot the point representing z= —i, go one unit down from 0
on the I-axis.
To plot the point representing w = 3 — 2i, go 3 units to the right of 0
on the li-axis, then 2 units down, parallel to the I-axis.
To plot the point representing u = —4.5, go 4.5 units to the left of 0
on the I'-axis.

II1- - - -r
w3—2i

U

(7onst'qut'nct'.c of Rt'prt'ccutalion in the Co;nplev Plant'

1. Complex numbers as two-dimensional vectors
Note that z = a + bi could be written as the ordered pair (a,b). This was first
done by Sir William Hamilton in 1835.

Compare the addition of complex numbers with the addition of vectors
of V2.

•(a+bi)+(c+di)=(a+c)+(b+d)i
• (a,b) + (c,d) = (a + c,b + d)

Similarly, compare "multiplication of a complex number by a real
number" with "multiplication by a scalar" in V2.
•k(a+bi)=ka+kbi
• k(a,b) = (ka,kb)

II
(a (b + d)

You can see that the results match exactly.
Thus, the set C of complex numbers can be considered a vector space.
All the properties of vectors of V2 with which you are familiar, including
the geometric properties of addition and subtraction, can be applied to
complex numbers. (See page 61.)
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2. The modulus of a complex number

Consider the real number 5. It may be represented in the complex plane
either by the point A, or the position vector of A, that is,OA.
The absolute value of 5 is the length or magnitude of OA, that is,

IOAI=I5I= 5.
Similarly, if B is the point representing the real number —5, the absolute
value of—5 equalsIOBI=I—5= 5.
In the same way, if C is the point representing the complex number
w = 3 + 4i, then

IOCI = 1w! = J32 + 42 = 5

wi is called the length, magnitude, absolute value or modulus of the
complex number w.

II c.
3 + 4,

—5 (j) 5
I I P P p

3. The argument of a complex number

Although you know that IwI = 5, this fact is not sufficient to locate w
precisely in the complex plane. (The numbers 5 and —5 also have a
modulus of 5. Yet all three of these numbers are different, and are
represented by different points). However, w can be fully determined by its
modulus and the angle that it makes with the positive real axis.

In this case, tan = so 53° or = 0.927 radians.

Alternatively, can be determined by both sin = and cos = , giving
as before 1 = 53° or 0.927 rad.

is called an argument of w, written arg w.

R o E A T y In general, if z = x + yi, then the modulus of z, IzI = Jx2 + y2

PROPERTY Ingeneral,ifz=x+yiisrepresentedbythepointp,thene=argzisthe
angle that OP makes with the positive real axis; that is, 0 is determined by

sin 0= - and cos0= --
IzI IzI II

= arg z
0 UR
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Note 1 Arguments of complex numbers are frequently expressed in
radians. The reasons for this will be made clear in section 10.9.
(Recall that ir radians = 1800. There is a table of degree-radian
equivalences on page 543.)

2 Any angle coterminal with 0 is also an argument of z. That is, if 0
is an argument of z, then so is any other angle 0 + 2kir (or
00+ 360k°),k€7.

3 The principal argument of z is the angle 0 chosen such that
—<0n(or—180°<0 180°).
The principal argument is denoted by Arg z.

The numbers z, u,w are represented by the points A, B, C respectively,
or by the vectors OA, OB, OC respectively.

II

B 0— __

b) zI= (_i)2 = 1
IuI= 4.5

AW

wi = J32 + (_2)2 sin(Arg w) = and cos(Arg w) —-I,
4. Conjugates in the complex plane

so Arg w = —34°

Consider the following complex numbers:
z=5+2i,soz=5—2i;w=—1 —3i,sow=—1+3i;u=i,sou=—i

You can see from the diagram that the conjugate of a complex number is
obtained by reflecting the complex number in the real axis.

Example 2

Solution a)

a) Draw the following complex numbers as vectors in the complex plane.
z=—i,u=—4.5,w=3—2i

b) Find the modulus and the principal argument for
each of z, u, and w. (Give the arguments correct to the nearest degree.)

Li UR

Arg z = —90°

Argu= 180°

II
w

w
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5. Order in the setc

You are familiar with the order property of real numbers. That is, given
any two distinct real numbers a and b, then either a > b or b > a. This is
interpreted on the real number line by saying that "greater than" is
equivalent to "to the right of". Since C cannot be represented by a line, it is
impossible to "order" complex numbers. The task of defining an order relation
in C would be equivalent to that of defining an order relation for points in
a plane.

However, since the modulus of a complex number is real, it is possible to
say that the modulus of one complex number is greater than the modulus
of another.

In the exercises, you will familiarize yourself more with the visual aspects
of complex numbers.

SUMMARY C7LCQCCC
The complex plane is determined by a real axis and an imaginary axis,
crossing at 0.

Complex numbers have all the properties of vectors of V2.

If z = x + yi is represented by P in the complex plane:
The modulus of z, zi = Vx2 +

Any argument of z is the angle that OP makes with the positive real axis,

that is, an angle satisfying both sin(arg z) = and cos(arg z) =
Izi Izi

The complex conjugates z = x + yi and = x — yi are reflections of each
other in the real axis.

There is no order in C.



10.3 Geometric Representation of a Complex Number 429

10.3 Ex rcises

In these exercises, where appropriate, calculate
all arguments in degrees, correct to the nearest
degree.
In questions 1—6, use the numbers z = 1 + 31,

w= 12—5i,p=6i,q=—4--i,u=—3+21.

1. a) Plot the points representing numbers
z, w, p. q, u in a complex plane.

b) Find the conjugates ,, , , and,
and plot them in the same complex
plane.

2. a) Find the moduli Izi, wI, lpl Iqi, and
I UI.

b) Find the arguments Arg z, Arg w, Arg p.
Arg q, Arg u.

3. a) Find the moduli of the conjugates,
namely II and ii:;i.

b) Find arguments of the conjugates,
namely Arg () and Arg().

c) Draw conclusions about the modulus of
a conjugate and the argument of a
conjugate.

4. a) Attempt to list the numbers z, w, p. q, u
in order, from smallest to largest.

b) Attempt to list the moduli of these
numbers in order, from smallest to
largest.

5. a) Calculate the number z +w.
b) Draw z, w, and z +was vectors in a

complex plane.
c) Use the diagram in b) to explain how

z + w could be considered an addition
of vectors.

6. a) Calculate z + , z — and z.
b) Plot z, , z + , z — z, and nina

complex plane.
c) Verify that

z + z = 2Re(z),
z — = 2iIm(z), and
ñ=Iz.

7. Describe the modulus, the argument, and
the conjugate of the following.
a) a real number
b) an imaginary number

8. If 0 is any angle, calculate the modulus of
z = cos ü + i sin U and
w = 3 cos 0 — 3i sin 0.

9. a) Plot the points A and B representing the
numbers z = —2 + 31 and w = 8 — I
respectively in a complex plane.

1 1b) Calculate U = —z + —w and plot the
2 2

point M representing u on the same
diagram.

13\ 1c) Calculate v = — iz + —w and plot the\4/ 4
point N representing v on the same
diagram.

d) Describe M and N geometrically with
reference to A and B.

10. Consider the numbers
z= 1 +iIiz1=iz,z2=iz1,andz3=iz2.
a) Calculate the numbers z1, z2, and z3.
b) Draw all four numbers as vectors in a

complex plane.
c) Calculate the modulus and an argument

of all four numbers.
d) Draw conclusions on the effect of i as a

multiplier in the complex plane.

11. Givenz=1+h/,
a) calculate z2 and z3,
b) plot z, z2, and z3 in a complex plane
c) discuss the statement: = 1 + i'fi".

12. a) If z = 3 + 31, findIzl and Arg z.
b) Verify that z could be expressed as

z = 3'/(cos 450 + I sin 450)
(For an exact solution, use the table
on page 543.)

13. If IzI= rand arg z = 0, show that the
number z can be represented in the form
z = r(cos 0 + I sin 0). (This is known as the
polar form or modulus-argument form
of a complex number.)
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10.4 Equations in C

Recall the following vocabulary.
• az2 + bz + c = 0, where a * 0, is a quadratic equation,

or a polynomial equation of degree 2.
• az3 + bz2 + cz + d = 0, where a * 0, is a cubic equation,

or a polynomial equation of degree 3.
• az + a_1z'1 +. . . .+ a2z2 + a1z + a0 = 0, where a * 0 ®

is a polynomial equation of degree n.

Consider the quadratic equation az2 +bz + c = 0. Recall that the solutions
_b±Vb2_4ac

are given by z =
2a

If the variable z O, three cases need to be considered.

1. If b2 — 4ac> 0, then zcan take two different real values.
2. If b2 — 4ac = 0, then z has a single real value.
3. If b2 — 4ac < 0, then there are no values for z.

Now if you let z take any values in C, roots of az2 + bz + c = 0 will always
exist. The three previous cases can be replaced by the following single
statement.
All quadratic equations have two roots
(which may or may not be real, and may or may not be equal).

This result can be extended to the following general case, which is one
version of the fundamental theorem of algebra.

- H E R E M A polynomial equation of degree n always has n complex roots.

Note 1 The coefficients a, a_1 , a2, a1, a0 are not necessarily real.
2 Recall that "complex roots" includes real roots.
3 Some of the roots may be equal.
4 It was not possible to make such a clean statement before the

advent of complex numbers. In this way, complex numbers have
simplified our view of algebra.

5 Given that the roots of the polynomial equation ®are
z1, z2 z, then® is expressible in the factored form
a(z — z1)(z — z2). . . .(z —z) = 0,
or(z—z1)(z—z2)....(z—z)= 0, sincea

Ii I ict r Theo/(' in

Consider the polynomial p(z) = (z — — z2). . . .(z — zn). You can see
that P(Zk) = 0 where k {1 n}. The factor theorem is stated as
follows.

T H E 0 R E M Ip(zk) = 0, then (z— Zk) is a factor ofp(z).
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This theorem is exactly the same as for IR. The factor theorem can be used
as an aid in factoring polynomials.

Example 1 Form a quadratic equation whose roots are
a) 3+2iand3—2i
b) 3+2iandl—i

Solution a) In factored form, a quadratic equation is
(z—[3+2z])(z—[3—2i])=O
z2— [3+2i+3 —2i]z+ [3+211[3 —2i]=O
z2 — 6z + 13 = 0.

Notice that the coefficients of this equation are real.

b) (z—[3+2z])(z—[1—iJ)=O
z2—[3+2i+1 —i]z+[3+2i][1—i]
z2—[4+i]z+5—i=O •

Notice that the coefficients of this equation are not all real.

Example 2 By solving the equation z3 = 1, find the three cube roots of 1.

Solutioii The equation is equivalent to z3 — 1 = 0, a cubic. By the fundamental
theorem of algebra, you know that there are three (not necessarily distinct)
roots.

To solve the equation, express it in factored form.
[Recall that A3 — B3 = (A — B)(A2 + AB + B2)]

z3 — 1 = 0
(z— 1)(z2+z+ 1)=O

Thus,z—1=O or z2+z+1=0
Z 1 = —1

2(1)

= —1

2

Hence, the cube roots of 1 are 1, + , —

2 2 2 2

One of the most useful aspects of working with complex numbers is that
each equation in C incorporates two equations in l, because of the
definition of the equality of two complex numbers. This will be illustrated
in the following examples.



432 Chapter Ten

Example 3 Solve the equation (2 + i)z — 41 = 0 by writing z = x + iy, where x, y R,

and solving a system of equations in x andy.

So'ution (2 + i)z — 4i = 0

(2+i)(x+iy)—4i=0
2x+ 2iy+ ix—y—41=O

(2x — y) + i(2y + x — 4) = 0
Thatis, 2x—y=O @
and x+2y—4=0 a
Thus, the original equation in C has produced twoequations in D.

2 x + aj gives 5x — 4 = 0, so x = Substituting this into Q gives y =

Thus,z=x+iy=+i. U55
Note: This equation could also be solved by writing

z = and simplifying, to obtain z = + i.2+i 5 5

Example 4 Solve the equation z2 = 16 — 301.

Solution z C. Hence, let z =x + iy, where x andy are real.
Thus (x+iy)2= 16—30i

x2+2xyi—y2= 16—301
(x2 —y2)+ 2xyi= 16— 301

That is, x2 — y2 = 16 QD

and 2xy=—30
Once again, the original equation in C has produced two equations in .

30 15
From,y=——--=—-—

Substituting int:, x2 —
(15)2

=

16

2x — 225 — 16x multiplying both ores )' c
x4 — 16x2 — 225 = 0
(x2 — 25)(x2 + 9) = 0

x2 = 25 or x = 9 (which is
x = 5 or x = 5 imjiossible, since x is real)

andso y=—3ory=3,from

Thus, z = 5 — 31 or z = —5 + 31. •
Note: These numbers can be considered the 'square roots' of the number

(16 — 301), since the original equation was z2 = 16 — 301. However,
the notation "f(16 — 30i) = 5 — 31" will be avoided, since there is
more than one square root. The term "principal square root" can
only be used in relation to a positive real number.
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10.4 Exercises

1. State the roots of the following equations.
a) (z—2)(z+3)=O
b) (z—1—i)(z—1+i)=O
c) (4z— 1)(z+i)(z—i)=O
d) z(z+2i)(2z—3—4i)=O

2. Which of the equations of question 1 are
polynomial equations with real
coefficients?

3. Find quadratic equations in the form
az2 + bz + c = 0 with the following roots.
a) 4iand2+i
b) p+qiandp—qi

4. The quadratic equation az2 + bz + c =0 is
such that the coefficients a, b, c, are real,
and b2 — 4ac < 0.
a) Prove that the roots of this quadratic

equation must be conjugates.
b) Use this fact to show that the non-real

roots of any polynomial equation with
real coefficients must be conjugates, in
pairs.

5. Find cubic equations in the form
az3 + bz2 + cz + d = 0 with the following
roots.
a) 4i,2+i,andl—3i
b) 0, p + qi, and p — qi.

6. Prove that a cubic equation with real
coefficients always has at least one real
root.

7. a) Verify that w = — + is a cube root

of 1.
b) Locate w in the complex plane.

8. Solve the equation (3 — 5i)z + 1 + 2i = 0 by
writing z = x + iy, x, y R, and solving a
system of equations in x andy.

9. Repeat question 8 for the equation
(a + bi)z + c + di = 0, a, b, c, d, D. Does this
equation always have a unique root?

10. By solving z2 = i, find the two square roots
of i. Locate these roots in the complex
plane.

11. Given that the square roots of i are +

and — — , use the quadratic formula to

solve the equation z2 — 3z — iz + 2 = 0.
Express the roots in the form a + bi, a, b IJ.

12. a) By solving z3 + 1 = 0, find the three
cube roots of —1.

b) Locate these roots in the complex plane.

13. Discuss the validity of the following
statements.
a) z2+w2=0=z=0andw=O.
b) z3—w3=0=z=w.

14. a) Use the factor theorem to show that
(3z — 2) and (2z + 1) are factors of the
polynomial
p(z) = 6z4 — 25z3 + 32z2 + 3z — 10.

b) Hence solve p(z) = 0.

15. Itisgiventhat2+iand—2+iaretwoof
the roots of the equation z4 — 6z2 + 25 = 0.
a) Use this information to find all the

roots of the equation.
b) Show that the representations of these

roots in a complex plane are the vertices
of a rectangle.

16. Show that the equation
z2 — rz — iz + ir = 0, r IL has exactly one
real root.

17. z= —-—,w= ,whererandsarereal,1+i 1-i-2x
and it is given thatz+w= 1.
a) Calculate the values of r and s.
b) Calculatelz — WI.

18. Givenz=a+biandw=c+di,wherea,b,
c, and d are real, prove that

Iz + WI = Iz — WI is real.
W
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10.5 Complex Numbers and

Trigonometry
Until now, you have used z = x + yi to represent the complex number z.
This is called the Cartesian form of z.
z can also be expressed by using its modulus zI = rand its argument 0.

z=x+iy x
Izi

Z - e

0 UR

z =x ÷ iy
Recall that the number z can be represented by the point with coordinates
(x,y) in the complex plane.
The definition of angles in standard position tells you that x = r cos 0 and
y = r sin 0, no matter what the position of z in the complex plane.
(See page 541.)
Thus z =x+ yi= r cos 0+ ir sin 0= r(cos 0+ isin 0).
This is known as the polar form, or modulus-argument form, of a
complex number.

Cartesian form: z = x + yi
polar form: z = r(cos 0 + i sin 0),

wherer=IzI= Ix2+y2,cos0=,andsin0=Yr r

Note: The polar form of representation is not unique. For example,
I ir . . r\ I l3ir . . 131r\
2Icos—+sin—I=2Icos--——+,sin---——,or\ 6 6/ \ 6 61
2(cos 300 + i sin 30°) = 2(cos 390° + i sin 390°).

If the complex number z is represented in polar form by its modulus r and
its argument 0, then any other argument of z, that is, any angle 0 + 2kr or
00 + 360k° (with k 7L) could be substituted for 0.

In the exercises, you will have an opportunity to prove the equality
principle for complex numbers expressed in polar form. That is, you will
prove that

r(cos 0 + i sin 0) = p(cos + i sin )
implies
r=pand0=+2kn(or0°=÷36ok°),k€7.
Recall that the principal argument 0 is such that —it < 0 it, or
—180° < 00 180°.
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Example 1 State the principal arguments of the following complex numbers.
/ 13m . 13ma) z= 31 sin—\ 3 3

b) w = 5(cosl—200°] + i sin—200°J)

Solution a) Since is an argument of z, then --- + 2kir, k e Z, are its other

arguments.

Since the principal argument 0 is such that — < 0
you must select k = —2.

13m 13m—12n it
ThusArgz=——2(2it)=

3 3 3
b) The arguments of ware —200° + 360k°, k 7L.

For the principal argument, you must select k = 1.

Therefore Arg w = —200° + (1)3600 = 160° •

For the examples that follow, you may wish to refer to the tables of values
of the trigonometric ratios of special angles, and the table of radian and
degree equivalences, on page 543.

Example 2 Find the Cartesian form of the following numbers.

a) z = 5(cos 125° + i sin 125°) b) w = 4(cos + i sin

Solution a) z= 5(—0.5735...) + 5i(0.8191...) —2.9 + 4.li,
correct to 1 decimal place.

b) w = 4( + = 2 + 2ih, using exact values. Alternatively,

w = 4(0.5 + [0.8660.. .Ji) = 2 + 3.5i,
correct to 1 decimal place. •
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Example 3 Find the polar form of the following numbers.
a) z=3—3i b) w=—12—5j

11

FR

3 —3i

Solution a) 3V 3\iV
Thus, 0 = — or —45°.

4
Hence z = 3Vi(cos[—45°] + i sin—45°])
or z = 4.24(cos[—45°] + i sin[—45°]).

Note: Any angle coterminal with —45° would also be correct.
For example, —45° + 3600 = 315° could have been used.

b)

Thus, —157°, correct to the nearest degree.
Hence z 13(cos[—157°] + i sin[—157°]) •

Conjugates

The reflection in the real axis of
a complex number of modulus r, argument 0, is
a complex number of modulus r, argument —0.

z

Thus if z = r(cos 0 + i sin 0), then = r(cos[—01 + i sin[—0])
or = r(cos 0 — i sin 0),

since for any angle 0, cos (—0) = cos 0 and sin (—0) = —sin 0 (see page 541).
This form is also used routinely for complex numbers with negative
arguments.
That is, the complex number zof modulus r and argument —0, where 0> 0,
can be written

z = r(cos[—0J + i sin[—O]) OR z = r(cos 0 — i sin 0)

II

—12 —51
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!.4ii/tij'licatiO1l and Dir/sian in Pa/ar Earni
The most useful aspect of the polar form is the stunning result obtained
when complex numbers are multiplied or divided. You will observe this
presently.

Let z = p(cos 0 + i sin 6) and w = q(cos + i sin ).
Then zw = pq(cos 0 + i sin O)(cos + i sin )

= pq(cos 0 cos + i cos 0 sin + i sin 0 cos — sin 0 sin
=pq([cosOcos4—sin0sin] +i[sinOcos4+sincos0])

so zw = pq(cos[0 + + i sin[0 +
from the formulas for the cosine and sine of compound angles on page 542.
The product obtained is a complex number in polar form, whose
modulus is pq, and whose argument is 0 +

II II

zw zz ! W

L E 1
Hence, when two complex numbers are multiplied, the modulus of their

R U product is the product of their moduli, and the argument of their product is the
sum of their arguments.

Similarly, you will have an opportunity to prove in the exercises that

= (cos[0 — 4] + i sin[0 —wq
The quotient obtained is a complex number in polar form, whose

modulus is , and whose argument is 0 —
q

F 2 Thus, when two complex numbers are divided, the modulus of their quotient
R U L is the quotient of their moduli, and the argument of their quotient is the difference

of their arguments.

Example 4 Given z = 12(cos 1600 + i sin 160°) andw = 3(cos 350 + i sin 35°)

find zw and -- in Cartesian form, correct to 1 decimal place.
w

Solution zw = (12)(3)(cos[160° + 35°] + i sin[160° + 35°])
= 36(cos 195° + i sin 195°)
= 36(E—0.9659. . .1 + iL—0.2588. . .]) = —34.8 — 9.3i

= A cos[I60° — 35°] + i sin[160° — 350])
w 3

= 4(cos 125° + i sin 125°)
= 4([—0.5735...] + i[0.8191. . .1) —2.3 + 3.3i U
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Example 5 Find the exact values of zwand-
if z = 4(cos + i sin and w = 2(cos + i sin

Solution zw = (4)(2)(cos[+ + i sin +

= 8 cos + z sin\ 6 6

=8(-\2 2
= —4'J• — 41

z 41 F5ir in F5in in— = — cost — — + i sin I — — —w 2\ L6 3J L6 3/ in..m= 2i cos — + z sin —

\ 2 2
= 2(0 + 11)
=21 U

The next example shows how rules 1 and 2 can be used advantageously in
different situations.

Example 6 Given the complex number z = 3 — 31 from Example 3a), calculate the
exact values of
a) the modulus and argument of z2

b) the modulus and argument of

Solution z = 3 — 3i = 3I(cos[—45°] + i sin [—45°]) from Example 3a).

That is, zI = 3Ii and arg z = —45°

a) Using rule 1,
the modulus of z2 is (3J)(3V) = (3Jj)2 = 18
the argument of z2 is [—45°] + [—45°] = —90°.

b) The complex number 1 has modulus 1, argument 0.
Thus, using rule 2,

the modulus of isZ3
the argument of is 0 — (—45°) = 45°. U
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10.5 Exercises

1. Plot each of the following numbers in the
complex plane and find their Cartesian
forms. Use 3 significant digit accuracy.
a = 4(cos 500 + i sin 500)
b = 4(cos 50° — i sin 500)
c = 2(cos 145° + i sin 145°)

2. Plot each of the following numbers in the
complex plane and find their Cartesian
forms. Use exact values.

d = 8(cos + sin
\ 3 3

/ 3m . . 3m
e = I cos — — i sin —

\ 4 4

f= —(cos + i sin\ 2 2

3. State the modulus and an argument of zin
the following cases.
a) z=3i b) z=4 c) z=—17 d) z=—i

4. State the modulus and an argument of
using the numbers of question 3.

5. State the principal argument of the
following numbers.
a) cos 115°+isin 115°
b) cos425°+isin425°

/ 4m . . 4mc) 6t cos — + i sin —
" 3 3
/ lim . lim

d) 21 cos — z sin -
\ 6 6

6. Plot each of the following numbers in the
complex plane and find their polar forms.
Use degrees.
s = 4 + 3i
t = —1 + 2i
u=5i w=4—9i

7. Find the exact polar form of z in the
following cases. Use radians.
a) z=—1+i c) z—2'f—6i
b) z='/+i d) z=—3—'/i

8. Given any complex number z, state the
possible values of the argument of z+.

9. Find r and a value of 0 in the following
cases.
a) r(cos 30° + I sin 30°) = 5(cos 0 + i sin 0)
b) 6cosO+6isin0=r(cos328°+isin328°)
c) cos—isin=rcosO+rsinO8 8

10. Given z = p(cos 0 + i sin 0) and
w = q(cos + i sin 4), prove that

= (cos[0 — 4] + i sin[0 —wq
I Hint: Recall that -- = -
L W yy

11. Given z = 10(cos 71° + i sin 71°) and
w = 5(cos 34° + i sin 34°), express the

following in polar form.

a)zw b)-

12. Givenz=4—5iandw=—2+3i,
a) express z and win polar form (use

degrees).

b) Hence express zw, --,and
w z

in polar form.

13. Calculate the exact modulus and an exact
argument of each of the numbers
z=—1 +ofiandw=2-f+2i.

14. Use the results of question 13 to express the
following in polar form.

2 2 Wa)z b)w c)zw d)—
z

15. a) State the modulus and argument of i.
b) Describe geometrically what happens to

the vector representation of a complex
number that is multiplied by I.

16. a) If z = cos 0 + I sin 0, state an argument
of z2.

b) Hence show that cos 20 = cos2O — sin2O
and that sin 20 = 2 sin 0 cos 0.

w
c) —

z

V = —2

z = —15 — 81



440 Chapter Ten

10.6 De Moivre's Theorem

The investigations of the last section lead to the most important theorem
concerning complex numbers. This theorem was published by Abraham
De Moivre (1667-1754) in 1730, well before the advent of the complex
plane.

By the multiplication principle, recall that
Lr(cos 0 + i sin 0)12 = r2(cos 20 + i sin 20).
Similarly,
Ir(cos 0 + i sin 0)][r2(cos 20 + i sin 20)] = r3(cos 30 + i sin 30).

Dc Moivre's theorem extends this principle as follows.

T H F 0 R F M
Ir(cos 0 + i sin 0)]" = r"(cos nO + i sin nO)

This can be proved by induction for n N as follows.

Step 1: Show the statement is true for n = 1.
For n = 1, L.S. = [r(cos 0 + i sin 0)]', R.S. = r'(cos 10 + i sin 10).
Since L.S. = R.S., the statement is true for n = 1.

Step 2: Assume the statement is true for some n =k N. That is, assume
Ir(cos 0 + i sin 0)1k = i(cos kO + i sin kO) is true.

Step 3: Prove the statement is true for n = k + 1. That is, prove
[r(cos 0 + i sin O)]1 = r''(cos[k + l]0 + I sin[k + 110).

L.S. = [r(cos 0 + i sin 0)lkIr(cos 0 + I sin 0)1
= [r'(cos kO + i sin kO)lIr(cos 0 + i sin0fl from step 2
= (rk)(r)(cos[kO + 0] + i sinlkO + 0]) by multiplication pronr
=r(cos[k+ 1]0+isin[k+ 1]0)=R.S.

Thus, by the principle of mathematical induction,
Lr(cos 0 + i sin 0)]" = r"(cos nO + i sin nO) is true for all n N.

Example 1 Calculate in Cartesian form
a) (cos 500 + i sin 500)8 b) (1 + 1)24

Solution a) Note that the modulus of (cos 50° + i sin 50°) is 1.
(cos 50° + i sin 500)8 = I1(cos 50° + I sin 5Ø0)]8

= 18(cos[8 x 50°] + i sin[8 x 50°]) de Moivre
= 1(cos 400° + i sin 400°)
= 0.77 + 0.64i

b)I1+i=0il2+12=Vi andarg(1+i)=45°
Thus (1 + i)24 = hh(cos 450 + j sin 450)]24

= (.,/)24(cos 1080° + I sin 1080°) de Moivre
= 212 (1 + Oi)
=4096 •
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Negati e Exponents

You will now use the division principle and De Moivre's theorem to find
the polar form of z, where z = r(cos 0 + i sin 0) and n R'L

= 1 = 1(cos 0 + i sin 0) since 1 has modulus 1
[r(cos 0 + i sin 0)]l and arqument Q

1(coso+isino)= . . by De Moivre s theorem(cos nO + i sin n 0)

=
(cos[0

— nO] + i sin [0 — nO] by division property

so z = r(cos[—nO] + i sin [—nO])
This last statement is the expression of De Moivre's theorem for a negative
integer.

Thus, De Moivre's theorem is true for any n 7L.

Example 2 Calculate in Cartesian form (—f + 'iv.

Solution I—'f+iI=V3+1=2 andarg(—V+z)=l50°
Thus (—f+ = [2(cos 1500 + I sin 150°)]

= 29[cos (—1350°) + i sin (—1350°)]

ii)512L •
512

De Moivre's theorem can also be used in conjunction with the binomial
theorem to establish certain trigonometrical identities. This is one of the
applications of complex numbers to other areas of mathematics.

Example 3 Find expressions for cos 30 and sin 30 in terms of cos 0 and sin 0.

Solution cos 3 0 + i sin 3 0 = (cos + i sin O) by Dc Moivres theorem

= cos3 0 + 3i cos2 0 sin 0 + 3i2 cos 0 sin2 0 + i3 sin3 0
by the binomial theorem

= (cos3 0 — 3 cos 0 sin2 0) + i(3cos2 0 sin 0 — sin3 0)

Thus, by equating real and imaginary parts,
cos 3 0 = cos3 0 — 3 cos 0 sin2 0

and sin3O=3cos2OsinO—sin3O. •
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Dc '1 cii ic Iliecieni Ic', R i tic' iii! I vpc',i ciii

De Moivre's theorem is true not only for all positive and negative integer
exponents, but also for all rational exponents (with a reservation), as the
following indicates.

Assume that is such that
(cosO+isinO)=cosç+isin, cD
where p 7L and q N.
Then raising each side of Q1 to the exponent q gives

(cos 0 + i sin 0)" = (cos 4 + i
so cosp0+isinp0=cosq+isinqd,I.
Equating real and imaginary parts shows that this is satisfied by

p0 = q + 2km, that is, j =
— 2km k 1
q

If k = 0, =
q

The statement Q now gives

(cos + i sin 0) = cos O + i sin
q q

Thus, De Moivre's theorem appears to be true for a rational exponent.
The reservation is that, if n is not an integer, then there is more than one value
possible for namely

/ p0—2km . . pO—2km\z =r"icos +zsin j,k€7L.
q q /

This will be clarified by Example 1 in section 10.7.

The Norwegian mathematician Niels Henrik Abel (1802-1829) showed
that De Moivre's theorem can be extended to include all real, and even all
complex exponents.

N T A T N
In some texts, the short form "cis 0" is used as an abbreviation for
"cos 0 + i sin 0".

. M M A fi De Moivre's theorem:
[r(cos 0 + i sin 0)] = r"(cos nO + i sin n 0), n e Q.

If n is not an integer, then (cos 0 + i sin 0)" is not unique.
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10.6 Exercises 7. Find expressions for cos 40 and sin 40
in terms of cos 0and sin 0.

1. Express the following in Cartesian form s. Given z = cos ü + i sin 0,
(use 3 significant digit accuracy). a) use De Moivre's theorem to prove the
a) (cos 1300 + i sin 1300)10 following.
b) [3(cos2o°—isin2o)16 -=cos0—isin0,c) [4(cos 257° + i sin 257°)]

z3 = cos 30 + i sin 30,
2. Express the following in Cartesian form = cos 30 — i sin 30

(use exact values).
a) (1—i)32

b) showthat(b) (1+i)12 z+!) =8cos3O
ZI

c)(
ir ..

ir)9
cos + i sin

)8

c) by expanding (+ .i), prove that

d) (
Sir . . 5ir 2cos30+6cos0°=8cos3Ocos — — z sin —
6 6 d) hence find cos 30 in terms of powers of

cos 0.

3. Express the following in Cartesian form 9. Given z = cos 0 + i sin 0,
(use 3 significant digit accuracy).

(
'3

a) (cos 130° + i sin 130°y'° a) show that z — = —8i sin30
zi

b) [3(cos 20° — i sin 200)]6 b) hence find sin 30 in terms of powers of
c) [4(cos 257° + i sin 257°)] sin 0.

4. Express the following in Cartesian form 10. Given z = cos 0 + i sin 0,

(use exact values). a) expand and simplify ( +

b) (1 + j.fjyl2 b) hence prove that

c) (
ir .

ir)_9

cos40 = -(cos 40 + 4 cos 20 + 3)cos—+zsin— 8
3 3 c) hence find cos 40 in terms of powers of

6 6
cosO.d)(

Sir .. Sircos — — i sin —

11. If z = —1, verify that z may take more than
5. Calculate the following in Cartesian form, one value in C as follows.

a) (1+z)8(.J3_i)6 1w = — + —iis one of the values of z,
•501

b) —1+i)2° 2 2

(1+i)'° 1u = — — —I is one of the values of z,
2 2

6. Simplify the following expressions. v = —1 is one of the values of z.
ir . . ir5

(cos — + i sin —) 12. If z = + verify that z may take more
a) ' '

2
than one value in C as follows.(cos — — I 51fl —)

7 7 p=cos9°+isin9°

b) (
ir''°°" ir . ir"°° is one of the values ofcos—+lsifl—) (cos—+isin—I6 6/ \ 3 3/ q=coslS3°+isinl53°

is another value of z.
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O.7 Quest for Roots in C
You know that i3 = 1.
Hence, 1 is a solution of the equation z3 = 1 or z3 — 1 = 0.

According to your experience of mathematics thus far, it may seem that 1
is the only root.

However, recall from the fundamental theorem of algebra (section 10.4)
that this equation has three roots in C. The roots cannot all be 1, since that
would imply that the equation z3 — 1 = 0 could be rewritten in factored
form as (z — = 0.
(You know that z3 — 1 * (z —

The search for all the roots of this equation will be investigated in the
following example.

Example 1 Use De Moivre's theorem to determine all the cube roots of 1 in C.

Solution The cube roots of 1 are the roots of the equation z3 — 1 = 0, or z3 = 1.
You can solve this equation by writing each side in polar form.
Nowill =1,andargl=0,thusl=1(coso+jsjno).
Let z = r(cos ü + i sin 0).
Thus you must solve z3 = 1

[r(cos 0 + i sin 0)] = 1(cos 0 + i sin 0)
r3(cos 30 + i sin 30) = 1(cos 0 + i sin 0)

Recall from section 10.5 that if two complex numbers are equal, then their
moduli are equal and their arguments differ by a multiple of 2ir.
Thus r3 = 1 and 30 = 0 + 2kjr, k 7L,

r = 1 (since r is real) and 0 = where k is any integer.

I 2kir . . 2kx\ 2kir . . 2kirThat is, z= i cos + z sin i = cos — + z sin —,\ 3 3/ 3 3
where k is any integer.

You will now see that this expression for z represents different complex
numbers, depending on the value chosen for k.
Let these numbers be represented by Wk, then, by substituting successively
the values 0, 1, 2, 3,..., you obtain

w0=cos0+isinO= 1+Oi= 1
2n . . 2m 1

w1 = cos — + z sin — = —— + —z, a value different from w0
3 3 2 2
4ir . . 4ir 1 fi.

w2 = cos — +1 srn = —— — —z, a value different from w0 or w1
3 3 2 2

w3=cos2n+isin2ir= 1 +Oi= 1 =w0
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Continuing the process yields the values w1, w2, w0, w1,. ..etc.

Thus the three cube roots of 1 are 1, + T'Lii, _! — •
2 2 2 2

In the exercises, you will have an opportunity to verify that each of these
numbers, when cubed, yields 1.

1 II

1'

• Observe from the figure that the roots have a rotational symmetry about

the origin, of angle That is, each root, if rotated counterclockwise

through about the origin, has for image another root.

2 f 2ir . . 2m\2 4ir . . 4n
•Alsoobservethatw1 =tcos—+i sm—I =cos—+isifl—=W2.\ 3 3/ 3 3

• Compare also with the solutions formed earlier, using the quadratic
formula (Example 2, section 10.4).

h'thod to Find 11w nt/i Roots o/ Units'

The above method can be applied to solving the equation — 1 = 0, or
= 1, where n is any natural number. According to the fundamental

theorem of algebra, this equation will have n roots in C. These roots are
called the nth roots of 1 or nth roots of unity.

Let z = r(cos 0 + I sin 0), then
= 1

_ [r(cos 0 + I sin 0)] = 1(cos 0 + i sin 0)
=r't(cos nO + I sin nO) = 1(cos 0 + i sin 0)

Thus= land nO=0+2km,k€7L,
2/cit

r = 1 (since r is real) and 0 = —, where k is any integer.
n

/ 2km . . 2km\ 2km . 2km
That is, z = Wk = i cos — + z sin — = cos — + i sin—,

\ n n/ n n

where k is any integer.
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By substituting successively the values 0, 1, 2 n — 1 of k in
I 2kn . . 2kir\

Wk = i cos + i sin — j, you find\ n nI
w0=cosO+isin0= 1+Oi=1
w1 = cos + i sin a value different from w0

w2 = cos + i sin , a value different from w0 or w1

2(n — 1)m . 2(n — 1)nw_1 = cos + z sin , a value different from all previous
n n

2nr . . 2nitw,,=cos—+isin——=cos2jr+,sin2jr=w0.n n
Successive values of k will again yield solutions equal to
w1, w2 in turn.

Thus the nth roots of unity are given by the n numbers w0, w1, w2 w1.
Once again, observe that w12 = w2.
Furthermore, w13 = W3, = w4, etc.

Ratiojial PolIL'rs of z

You are familiar with a result in 11 such as "32k = 2". In C, however, the
expression 32 may take five different values. The number 2, which is real
and positive, is called the principal root. In order to distinguish the
principal root from the others when working in C,you can use the
notation /i for the principal root. That is,
32 may take five different values, including 2, but

= 2 (a positive real number).

Note: If z is not a positive real number, then there is no principal root of
z, where n E The ambiguity can occur only if z is a positive real
number.

The method of searching for roots can now be extended to any rational
power of z, that is, z, p 7L, q E . This is illustrated in the following
example.
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Example 2 Find all the values of z = [16(1 + i./)], and sketch them in the complex
plane.

Solution The numbers required are the solutions of the equation
z5 = [16(1 +

Let z = r(cos 0 + I sin 0), and let u = 16(1 +

Nowuj= 16J12 + = 16fi= 32, andarg u = or 600.

Thus z5 = [32(cos 60° + i sin 600)12
r5(cos 50 + i sin 50) = 322 (cos[2 x 6001 + i sin[2 x 60°])

Thus r5 = 322 and 50 = 120° + 360k°, k 7L
r = = 22 = 4 (since r is real; it is the principal fifth root of 322)

and 0 = --(l20" + 360k°) = 24° + 72k°, where k is any integer.

That is, z = Wk = 4[cos(24° + 72k°) + I sin(24° + 72k°)]

Now substitute the values 0, 1, 2, 3, and 4 of k in Wk.

w0 = 4(cos 24° + i sin 24°) = 4(0.913. . .+ 0.406...i) 3.65 + 1.63i
w1 = 4(cos 96° + I sin 96°) = 4(—0.104... + 0.994.. .i) —0.42 + 3.98i
w2 = 4(cos 168° + I sin 168°) = 4(—0.978... + 0.207. . .1) —3.91 + 0.83i
w3 = 4(cos 240° + i sin 240°) = 4(—0.5 + 0.866.. .1) —2 — 3.46i
w4 = 4(cos 312° + i sin 312°) 4(+0.669... —0.743.. .i) = 2.68 — 2.97i

Wi II

W2
Wo

W4 .
Notice again the symmetry of the roots. However, in this case, w12 * w2.
You will investigate this further in the exercises.
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10.7 Exercises

In the following, leave numerical answers
correct to 3 significant digits, where you cannot
find exact values.

1. By finding w03, w13 and w23, verify that each
of the following numbers is a cube root of 1.

2. Find the following roots of unity in
Cartesian form and represent them in a
complex plane.
a) the fourth roots of unity
b) the fifth roots of unity
c) the tenth roots of unity

3. Find the following roots in Cartesian form
and represent them in a complex plane.
a) the square roots of i
b) the cube roots of i
c) the square roots of —i
d) the cube roots of

27(cos 72° + i sin 72°)
e) the fourth roots of

81(cos 72° + I sin 72°)
f) the sixth roots of

64(cos 102° — i sin 102°)

4. Two of the roots of the equation z5 — 32 = 0

I 2r . . 27r\
are 21 cos — + z sin — i and\ 5 5/
2(cos + i sin State the other roots.
\ 5 5/

5. a) Solve the equation z5 — 1 = 0.

b) Use these solutions to express z5 — 1 in
factored form.

c) Express z5 — 1 in the factored form
(z — 1)p(z)q(z), where p(z) and q(z) are
quadratic expressions with real
coefficients.

6. Find the real factors of
a) z5+1 b) z7—1 c) z6—1

7. a) Show that — I is a fourth root of

—8(1 +

b) Hence solve the equation
z4 + 8 + = 0.

8. a) If w is a non-real seventh root of unity,
show that the other roots are w2, w3, w4,
w5, w6, and 1.

b) Prove that
1 ++2+w3+W4+W5+W60

c) Do similar properties hold for all other
nth roots of unity?

9. In section 10.7, Example 2, it was shown
that the five values of [16(1 + i[)] could
be represented by
Wk = 4[cos (24° + 72k°) + I sin (24° + 72k°)],
k (0,1,2,3,4).

a) Show that is a constant.
Wk

b) Use your answer to a) to explain the
symmetry of the representatives in the
complex plane.

10. a) Express z7 + 1 = 0 in factored form,
using factors with real coefficients.

b) Hence show that
it 3ir •5it 1

cos — + cos — + cos — = —

7 7 72

1.
wo = 1, Wi = — +

1J.
W2 — —1.

11. Solve the equation z6 — 2? + 4 = 0.
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10.8 Graphing and Complex Numbers

In this section, you will be describing the set of points representing a
complex number z that is subject to certain conditions. Such a set of points
is called the locus of z in the complex plane. This topic will give you the
opportunity to work with complex numbers in a variety of ways.

a) Describe the locus of the points z= x + iy in the complex plane, given
thatlzl= 5.

b) Find an equation in x and y that represents this locus.

Example 1

Solution a) The modulus of a complex number is its length, that is, its distance
from the origin.
If Izi = 5, then z must lie on a circle of centre 0 and radius 5.

II p
5)

b) IzI=5= Ix+iyl=5
Jjiy2
x2+y2=25 •

i)icia iicc Be! itee;i Ti ic Pci,iis iii i/ic Cciii plex I'Ia;u'

Recall that complex numbers can be represented by vectors. Let the
complex numbers w and z be represented in the complex plane by the
points A and B respectively.

II

BJJ7
0 FR

Then the distance AB =IABI=lOB — OAI = Iz — WI.

Thus, the modulus of (z —w) represents the distance between the points
representing z and w in the complex plane.
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Example 2 a) Describe the locus represented by the equation Iz — 2 — I= 3.
b) If z = x + iy, find an equation for this locus in terms of x andy.

Solution a) Jz—2—iI=Iz—(2+i)I.
Thus, this expression gives the distance between the points
representing z and (2 + i). The locus is therefore a circle
with centre (2 + i) and radius 3.

b) Sincez=x+iy,
Iz — 2 — ii = 3 becomes

Ix + iy —2 — ii = 3

I(x—2)+i(y— 1)1= 3
'J(x — 2)2 + (y — 1)2 = 3
(x—2)2+(y—1)2=9 •

The next example illustrates the link between complex numbers and
vectors. Recall that the vector equation of a line is r = r0 + km,
where r is the position vector of any point on the line,

r0 is the position vector of a given point on the line,
and m is a direction vector of the line.

Example 3 a) Determine a complex number equation for the line passing through
the points A and B representing — i and 4 + 5i respectively.

b) Deduce parametric equations for the line AB.

II

/8
P

.... I
IA

ER
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Solution a) Let z represent any point P on the lineAB.
Since AP and AB are collinear, AP = kAB,k l
or z—(3—i)=k[(4+5i)—(3—i)1

z=(3—i)+k(1+6i)
This is the required equation.

b) Let z = x + iy, and rewrite tID as follows.
x+iy=3+k+i(—1+6k)

Equating real and imaginary parts gives
x= 3 +k
y = —1 + 6k
These are parametric equations for the line AB. •

Thenext example shows that straight lines, or parts thereof, can be
described in a totally different way with complex numbers.

Example 4 a) Describe the locus of z if arg(z — 21) = 450

b) Find an equation in terms of x andy for this locus, given that
z = x + iy.

Solution a) Let A be the point representing 21, and P be the point representing z.
Then the complex number z — 21 is represented by the vector AP.

arg(z — 21) = 45° means that the vector AP must make an angle of 45°
with the positive x-axis.

/raY

Thus, P is on the part-line, or ray, shown in the diagram.

b) This ray has slope 1, and it passes through (0,2). Recall that the
equation of a line of slope m passing through the point (x0,y0) is
y — y0 = m(x — xo).

Thus the equation of the ray isy —2 = 1(x — 0), ory —x + 2, with the
condition that x> 0. •

Note: The point Q, which is on the line, does not satisfy x> 0. Indeed, the
angle between AQ and the positive x-axis is 135°, not 45°. Thus
points such as Q do not satisfy the original complex equation.
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Example 5 An ellipse has a major axis of length 8 and foci at the points A and B,
representing i and 4 + i respectively. Find a complex equation for this
ellipse.

11

---> FR

Solution A property of an ellipse is that the sum of the distances from the foci to
any point on the ellipse is equal to the length of the major axis.
Let P be any point on the ellipse, represented by the number z.
Thus IAFI+IBPI=8,
or Iz — iI+Iz — (4 + i)= 8 is the required equation. U

Example 6 Find an equation in x andy for the locus described by
— (1 + j)2 = — (1 — i)2, where z = x + iy.

Solution Substituting z = x + iy and = x iy gives
(x + iy)2— (1 + i)2 = (x — iy)2— (1 — j)2 or

(x+iy)2—(x—iy)2=(1 +i)2—(i _j)2

(x+iy+x—iy)x+iy—x+iy)=(1--j+1_j)(1+j_l+j) factoring
as difference

of squares
(2x)(2iy) = (2)(2i)

xy = 1

This represents a rectangular hyperbola centred at the origin,
with the real axis and the imaginary axis as asymptotes.

FR
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10.8 Exercises

In the following, let z = x + iy wherever
appropriate.

1. Sketch the locus of the point P representing
the complex number z in the following
cases.

a) IzI=4 e) argz=

b) Iz—1I=4 f) arg(z—1)=

2. Find a complex number equation for the
following.
a) a circle centre 0, radius 6
b) a circle centre —1 + 3i, radius 5
c) a circle centre u, radius a,

with u C, a R

3. Find equations in x andy of the loci
described by the following.
a) Iz+4+3il=2
b) Iz—iI=31z+iI

4. A point moves so that its distance from the
origin is twice its distance from 3 — i. Show
that the locus is a circle, and find its centre
and its radius.

5. Determine a complex number equation for
the straight line through the points A and B
represented respectively by —2 + Si and
—2 — i.

6. Describe the locus represented by

Re(z — = o.

7. Describe the locus represented by
arg(z — 4 — 2i) = 1200.

8. Describe the locus represented by
Im(z2) = 0.

9. Describe the locus represented by

Im(z — 1 + = 0.
\ zi

10. Find a complex number equation for the
perpendicular bisector of the line segment AB
where A and B are represented respectively
by the following complex numbers.
a) 2,—6 b) 2+i,3—2i

11. Given that I z — WI =
I z + WI, show that

Iarg z — arg wI= 90°.

12. Find an equation in x andy for the
following.

a) z—6

b) z+4i2
z—2

c) arg(——-'=\z+2/ 4
fz—i—i\ ir

d) argi .1=—\z+2+i/ 2
13. Describe the locus of z if Im(z2) = 2.

14. Describe the locus represented by the
following.
a) IzI<5
b) Iz—5+3iI3
c) Re(z2)> 2
d) 2Iz—2iI3
e) Iz—1 —iI+Iz+2—4i1< 10

15. a) Describe the locus represented by
Iz — 11= Re(z) + 1.

b) Find an equation in x andy for this
locus.

16. Describe the locus represented by each of
the following.
a) Iz—2—3iI=4

b) Re(z) = 2 and — arg z

17. For each locus in question 16, find the
greatest value of IzI.

c) Iz—iI=4

d) Iz—5—2i1=l
g) Iz+ 1I+Iz— 11=4
h) IzI+Iz—4—iI=6



the examples A and B that follow.
A. x2—5x+6=O

(x—3)(x—2)=O
x=3orx=2.

Graphically, these solutions can
be viewed as the points where
the parabola y = x2 — 5x + 6
intersects with the line y = 0,
that is, the x-axis.

B. x2 — 6x + 13 = 0
has no real solutions.
The quadratic formula yields
x= 3 + 2iorx= 3— 2i.

Theparabolay=x2—6x+ 13a3
does not intersect the x-axis.
Is there any geometric
significance in this context for
3 + 2i and 3 — 2i?

Pursuing the question asked in B, proceed as follows. Allow the x-values
in the parabola J to extend into C, that is, let x take the form a + bi, with
a, b E l.
You now have a complex plane, the x-plane, taking the place of the old
x-axis. (Note that the old x-axis is contained in this complex plane.)

Unfortunately, y will also now take on non-real values, and a
four-dimensional situation is set up.

However, it is still possible to view a part of this, as follows.
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In Search of Graphical Representation of
Non-real Solutions of Equations

Solutions to quadratic equations in can be seen graphically as shown in

6 y

23 X x
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You already know that the solutions toy = 0 are x = 3 2i. Hence, the real
part of each solution is 3. Allow x to take the form 3 + ti, with t l1.

Theny= (3 + ti)2 — 6(3 + ti) + 13
=9+6ti—t2— 18—6ti+ 13

or y=4—t2 J

y-aXiS (real)

4

2

3 —21

-r real axis of x -plane

Now t is the variable along the imaginary axis of the x-plane.

The equation thus represents a parabola whose plane is perpendicular
to the plane of the original parabola .

Also, this parabola punctures the x-plane at the points 3 + 2i and 3 —2i.

Thus, you can see that the non-real intersections of a parabola with the
x-axis are "somewhere in front of, or behind, the paper"!

A Canadian mathematician, Richard Dewsbury, is presently researching
the geometrical aspect of extensions to C ofequations in !.
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10.9 Exponential Form of a Complex Number
A geometric series with first term a, and common ratio r, has an

'infinite sum'S = —f-—-, provided in < 1.
1 —r

Consider the infinite series S = 2 + 1 + - + - + - +.248
This is a geometric series with a = 2, r = -
Thus

1—
No finite sum of this series has a value 4. However, the sum of a finite part
of this series will get as close to 4 as you want, provided that you add a
sufficient number of terms.

In chapter 9, you saw that the binomial expansion becomes an infinite
series if the exponent is not a natural number, that is,

(1 +x= 1 + nx + n(n — 1)+ n(n — 1)(n — 2)3 + •
2! 3!

If lxi < 1, the series approaches the value of(1 + as closely as you like,
by taking a sufficient number of terms. The series is said to converge.

If lxi � 1, the series does not approximate (1 + x)". In fact, the series may
change value considerably for each extra term added. In that case, the
series is said to diverge.

The theory of infinite series developed most significantly after the
invention of calculus. Around 1700, the mathematicians Brook Taylor
(1685-173 1) and Cohn Maclaurin (1698-1746) developed formulas to find
series expansions, or polynomial approximations, to many functions in
mathematics.

Three of these series, valid for all x e II, follow.
2 3 4

?= 1+x+-+-+-+....
2! 3! 4!
x2 x4cos x = 1 — — + — —.
2! 4!
x3 x5sin x = x — — + — —.
3! 5!

For the trigonometrical functions, x is in 'natural measure', that is radians,
not degrees.

The Swiss mathematician Leonhard Euler (1707-1783) broke from
tradition by attempting to use these expansions forx C, in 1748.
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Using z = x + iy, he wrote
C = = = re', where r = ex E

2! 3! 4! 5! 6!

= 1 + iy - - + + — —.
2! 3! 4! 5! 6!

2! 4! 61 L 3!

But these are the series for cos y and for sin y,

FORMULA SOC -()S\iS!I1
or, using D,

FOR MU LA
e re' — r(cosv f i sin ),
wherez=x+iyandr=?, x,yEPJi.

Thus e'3 is a complex number whose modulus is ? and whose argument
in radians is y, that is,

P R 0 P ER TI E S
'F e and arg(e' ") = v

The identities ® and ® are known as Euler's formulas. They show that
any complex number can be written in exponential form. The formula
is the special case where the modulus is 1.

One extraordinary consequence of these formulas is the following
identity, obtained by substituting y = m in J.
e'=cos7E+isinTh=—1 +O,or

IDENTITY I

This wonderful relation links n, e, and i, three of the most important
numbers that evolved in the history of mathematics. This is another
example of the simplification, or rather unification', that may result after
extended research into new areas.

Recall that

• ir is the length of half the circumference of a unit circle
(that is, a circle of radius 1). [n 3.141 592 654]

• e is the base of natural logarithms

(the area under the curvey = is a natural logarithm) Le 2.718 281 828]

•i is a square root of —1.

Note: Just as the polar form of a complex number is not unique, so the
exponential form is also not unique.
That is, since any argument 0 can always be replaced by another
argument 0 + 2kir, k Z, then elO = e°21
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Example 1 Write the complex number z = 5 + 2i in exponential form. (Leave numbers
in your answer correct to 2 decimal places.)

,n z = re', where r = Iziandy = arg z.

NowIzI= J52 + 22 = Jj
and tan(arg z) = = 0.4. Since z is in the first quadrant, arg z= 0.38.

Hence z = 5.39e038t •

Example 2 Write the complex number w = —V' + i in exponential form.
(Use exact values.)

Solution wI = \LVri + 12 = 2.

tan (arg w) = —---- and w is in the second quadrant, so arg w =
6

Hencew 2e •
De Moivre's Theorem in Exponential Form

For clarity, consider De Moivre's theorem for a complex number of
modulus 1.

(cos 0+ isin 0)= cos n ü+ i sin n 0.

One immediate result of Euler's formulas is the expression of De Moivre's
theorem as follows.

Hf?!

Thus De Moivre's theorem can be seen as the extension of a normal
exponent rule of R to C!

However, recall that if n is not an integer, then z = (e°)" is not unique. In
this case, z is called a multiple-valued function. One of these values is
emo, the complex number of modulus 1, with argument nO.

Example 3 Given z = e1i, find the following in Cartesian form.

a)z b)z c)z d)z2

So] fl
a) 4 4j
b)

8 8
8 U8 8i2 jjc) z =(ea) =e' =e =—1



In Search of 459

d) Since! i, z is not unique.

You must proceed as you did when using De Moivre's theorem to find
roots.

If u = z, then u is a solution of the equation u2 = z.

Let u = red, then r2e2'° = e
Thus r2=1and2O=+2k7c,kE7L8

r = 1 (since ris real)

and U = + kjr, where k is any integer.

That is, u = Wk = 1e(i'e'>

Now substitute successively the values 0 and 1 for k in Wk.

w0 = e6 = cos — + i sin — = 0.98 + 0.20i
16 16

12121 17m . . 17m.
w1 = e 26 = cos + i sin = —0.98 — 0.20z

16 16

These are the two values of zi. •

In Search of Other Results using the

Exponential Form
The link that Euler made between complex numbers and the exponential
series gave birth to the theory of complex variables, an extensive branch of
mathematics that you will have an opportunity to touch upon from the
following.

1. I)elin,r,o,, If Sine and C'cine using Fvponenrial Form,

e°=cosO+isinO (i
and e'°=cosO—isinO ©
Adding ® and ®yields

F 0 R M U L A + = 2 cos 0 or s () 'fr' + e

Subtracting G — aj yields

F 0 R M U L A e'° — = 2i sin 0 or sin (1 1(e e

Thus cos 0 and sin 0, which are real, can be defined in terms of non-real
exponentials.
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2. The Link u/il; HyperbolicFu,,ciio,,s

The functions cos 0 and sin 0 are called circular functions. One link is
that the circle of equation x2 + y2 1 can be represented parametrically by
the system of equations fx = cos 0

Iy = sin 0

The two functions defined as follows, are pronounced "cosh" and "shine".

0 E F I N I T I 0 N S cosh 0= + e°) and sinh 0 = !(eO — e°)

are called hyperbolic functions.

This name is used because the hyperbola of equation x2 —y2 = 1 can be
represented parametrically by the system of equations

fx = cosh 0
Iy = sinh 0

The definitions of cosh 0 and sinh 0 are deemed to hold also when 0 is
non-real.

In the exercises you will have an opportunity to verify the following
identities.

cush / = COS and siiih 1: = / sir;

3. The Meaiiinq of

Given z = x + iy and w = a + lb. where x, y, a, b ii, you will have an
opportunity to demonstrate in 10.9 Exercises that one value of the complex
power of a complex number Zw is

Z' = e°''arg z arg:)

4. Co/np/ox N;i,nher.c and Ca/cu/its

If the formulas for differentiation are applied to complex numbers, it can

be shown that - (ë°) = - (cos 0 + i sin 0).

You will have an opportunity to do this in 10.9 Exercises.

It is hoped that, from this very sketchy introduction to the theory of
complex variables, you will be spurred on to study further this area of
mathematics in depth in the years to come.
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10.9 Exercises

1. If z = re10, find the following in exponential
form.

2. Write the following in exponential form
(leave numbers correct to 2 decimal places).
a) z=2+i b) w=—1—3i

3. Write the following in exponential form,
using exact values.

a) u=5—5i'fE b) v=—3+3i

4. Given z = 2e, simplify the following
a) z2 c) z e) zi
b) z5 d) z2 f) z2.5

5. Ifz=x+iyandw=a+ib,provethat
ezew =

6. A student claims to have calculated the
value of i as follows.
e21 = 1 and e° = 1,
thus 2i7 = 0 or i = 0.
What is wrong with this demonstration?

7. Express e'° x e, where 0, II, in terms of
sines and cosines of 0 and in two
different ways, and use your result to prove
that
cos(0 + ) = cos 0 cos — sin 0 sin .

8. Use the definitions cos 0 = -'-(e° + e'°) and

1 iO —sin 0 =
-(e

— e 0) to prove the following

identities.

a) sin30=sin0_!sin304 4

b) cos0=cos40+cos20+8 2 8
c) cos20+sin20=1

9. Using the definitions of cos 0 and sin 0
given in question 8, verify that
a) sin(—0) —sin 0 b) cos(—O) = cos 0

10. Use the definitions of cos 0 and sin 0 given
in question 8 to solve the following
equations.
a) sinO=0 b) cos0=0

11. If z is any complex number, show that z
always has two values, w0 and w1, such that
w0 + w1 = 0.

12. Given z = 6ef, prove the following.
a) iz=—3h+3i
b) IeizI = e-'

13. Using the definitions of cosh z and sinh z
given on page 460, prove the following
identities.
a) cosh iz = cos z b) sinh iz = i sin z

14. Givenz=x+iyandw=a+ib,wherex,y,
a, b 11, show that one value of Zw is
eaxb argz e""arg z)

15. If z = ew, then w = in z, called the natural
logarithm of z. If z = req, then
w=lnz=lnr+i(y+2kir),kEL
Use these definitionsto show that
the values of ln(1 — 1) are given by

1 iir(7+8k)ln(1—z)=—1n2+ ,k€7L
2 4

16. Consider a complex-valued function that
can be written in the two forms
f(0) = e'° D orf(O) = cos o + i sin 0 j.
Using the normal rules of differentiation,
find [(0) using each of the forms® and®
and show that these derivatives are equal.

17. Use the ideas on pages 454—45 5, and your
knowledge of the exponential form of a
complex number, to graph z =e,x ER.

(Use a complex z-plane and a real x-axis.)

a) z2 b) z3
1c) —
z d)
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The Visual Display of Data

René Descartes' (1596—1650) invention of coordinate geometry was the
first link established between algebra and geometry. The link is visual,
since it gives us a 'picture' of algebraic relations. Today, 'graphing' is the
general term used to indicate that any information is displayed visually,
rather than by words alone.

Graphing has made extraordinary advances since the time of Descartes.
The recent advent of computers is leading to another great increase in the
availability of visual displays of information.

Unfortunately, visual displays are not always good representations of
what they try to portray. When used for advertising purposes, only some
aspects of the data may be emphasized, while information that is not
helpful to the advertiser is either not displayed, or cleverly disguised.

Possibly one of the most eloquent graphics ever drawn is the 'figurative
map' drawn in 1869 by the French engineer Charles Joseph Minard
(1781—1870) to describe Napoleon's Russian campaign of 1812.

Minard started with a map of the region extending from the Niemen river
(the Russian-Polish border at the time) to Moscow. He then indicated not
only the route taken by Napoleon's Grande Armée, but also superimposed
the size of the army as it progressed towards Moscow. (The size of the
army is indicated by the width of the shaded band.) The Russian armies
sacked, burned and deserted most cities before Napoleon could reach
them, thus cutting off supplies needed by the French. This had a
devastating effect on the Grande Armée. Of the 422 000 men who started
the campaign at the Niemen river in June 1812, only 100 000 made it to
Moscow in September.
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The retreat, which started on October 19, also had to contend with an
unusually cold winter. Minard shows the retreating army with the darker
band, and adds to his graphic a time scale (from October 24 to
December 7), and a temperature scale indicating degrees below freezing.
Note the immense losses suffered at the Berezina river, swelled by a
sudden thaw. The Russians had destroyed the bridge. The Grande Armée
made it back to Poland with about 10 000 men.

Observe that six variables are represented on this single diagram: the
geographical location of the army (two dimensions), its size, its direction,
a time-scale, and a temperature scale for the retreat from Moscow. Few
graphics contain so much clearly displayed information.

Notes 1 The "lieue commune" is about 4444 metres.
2 The Réaumur temperature scale is such that water freezes at 0°R,

boils at 80°R. Thus, to convert from Réaumur degrees to
100

Celsius degrees, multiply by— or 1.25.

3 The abbreviations 8bre 9bre and Xbre refer to October, November
and December respectively.

'1I
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Summary

First Del/il j(jj15 anI Propertiec

• i2 = —1. i is called an imaginary number.
• z = a + bi, where a and b IJ, is called a complex number.
• a is the real part of z, or a = Re(z).

b is the imaginary part of z, or b = Im(z).
If b = 0, z is real. If b * 0, z is non-real.

• The set of all complex numbers is denoted by C.
•riJClCQCOCC
• The complex plane is determined by a real axis and an imaginary axis,

crossing at 0.
• Complex numbers have all the properties of vectors of V2.
• There is no order relation in C.

Vlod,iliis ci,id lrq,,,nei,t—Coi,jiiqales

• If z = x + yi is represented by the point P. or the vector OP, in the complex
plane:
the modulus of z, Izi = IOPI = Jx2 + y2

the argument of z is the angle that OP makes with the positive real axis,

that is, sin(arg z) = and cos(arg z) =
Izi Izi

• The complex conjugates z =x + yi and = x — yi are reflections of each other
in the real axis.

• Iz — WI represents the distance between the points representing z and w in
the complex plane.

ProjiIit's f
E. Equality a + bi = c + di if and only if a = c and b = d
S.Sum (a+bi)--(c+di)=(a+c)+(b+d)i
P. Product (a + bi)(c + di) = (ac

— bd) + (ad + bc)i
Given any numbers z, w and u of C,
1. Closure z + w and zw belong to C
2. Commutativity z + w = w + z and zw = wz
3. Associativity (z + W) + u = z + (W + u) and (zw)u + z(wu)
4. Distributivity z(w + u) = zw + zu
5. Neutral elements z + 0 = 0 + z = z and (z)(1) = (l)(z) = z
6. Inverse elements z + (—z) = (—z) + z = 0 and

= (-' = 1, provided that z * 0\z/ \z/



Summary 465

I'roperti's iniolt inq (nfuqateS
Consider two complex numbers z, w, and their conjugates ,.
1. z+=2Re(z)
2. z — z = 2iIm(z)
3. zz=jz
4. (z+w)=z+w
5. (zw) = zw
6. (!)=z

z zw zw7. Division: — = — =
w ww 1w12

Po!ir Form

• z=a+bi=r(cosO+isinO)

Cartesian form polar form
• r(cos 0 + i sin 0) = p(cos + i sin q5) implies

r=pand0=4+2kir(or0°=°+36Ok°),k€Z.
• z = r(cos 0 + i sin 0) = r[cos(—0) + I sin(—0)]

or = r(cos ü — i sin 0)

vIu tiplication and Diiiion in Polar Form

• [p(cos 0 + i sin 0)][q(cos + i sin 4)] = pq(cos[O + + i sin[0 +
The modulus of the product is the product of the moduli.
The argument of the product is the sum of the arguments.

• p(cosO+isinO) =(cos[0—4]+isin[0—1)
q(cos+isin) q
The modulus of the quotient is the quotient of the moduli.
The argument of the quotient is the difference of the arguments.

De Vloi%rc s Theoicm

• [r(cos 0 + i sin 0)]= r(cos nO + i sin nO), n Q.
If n is not an integer, then (cos 0 + i sin O) is not unique.

• Given z, w C, and n the n values of z satisfying = w are called the
nth roots of w.

T/' Fundamental Theorem of 4 Iqel'ra

• A polynomial equation of degree n always has n complex roots.

Ilie 1-actom Theorem

• If p(Zk) = 0, then (z — Zk) is a factor of p(z).

lpomieii1i7l Fermi!

• ez = re° = r(cos y + i sin y),
wherez=x+iyandr=ex,x,yEIIL (yinradians)

• I I = ex, and arg(etY) = y
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Inventory
Complete each of the following statements.

2. The numbers i, 4i, i'/ are called _____

3. Using the real numbers a, b and the number i, a complex number can
be written _____

4. The sets of numbers ir and C are related such that R_____ C.

5. The two axes of the complex plane are called _____

6. A complex number can be real, imaginary, or _____

7. If the complex numbers a + bi and c + di are equal then _____ and____
8. Given z = a + bi, Re(z) = _____, Im(z) = _____, the complex conjugate

,themoduluslzl=
the argument arg z is such that tan( ) = _____

9. Complex conjugates are _____of each other in the _____ofthe
complex plane.

10. The conjugate of the conjugate of z is equal to _____

11. _____numbers are added like vectors of V2.

12. A complex number z whose modulus is rand whose argument is 0 can
be represented in polar form as z= _____

13. If two complex numbers are equal, then their moduli are _____ and
their arguments differ by

14. When two complex numbers are multiplied, the modulus of the
product is the ____of the moduli.

15. When two complex numbers are divided, the argument of the quotient
is the _____ of the arguments.

16. De Moivre's theorem: [r(cos 0 + i sin 0)] = r'1( ).
17. The fifth roots of unity are the numbers z satisfying the equation

18. A polynomial equation of degree n has complex roots, some of
which may be equal.

19. Each equation inC incorporates equations in .
20. The distance between the points representing zand w in the complex

plane is _____

21. If z = x + iy, then the complex number ez has modulus _____and
argument

22. e= ____
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8. Simplify (2 + j)3(5 — 121)2(2 — i)3(5 + 12i)2.

9. Find the number k such that
2— ki ='+i

10. Letz=2+i,
w = 3 — 4i,
p = —51,

q = —6 — i,
u = 4.

a) Plot the points representing numbers
z, w, p. q, u in a complex plane.

b) Find the conjugates ,, , , and,
and plot them in the same complex
plane.

c) Find the modulilzl,Iwi,ipI,IqI, and lul.

d) Find the arguments arg z, arg w, arg p,
arg q, arg U.

11. a) State the complex conjugate of the
number z = a + bi.

b) Prove that the sum of a complex
number and its conjugate is always
real.

c) Prove that the product of a complex
number and its conjugate is always
real.

12. a) What is the argument of the number —1?
b) Describe the geometric effect of—i as a

multiplier in the complex plane. Does
your description apply to real numbers?

13. Given two complex numbers z and w, use a
vector analogy to illustrate the following
inequalities geometrically.
a) z + WI Izi + wi (the triangle inequality)
b) Iz—wiIzi+iwI
c) iz—wiiizi—iwii

14. Given numbers z and w, use a vector
analogy to find an interpretation in the
complex plane of

1 i
a) —z+—w

2 2
m n

b) z+ wm+n m+n

Review Exercises

1. Simplify the following.
a) (7+2i)+(3—2i)
b) (7+2i)(3—2i)
c) (ii _)2
d) (1 + i)3
e) 1'
f) i4

1

g)-,
h) (2 + i) — (4 — 5i)
i) 4(—1+i)—3(1+i)
j) (i + 61)2 — (1 — 6i)2
k) i(i—1)—(2+i)(4+31)

2. Express in the form a + it', where a R and
1

1—31 i
a) e) 3—4'

b) 1—3, f)1+31 2+1
8+5i 1

c) g)—+
—1 6+z 6—4,

d)5' h)
4—21 (9—2i)2 9—21

3. Simplify the following expressions.
a) (a + hi)2 — (a — hi)2

b)
1 — 1

a—hi a+bi
c) a+bi+ 1

a + bz

4. Find two numbers whose sum is 10 and
whose product is 29.

5. Find the roots of the following equations.
a) z2—12z+37=0
b) z2+4z+20=0
c) z2=3z—5

6. Find the roots of the equation
— (4 + i)z + 4i = 0 by factoring in C.

7. Show that a quadratic equation whose
roots are z = a and z = fi can be written
z2 — (a + /J)z + a/i = 0.
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15. a) Ifz=a+biandw=c+di,provethat
Iz_wI=V(a_c)2+ (b—d)2)

b) Use a vector analogy to illustrate
geometrically that the distance between
the points representing zand w in the
complex plane is z — WI.

16. Find quadratic equations in the form
a:2 + bz + c = 0 with the following roots.
a) —iand5—i b) a+biandc—di

17. a) Prove that a polynomial equation of
degree n with real coefficients always
has at least one real root if n is odd.

b) How many real roots are there if n is
even?

18. By solving z2 + 4i = 0, find the two square
roots of —4i. Locate these roots in the
complex plane.

19. Given Z = + _L1,

a) calculate z2
b) plot z and z2 in a complex plane

c) discuss the statement: = +

20. The difference of two squares can be
factored, but the sum of two squares
cannot be factored. Discuss.

21. It is given that 1 + 3i is a root of the
equation 2z3 — 9:2 + 30: — 50 = 0.
a) Use this information to find all the

roots of the equation.
b) Show that the representations of these

roots in a complex plane are the vertices
of an isosceles triangle.

2m ..2m22. a) Verify that W = cos — + i sin —
3 3

is a cube root of 1.
b) Calculate w2 and show that w2 is also a

cube root of 1.

23. Consider the numbers z = r(cos ü + i sin 0)
and W = p(cos + i sin ), where 0 and j
are measured in radians. Prove that if z = w,
then r = p and 0 = + 2km, where k 7L.

24. Consider the equation in z
z2 — uz + v = 0,
where u and v are known to be non-real.
Determine whether or not it is possible for
this equation to have a real root.

25. a) If z = cos + i sin 45°, calculate z2.
b) Calculate (—z)2.
c) Use your results to a) and b) to state the

two square roots of i in Cartesian form.
d) Calculatez4.

26. a) Verifytheidentity
9 cos 0 — sin2 0 — 8 = cos2 0 — 9 sin2 0.

b) Use this identity to solve the equation
z2—(3 cos0+isin0)z+ 2=0.

27. Given z = r(cos 0 + i sin 0), verify that z = r2.

28. Find the modulus and an argument of
z = x + iy in the following cases.
a) x=0,y>0
b) x<0,y=0

29. Given z = 3(cos 67° + i sin 67°) and
w = 2(cos 123° — i sin 123°), express the
following in polar form.
a)
b)W
c) zw
d) ZW

e)
W

z

30. Givenz= 10+iandw=4—7i,express the
following in polar form.
a) z
b)w
c) zw

d)
W

W
e) —

z

31. a) Calculate the exact modulus and an
exact argument of each of the numbers
z= —1 + ifandw= —1—i.

b) Hence state the values of z3 and w4.
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32. Use the results of question 31 to express the
following in polar form.

a) zw
wc) —
z

33. a) If z = cos 0 + i sin 0, state an argument
of z3.

b) Hence find expressions for cos 30 and
sin 30 in terms of cos 0 and sin 0.

34. Calculate in Cartesian form
a) (cos 300 + i sin 300)12
b) (cos 20° — i sin 200)J_6
c) (1+1)10
d) (—1 —

/ iv . .
e) t cos— + sin—\ 6 6

/ 7iv . 7\6f) i cos— — i sin—
\ 12 12

cos30+isin3O
35. Simplify (cos 0 + i sin 0)2

36. Find the modulus and argument of
cos 0 + i sin 0
cos 0 — I sin 0

37. a) Compare the expressions for
(cos 0 + i sin 0) given by De Moivre's
theorem and the binomial expansion to
prove that
cos 50 = 16 cos5 0— 20 cos3 0 + 5 cos 0.

b) By considering the equation cos 50 = 0,

prove thatcos(-- cos(- =
\10/ \10/ 4

38. a) Verify that each of the following
numbers is a sixth root of unity.

a = I + i,fl= _! +
b) State the six roots of the equation

z6 — 1 = 0.

39. Find the fifth roots of —1 in Cartesian form
and represent them in a complex plane.

40. a) Find a complex number equation for a
circle of centre 3 + 4i and radius 5.

b) Show that this circle passes through 0.

41. Find equations in x andy of the loci
described by the following, where
z = x + iy.
a) Iz—1+3i1=1
b) 12z+iI=51z—il

42. Describe the locus of a point that moves in
the complex plane in such a way that its
distance from —1 + 2i is half its distance
from the origin.

43. Write the following in exponential form,
using exact values.
a) u=—2—2iv
b) v=5—5i

44. Use the definitions cos 0 = -'-(e'° + C°) and

sin 0 = -(e°
— e°) to prove that

cos2O = +I cos 20.22
45. 1) Solve the equation

2z3 — 3z2 + 2z + 2 = 0 given that
z = 1 + i is a solution

ii) The complex numbers w and z are
related by the equation

z — 6iw=
z+8

and the points W and Z in the Argand
diagram correspond to w and z
respectively.
a) Given that the real part of w is

zero, show that Z lies on a circle,
and find the centre and radius of
this circle.

b) Given that the imaginary part of w
is zero, show that Z lies on a
straight line, and give the equation
of this line.

(88 H)
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46. 1) By first putting z2 = w, or otherwise,
find the values of z for which
z4+2z2+ 25=0,z€C,
giving your answers in the form
z = x + jy, x, y

ii) It is given that
z = 2r(cos ü + i sin 0),

w=z+,r€r;w,z€c;—<0m.
a) Ifw=u+iv,u,v€lJ,

12u\2 12v\2showthati—p +—j =1.\5r/ \3r/
b) Find the four values of 0 where

= 2r,
giving your answers correct to two
decimal places.

(88 S)

47. Let
2t . . 2rw = cos— i- i sin—.
5 5

a) Show that 1, w, w2, w3 and w4 are
the 5 roots of the equation

= 1, z c.
b) By factorizing (z5 — 1), or otherwise,

prove that
1 + w + w2 + w3 + w4 = 0.

c) Show, by multiplying out and using
parts a) and b), that
(1 — w)(1 — w2)(1 — w3)(1 — w4) = 5.

d) 1) Use the given expression for w to
prove that

S

2
(1 —w)(1 —w4)=4sin—.

5
ii) Work out a similar expression for

(1 — w2)(1 — w3).
iii) Deduce, from parts c), d)(i) and

d)(ii), that
2ir 1/—sin— sin— = —vS.5 54

48. a) Find the complex roots of the equation
z2 — z + 1 = 0
in the form p + iq, p — iq, where p. q l.

b) Express the two roots obtained in part
a) in the form r(cos 0 + i sin 0) and
r(cos 0 — i sin 0), where r and 0 are to
be determined, r l, 0 0 it.

c) Show that
(z+ 1)(z2—z+ 1)=(z3+ 1).

d) 1) Use the results already obtained to
write down the modulus and
argument of each of the three roots
of the equation
z3+1=0.

ii) Hence plot these roots on a
carefully labelled Argand diagram.

iii) Prove that the three plotted points
lie at the vertices of an equilateral
triangle.

e) By expressing
z3—3z2+3z=(z— 1)+ 1,
or otherwise, prove that the roots of the
equation
z(z2 — 3z + 3) = 0,
when plotted on an Argand diagram,
also lie at the vertices of an equilateral
triangle.

(86 S)

49. i) a) Find,intheforma+bi,allthe
solutions of the equation

+ 6z = 20.

b) The points in the Argand diagram,
representing the three solutions
found in part a) are the vertices of
a triangle. Find the angles of this
triangle.

c) Show that two of the solutions
found in part a) have modulus /i
and find their arguments.

ii) Given that 0° 0 360° solve the
equation
sin 30 + sin 0 = cos 0

iii) Given that 0° 0 360° solve, correct
to the nearest degree, the equation
3 cos 0+4 sin 0+2= 0.

(87 H
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50. The complex number z is given by
Z = X + iy, X,y O.

a) Find z2 in terms of x andy.
b) Giventhatz2=9+40i,

i. find the possible values of x andy,
and

ii. hence solve, for z, the equation
z2 = 9 + 40i.

c) On a clearly labelled Argand diagram
plot the points P and Q which represent
the solutions obtained in part b),
placing P in the first quadrant. Plot also
the point R representing z2.

d) Find OP and OQ, leaving your answers
in surd form.

e) Determine, to the nearest degree, the
value of the angle that (OF) makes with
the positive direction of the real axis.

f) Determine, to the nearest degree, the
value of the angle FOR.

(85 S)

5 1. i) Solve the simultaneous equations
z + 2w = 7
iz + w = 1

and show the solutions on an Argand
diagram.

ii) Given thatz1 = r1(cos Ui + i sin 0) and
= r2(cos 02 + i sin 02), where r2 * 0,

prove that

= -' (cos(0 — 02) + i sin(01 — 02)).
z2 r2

If: = 1 +iandz2='/—ifind the
modulus and argument of
z1 1— and —

Z2 Z2

(83 H)

52. i) a) Solve the equation z3 =4'/ — 4i,
giving your answers in
modulus-argument form.

b) Theequationz3 — z2+ 3z+ 5 = 0
has z = —1 as one of its roots. Find
the other two roots, giving your
answers in the form z = a + bi.

ii) The complex number z satisfies each of
the inequalities

a. —ir arg z 0,
b. Iz—1I2,
c. z—3lIz—1I.
Show, on a clearly labelled Argand
diagram, the region containing the set
of points satisfying the three
inequalities simultaneously.

(84 H)

53. i) Show that the set of complex numbers
which satisfy the equation
z+ fl=2z— ii
lie on a circle in the Argand diagram.
Find the centre and radius of this
circle.

ii) Use the fact that
cos 50 + i sin 50 = (cos 0 + i sin 0) to
prove that
cos 50 = 16 cos5 0 — 20 cos3 0 + 5 cos 0.
Hence, without using a calculator,
prove that

cos 18° = -Iio + 2f
4

and find a similar expression for
cos 54°.

(86 H)
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PROBLEM
SUPPLEMENT

1. In quadrilateral ABCD, E and Fare the
midpoints of the diagonals AC and BD
respectively. P is the midpoint of EF. If 0
is any point, prove that
40P = OA + OB + OC + OD.

2. ABCD is a rectangle. The midpoints of
sides AB, BC, CD, and DA are M, N, F, and
Q respectively. Prove that MNPQ is a
rhombus.

3. Given any triangle ABC, and any point 0,
a point G is positioned so that
GA + GB + GC = 0.
Use vector subtraction, with origin 0, to
prove that

OG=(0A+0B+OC)
(The point G is known as the centroid or
centre of mass of the triangle ABC.)

4. Determine whether or not the three
vectors in each of the following are
linearly dependent. In each case state the
geometric significance of the result.

a) (2,0,6), (1,1,—3), and (2,1,—i)

b) (3,2,1), (4,11,6), and (14,1,0)

c) (4,9,1), (—3,1,1), and (6,29,3)

5. Given the vectors a = (5,—6) and b = (4,2).
a) Prove the two vectors form a basis

for V2.

b) Express the vector (3,—7) as a linear
combination of a and b.

6. Express the vector a = (7,8,16) as a linear
combination of the vectors 1, = (1,—2,3),
c = (0,2,5), and d = (2,2,1).

7. Find the value for m if the vectors
a = (2,7,—4), b = (4,m,3), and c = (0,1,—2)
are coplanar.

8. a) A point P divides the line segment AB
internally in the ratio 3: 5. Express OP
in terms of OA and OB.

b) If point Q divides segment PB of
part a) externally in the ratio 7:4, then
express OQ in terms of OA and OB.

9. a) Four points M, K, T, and R are given

such that TR =— TK + TM. Draw
2 2

conclusions about the points M, K, 2',
and R.

b) If T has coordinates (0,0,0), while K
and M have respectively coordinates
(i,—3,4) and (5,0,2), find the
coordinates of point R.

10. Points A, B, C, and D are points in 3-space
with position vectors a, b, c, and d.
a, b and c are linearly independent and
d = —7a + 3b + 5c. Prove that points
A, B, C, and D are coplanar.

11. MTRS is a parallelogram. Point A divides
TR internally in the ratio 8: 5.
Segments MR and SA intersect at point B.
Use vector methods to find the ratio
into which point B divides segment MR.

12. Given the vectors a = (—1,—4,7),
u = (2,3,—i), and v = (4,1,11).

a) Prove the vectors are linearly
dependent.

b) Find a vector coplanar with u and v,
that is perpendicular to vector a.
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13. Given the vectors U = (1,1,1), v = (1,—2,I),
andw = (2,0,—i).

a) Prove that u, v, and w form a basis
for V3.

b) Find the components of a = (5,3,2)
with respect to the basis in part a).

c) If mu + pv + rw = (x,y,z), then show
that m + p + r = I if and only if
2x + z = 3.

14. Points F, D, and R are collinear and Ois
any point such that OD = 3mOP + 4kOR,
and 2m — 3k = 16. Find the values of k
and m.

15. Prove that the components of a vector d
with respect to the V3 basis (a,b,c) are
unique.

16. Express e = (11,6,1) asalinear
combination of a = (3,1,0), b = (—2,0,4),
c = (0,1,2), and d = (i,1,i).

17. Provethata,b,andc=kb,k€R
are linearly dependent in J3.

18. G is the point of intersection of the
medians of a triangle ABC. The point G
divides the medians AD, BE, and CF
internally in the ratio 2: 1. Prove that
AG + BG + CG = 0

19. 0, P. D, R,and S are five points in 3-space
such that OP = 20D + 20R — 30S. Prove
that the four points F, D, R, and S are
coplanar.

20. 0, A, B, and C are four points in 3-space
such that OA = a, OB = b, OC = c where a,
b, and c are linearly independent. If D lies
in the plane determined by points A, B,
and C, then express OD in terms of a, b,
and c.
(You will need to use two scalars.)

21. Triangle ABC is right-angled at B, and Mis
the midpoint of AC. If BA = a and BC = c,

express BM and AM in terms of a and c,
and hence show that IAMI = IBMI.

22. Two circles, of centres O and 02, touch
externally at T. A common tangent to the
two circles touches them at A and B
respectively. Use the dot product to prove
that ATB is a right angle. (You may assume
that 01T02 is a straight line and that the
angles O1AB and O2BA are right angles.)

23. OABC is a tetrahedron with OA
perpendicular to BC, and OC
perpendicular to AB. IfOA = a, OR =

and OC =c, express AR and BC interms of

a, b, and c, and hence prove that OB is
perpendicular to AC.

24. A right square pyramid ABCDT whose
base has a side 2s and whose height is h
is positioned in a three-space coordinate
system as follows. A(s,s,0), B(—s,s,0),
C(—s,—s,0), D(s,—s,0) and T(0,0,h).
a) If 0 is the angle between a slant edge

and the base, show that

cos0= h

J2s2 + h2

b) If 4 is the angle between two
triangular faces, show that

cos =
2 + h2

A
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25. If w = (v.e)e and z + w = v, prove that
z. e = 0. Draw a figure that shows how the
vectors v, e, w, and z are related.

26. Resolve the vector v= (—2,3) onto the

vectors a = (1,1) and b (—1,1).

27. In 3.2 Exercises you proved that for any

vectors u and v, Iu.vI ulivi. Given that

u = (u1,u2,u3), and v = (v1,v2,v3), write out
this inequality using components.
(This is known as the Cauchy-Schwarz
inequality.)

28. The vector n = (2,4,—3) is normal (that is,
perpendicular) to the plane H. A(1,5,5) is
a given point of fl, and P(x,y,z) is any
point of H. Let the position vectors of A
and P be a and r respectively.

a) Explain why AP.n must be zero.
b) Substitute the given values into the

equation AP. n = 0 to show that an
equation representing the plane H is
2x + 4y — 3z = 7.

29. A motor boat is travelling upstream at full
power. As the boat passes under a low
bridge, the woman at the helm loses her
hat. However, she does not notice this
until 6 minutes later. At this time, she
turns her boat around and goes
downstream at full power. She retrieves
her hat 1 km downstream from the bridge
where it got knocked off. Calculate the
speed of the current.

30. The diagonals of a parallelogram can be
represented by the vectors (6,6,0) and
(1,—i,2).
a) Prove that the parallelogram is a

rhombus.
b) Calculate the length of its sides and

the values of its angles.

31. Given any four points A, B, C, D in
3-space, prove that
AB.CD + AC.BD + AD.BC = 0. Deduce
from this that the three altitudes of a
triangle are concurrent. (That is, the three
altitudes intersect at the same point.)

32. OAB is an isosceles triangle with OA = a,
OB = b, andIaI= hi. M is the midpoint of
OA, andNis the midpoint of OB. Express
AN and BM in terms of a and b, and use
the dot product to show that
AN = IBM.

33. Two forces F and F act upon a particle in
such a way that the resultant force R has a
magnitude equal to that of E, and makes
an angle of 90° with E.
Given that IE = IRI = 50 N, calculate the
magnitude and direction of the second
force relative to E.

34. A river flows due east with a speed of
2.5 km/h. A woman rows a boat across
the river, her velocity relative to the water
being 3 km/h due north.
a) What is her velocity relative to the

Earth?
b) If the river is 250 m wide, how far

east of her starting point will she
reach the opposite bank?

c) How long will she take to cross the
river?

35. The woman in the previous question
decides, on another day, to row in such
a way that the boat reaches a point on the
opposite bank directly north of her
starting point.
a) In what direction should she head the

boat?
b) What is her velocity relative to the

Earth?
c) How long will she take to cross the

river?
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36. An airplane pilot wishes to fly along
bearing 158°. A wind of 100 km/h is
blowing from the west. If the plane's
airspeed is 350 km/h, find the following.

a) the plane's groundspeed
b) the heading that the pilot should take

37. Find vector equations, parametric
equations, and symmetric equations of the
following lines.
a) the line through the point A(2,5,3)

having direction numbers 2, 3, 6
b) the line through the points (—2,--1,4)

and (3,2,2).

38. a) Determine whether the lines
L1: r= (1,3,0) + t(—2,1,4) and

L2: r = (4 + 3k,2 —k,—1 + k) are skew,
or if they intersect.

b) If the lines in a) intersect, then find
their point of intersection. If the lines
are skew, then find the shortest
distance between the lines.

39. Find a vector equation of the line that is
perpendicular to the vector u = (1,2,3) and
also perpendicular to the line
r = (0,—2,5) + k(4,—2,1) at the point
corresponding to the parameter value
k = 2.

40. Find a vector equation of the line in
2-space that is perpendicular to the line
3x + 5y + 7 = 0, and passes through the
point of intersection of the lines

r=(4,5)+ t(1,—3) and r=(4+ 2k,3 —4k).

41. The line L passes through the point

A(1,3,2) and has direction vector (2,1,—2).

Find the coordinates of two points on L
that are 3 units from point A.

42. a) Find a value of c such that the lines
Ix=1+7t Ix=3+21k
y=2+3t and y=2+9k
Lz=1+ct z=5+8k
are parallel.

b) Show that there is no value of c for
which the lines in part a) intersect.

43. Determine which of the following sets of
points are collinear.

a) A(0,5,—3) B(3,—1,12) C(—2,9,—13)

b) P(5,1,9) Q(—i,5,0) R(8,—1,13)

c) L(4,2,3) M(2,—4,5) N(6,8,1)

44. a) A vector through the origin makes
equal angles of 60° with both the
positive x-axis and positive y-axis.
Find the angle the vector makes with
the z-axis.

b) A vector through the origin makes
equal angles of 0 with the positive
x-axis and with the positive y-axis.
What is the smallest possible value
for 0? What is the largest possible
value for 0?

45. a) For what values of t, if any, will the
line r = (3,0,5) + k(2,t,1) intersect with
the line r = (1,2,—i) + s(—1,—4,2)?

b) If a point of intersection exists in a),
find its coordinates.

46. A line passes through the point A(2,1) and
makes an angle of 45° with the vector
u = (3,4).

a) Explain why there are two lines
satisfying these conditions.

b) Find vector equations of the two lines
of part a).

47. Find a vector equation of the plane that
contains the point A(—1,2,1) and is
perpendicular to the vector u = (—3,0,2).
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48. Find a vector equation of the plane that
contains the line L: r = (1,2,3) + t(1,—2,2)
and is perpendicular to the plane
x + 2y — 3z = 8.

49. Find the point of intersection of the plane
2x +y — z = 2 and the line of intersection
of the two planes x — y + z = 3 and
x + 2y — 2z = —3.

50. Find a Cartesian equation of the plane,
containing the points T(0,1,—2) and
S(1,—1,3), that is_parallel to the
vector u = (—5,1,3).

51. Find a Cartesian equation of the plane,
containing the points W(1,O,—4) and
N(0,2,1), that is perpendicular to the plane
3x + 2y — 2z = 5.

52. Find the intersection of the line
r = (—3 + t,—6 + 2t,1 — t) and the plane
r=(2+k—3m,1 +2k—3m,1 —3k+2m).
Describe the intersection geometrically.

53. Show that the point of intersection of the
• x+2line = 2z — 3,y = 3

with the plane x +2y — 3z = ii
lies on the plane 2x —y + z = 98.

54. Given the three planes
x+ 2y+ z=0

(k+2)x-i-(k+2)y+(k÷i)z=20
(k + 2)x+(2k + 3)y = —20

a) For what values of k will the planes
intersect in a point?

b) For what values of k will the planes
intersect in a line?

c) For what values of k will the planes
form a triangular prism?

55. Find a Cartesian equation of the plane
through the points K(3,2,1), R(0,—i,1),
and S(—4,—3,2).

56. Given the point M(1,—2,4).

a) Find the distance between the point M
and the plane 3x + 4y — z = 5.

b) Find the value of k so that the distance
between the point M and the line
r = (1,0,—i) + t(3,0,k) will be equal to
the distance found in part a).

57. Consider the set of real numbers as the
vector space V1 of dimension 1.
a) Show that the function defined by

f: x —* 5x is a linear transformation of
Vi.

b) Show that the function defined by
g : x — 3x — 2 is not a linear
transformation of V1.

(g is known as an affine transformation
of V1.)

58. Determine the possible dimensions of the
matrices A and B if both the products AB
and BA are defined.

Ii ol.59. The transformation matrix S = i i is
Lk ii

known as a vertical shear of factor k.
The properties of a shear will appear as
answers to the following questions.
a) Find the images of (0,1) and (0,b),

where b E Iii, and describe how any
point of the y-axis is transformed.

b) Find the images of (1,0) and (1,b), and
describe how any point on the line
x = 1 is transformed.

c) Find the image of the point (a,0),
where a IJ, and describe how any
point on the x-axis is transformed.

d) Find det(S), and describe the area and
orientation of a figure transformed
by a shear.
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60. The line of equation y = (tan 0) x has
slope tan 0. Thus, the angle between this
line and the positive x-axis is 00. Consider
the transformation of matrix R that
reflects the plane in the line whose
equation is y = (tan 30°) x.

a) Find the image of iunder R.
b) Find the image of junder R.
c) Hence write the matrix R.
d) Write the matrix of the reflection in

the line of equation y = (tan 0) x.

61. Given that M,1 represents a reflection in
the line y = (tan 4°) x, compare M60 and
M240. Explain.

62. Given the conic C: 16x2 + y2 = 16.
a) Name the type of conic.
b) Find, in general form, an equation for

C', the image of C, under the
translation (x,y) — (x — 3,y + 1).

c) Sketch a graph of the conic C and its
image C'.

63. Given the conic C: 16x2 = y.
a) Name the type of conic.
b) Find, in general form, an equation for

C', the image of C, under the
translation (x,y) — (x + 1,y + 5).

c) Sketch a graph of the conic C and its
image C'.

64. Given the conic C: 9x2 — y2 = 36.
a) Name the type of conic.
b) Find, in general form, an equation for

C', the image of C, under the
translation (x,y) — (x + 2,y — 4).

c) Sketch a graph of the conic C and its
image C'.

65. Given the conic
C:8x2+y2+ 16x+8y+9='O.
a) Name the type of conic.
b) Determine the translation that

changes the equation into standard form.
c) State an equation for C', the image of C.
d) Graph the image conic C' and then the

given conic C.

66. Given the conic C:x2 + 4x+ 8y + 12 = 0.

a) Name the type of conic.
b) Determine the translation that

changes the equation into standard
form.

c) State an equation for C', the image of C.
d) Graph the image conic C' and then the

given conic C.

67. Given the conic
C: 4x2 —y2+ 32x—4y+ 64=0
a) Name the type of conic.
b) Determine the translation that

changes the equation into standard
form.

c) State an equation for C', the image of C.
d) Graph the image conic C' and then the

given conic C.

68. Given the conic C: x2 +4y2 = 16.
a) Find an equation for C', the image of C

under a rotation of 30° about (0,0).
b) Sketch a graph of C and C'.

69. Given the conic C: 4x2 — 25y2 = 100.
a) Find an equation for C', the image of C

under a rotation of 70° about (0,0).
b) Sketch a graph of C and C'.

70. Given the conic
C: 15x2 + 34xy + 15y2 = 128.
a) Determine the type of conic.
b) Find an angle of rotation about (0,0)

that will eliminate the xy term.
c) Find an equation of the image curve C'.
d) Sketch the graph of the image curve

C', then the graph of C, the original
curve.

71. Given the conic
C: 109x2 + 236xy + 151y2 = 1000
a) Determine the type of conic.
b) Find an angle of rotation about (0,0)

that will eliminate the xy term.
c) Find an equation of the image curve C'.
d) Sketch the graph of the image curve

C', then the graph of C, the original
curve.



72. Prove using mathematical induction. 79. Expand each of the following and
a) 12 + 32 + 52 • .+ (2n — 1)2 simplify.

— n(2n — 1)(2n + 1) a) (a + x)5
b) (4a—3)4

b) (4i2 — 3i + 2) = n(8n2 + 3n + 7)
6 80. a) Show that the solution set of

73. Prove by mathematical induction that z6 + z3 + 1 = 0 is a subset of the
solution set of z9 — 1 = 0, and hencefl

a) k(k+ 1)= n(n + 1)(n + 2) findthesolutionsofz6+ z3 + 1 = Oin
k=1 3
for all polar form.

b) Evaluate (8)(9) + (9)(1O) + (10)(1 1) + b) Deduce the values of 0 between 0 and
(1 1)(12) +.. .+ (98)(99). 2m that satisfy the system of equations

74. Use mathematical induction to prove
Jcos 60 + cos 30 + 1 = 0
sin 60 + sin 30 = 0n + i

(i+!Yi+(i+z...(i+22 )\ 1i\ 41\ 9/ 81. The equation z2 + (a + bi)z + (c + di) = 0,= (n + 1)2 where a, b, c, and d are non-zero real
75. Prove by mathematical induction that numbers, has exactly one real root.

(3n + 1)7 — 1 . Show that abd = b2c + d2.is a natural number.
9

82. w is one of the non-real cube roots of76. Prove that a convex polygon of n sides has
unity.n

—(n
— 3) diagonals. a) Find the two possible values of the

2 expression 1 + w + w2.
-. I n—1

77. Prove that -- < (1) for n any natural b) Simplify each of the expressions
n! \2/ (1 + w + 3w2)2 and (1 + 3w + w2)2.

number greater than 2. c) Show that the product of the two
78. Prove by induction that — y2fl is expressions in b) is 16, and that the

divisible by x + y, where n sum is —4.
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83. The matrices A and B and the non-zero
vector t are given by

12 1 3—2A=i ,B= andt=
1—71 1 0

a) i) Find the inverse of the matrix A.
ii) Use the inverse of the matrix A to

solve the simultaneous equations

f 2x+y=7
[-7x+y= —11, where x,y€.

b) Givenv=Bt,
i) express the components of v in

terms oft1 and t2, and
ii) calculate the possible values of

the scalar 2 given that v = 2 t also.

c) Givenv=Btandw=At,
i) prove that v and w are not

perpendicular, and
ii) calculate the values of t1 and t2

when;—w=I '
L 10

d) Given t = 111, calculate the
L2J

components of the vector z, where
z = AB t.

(85 SMS)

84. The position vectors of points A, B and C
are respectively a = i + 2j + 3k,
b = 31 +j + k, and c = 21—i— 2k with
respect to an origin 0. (i,j, k are mutually
perpendicular unit vectors.)
i) Show that 0, A, B and C are coplanar

by proving the linear dependence of a,
b andc.

ii) Prove that OABC is a parallelogram.
iii) Find angles ABC and ABO. Show that

OABC is not a rhombus.
(80S)

85. The position vectors of four distinct
points A, B, C and D are a, b, c and d
respectively.
a) The mid points of [AB], [CD], [BC],

FAD], [AC] and [BD] are E, F, G, H, L
and M respectively. Find, in terms of
a, b, c and d, the position vectors of
the mid points of [Efl, [Gil] and ELM].
What does your result indicate about
the lines (EF), (Gil) and (LM)?

b) (AB) is perpendicular to (CD). Show
that
ad + b.c = a• c + b.d
Given also that (AC) is perpendicular
to (BD), prove that (AD) is
perpendicular to (BC).

(87 H)

86. Two lines L1 and L2 have equations

= = and
3 2 —2

x—4 v+7 z+3= = respectively.
—3 4 —1

a) Find the coordinates of a point P1 on
the line L1 and a point P2 on the line L2
such that the line (P1P2) is
perpendicular to both the lines L1
and L2.

b) Show that the length of [P1P2] is 7.
c) Find the equation of the plane which

contains the line L1 and has no point
of intersection with the line L2. Give
your answer in the form
ax + by + cz = d.

(84 H)



7. i) The set of planes 11k is given with
equations
x + — 2z = 3k, kE lit

a) Find a vector n of unit length
perpendicular to the planes 11k•

b) i) Express the equations of the
planes flk in the form rn =p.

x
where r = y and where

z
the value of p is to be found in
terms of k.

ii) What is the geometrical
significance of
a) the magnitude of k, and
b) the sign of k?

c) Show that the perpendicular
distance between the planes fl_2
and fl5 is 7 units (i.e. the planes
withk= —2 andk = 5

respectively).
d) Find the coordinates of the point

P of intersection of the line with
equation

x [ 2 ['1
=1 —1 +21 0 I''

L o Li]
and the plane fl1.

e) Find the length of [OP], where 0 is
the origin, leaving your answer as
an irrational number.

ii) The set of planes fl1 is given with
equations
x + ty — tz = 3, t Iii.

a) Prove that all planes of the set
contain a certain line, and

b) find its equation in parametric
form.

(So SI

88. In a rectangular Cartesian coordinate
system with origin 0 and unit basis
vectors i, j and k, two straight lines I and
1' have respective parametric equations:

x = 6— t, y = 0, z = t
andx = 0, y = t',z = 2t'
a) u = 2i + uk is the unit vector parallel to

lforwhich2> 0.
Find A and u.
Find also a unit vector u' which is
parallel to I'.

b) H is a point on I with parameter t and
Kis a point on 1' with parameter t'. If
HK is perpendicular to u show that

= t — 3.

c) If HK is also perpendicular to u', find
the coordinates of H and K.

(8! S)

89. In a rectangular Cartesian coordinate
system the points 0, A, B and C have
coordinates (0,0), (4,2), (—4,2) and (2,—2)
respectively.
a) Prove that IOBI =IACI.
b) i) Write in column vector form each

of the vectors OA, OB and OC.
ii) Hence, given that the vector

OA + kOB + 1OC is the zero-vector,
where k, 1 iii, find the values of k
and I.

c) Giventhatv=OB+nOC,wheren€IR.
i) If v is perpendicular to BC, show

thatn= 1.6.
ii) If v is parallel to BC, find the

value of n.

d) Itis given that matrixM= fi' PLOp
where p and that M(OA) means the
product of M and OA.
i) Given that M(OA) = OC, find the

value of p.
ii) Prove that for all n and p:

M(OA) * OB + nOC, where n R.

(SO SMS
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90. Using a rectangular Cartesian coordinate
system with origin 0, a transformation
T: P — F' is defined such that the
coordinates of the point P(x,y) are
transformed to the coordinates of the
point P'(x',y') by means of the equation
1x'1_12 ilix
Ly'iL' 2]Ly
a) Find the equation of the straight line!'

which is the image of the straight line
I whose equation is
2x + 3y = 6.

b) Determine the coordinates of Q, the
point of intersection of the lines 1
and 1'.

c) Prove that the straight line (OQ)
consists of points that are their own
images.

d) Find the coordinates of the point R'
that is the image of a variable point R
on the line perpendicular to (OQ)
through 0.

e) Give a geometrical description of the
effect of the transformation T.

(85 S)

9!. In a shear transformation parallel to the
line with equation y = x, the point A(1,l)
is its own image and the point B(—l,1) has
as its image the point B'(0,2). Find the
(2 x 2) matrix that represents this shear.
(84 S)

92. For each of the following assertions
concerning 2 x 2 matrices A and B state
whether it is true or false. Prove any
assertion that you consider true, and give
a counterexample for any assertion you
consider false.
a) ForallAandB,

(A — B)(A + 2B) = A2 + AB — 2B2.

b) ForallA,(A—I)(A+21)=A2+A—21,
where I is the unit 2 x 2 matrix.

c) For all A and B, (AB)T =ATBT where AT
is the transpose of the matrix A.

d) If A2 = A then A is a singular matrix.
(82 H)

93. The matrix M and non-zero vector v are
given by

Ii 41 FxM=I iandv=i
L2 —ii Ly

a) Find the components of the vector w
where w = Mv.

b) itisgiventhatw=AvwhereAisa
scalar, A R.
1) Obtain two simultaneous

equations in x andy.
ii) Show that the condition for a

non-zero vector v to exist is
A2—9=O

iii) Solve the equation A2 — 9 = 0. For
each value of A find the
corresponding set of vectors v and
give a unit vector in that set.Ii 41.c) Given the matrix N = i find

L—2 —ii
the components of the vector u where
u = Nv. Does there exist a value of the
scalar i, u O, such that u =

(83 SMS)

94. Itisgiventhat
M=I°6 0.8

L0.8 —0.6
a) Find vectors u and v such that Mu = u

and Mv = —v.

b) A transformation T: P —P' is defined
such that the coordinates of the point
P(x,y) are transformed to the
coordinates of the point P'(x',y') by
means of the equation

[]= M[''].
By using the result of part a), or
otherwise, find the equations of the
lines through the origin that are
invariant under the transformation T.

c) Describe geometrically the effect of
the transformation T and by applying
the geometry of this result explain
why T' = T

(84 S)
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5 M is the (2 x 2) matrix given by

M=1c0s0 —sin0]0<0<360,Lsin0 cosO
2 Icos 20 —sin 20a) ShowthatM

Lsin 20 cos 20
b) Using the result of part a), or

otherwise, find a (2 x 2) matrix X
with real elements such that X2 + I = 0,
where I is the (2 x 2) unit matrix and
o is the (2 x 2) zero matrix.

c) i) In the case when 0 =600, find the
matrices M2, M4 and M6,
expressing your answers exactly in
numerical form.

ii) What do each of the three
matrices obtained in part c)i)
represent when considered a
linear transformations of a plane?

(87 S)

96. A point P is reflected in the line with
equation y = x, to give an image point P'.
F' is given a positive (anticlockwise)
quarter turn about the origin to give an
image point F". Find the matrix M
corresponding to the single reflection that
would map P to F" but keep the origin fixed.
(82 S)

15 21 Ii 097. GiventhatA=i iandl=i
L9, Si [0 1

form the quadratic equation in ) given by
det(A — Al) = 0. Find the roots ,%., ,%2 of this
equation, where <it. Find a vector

=
[xi] such that Ae1 = Aiei, and a vector

e2 =
[x2]

such that Ae2 = A2e2.

Using these results
a) find the equations of two distinct

lines which are mapped onto
themselves by the transformation
represented by the matrix A,

98.Givenz=x+iy,z' =x' +iy' and
z' = (2 + i)z find the (2 x 2) matrix M such

that [x'] =
M[x]y y

(84 S)

99. The linear transformation L represents an
anti-clockwise rotation of 0 about the

origin, where 0 [o]. and the linear

transformation M represents a reflection
in the line with equation y = x tan a,

where a 10,L2
i) Show that

Iii Icos0a) Li =1LOJ LsinO

b) MIhl=Icos2aLOi Lsin2a
101 loand find LI I andMILii Li

ii) Hence, or otherwise, find the 2 x 2
matrices A and B which represent the
linear transformations L and M
respectively.

iii) Evaluate and simplify the matrices A2
and B2, giving a geometrical
interpretation of your results.

iv) Prove, by induction, that

A = Icos nO —sin nO
[sin nO cos nO

(85 H)

100. a) Show that the value of the
determinant

1 a i
1 1 a isa(a2—i).

a+i a 1

b) Find such solutions as exist of the
simultaneous linear equations

x+ay+z =2a,
x+y +az=0,

(a+i)x+ay+z =a,
in the cases (i) a = 0 and (ii) a = —1.

Give a geometrical interpretation of
your answer in each case.

b) if P= [xi x2] findPAP and deduce
y' y2

thatP'AP=I' 0
LO )

(83 H) (83 S)
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lot, a) Find, in terms of d, the value of the
determinant
d 5 —1
1 3 d•
14 7

b) Calculate the values of d for which the
value of the determinant is zero.

c) Find the solutions, if they exist, of the
simultaneous linear equations.
dx+5y— z=0,
x + 3y + dz = d,
x + 4y + 7z = 6,

in each of the following cases:
i) d=2;
ii) d=0

9
in) d = —

2
( S)

102. A is the (2 x 2) matrix given by

A=I
L4 5

a) Write down the value of the
determinant of A.

b) Write down the (2 x 2) matrix inverse
toA.

c) Using a matrix method, solve the
simultaneous equations
3x+4y= 12,4x+ 5y=.2O.

d) Find the area of the closed region in
the first quadrant bounded by the axes
Ox, Oy and the lines l and 12 whose
equations are 3x + 4y = 12 and
4x + 5y = 20 respectively.

e) i) Find a unit vector in the direction
of each of the lines 1 and 12, both
considered in the sense of x
increasing, and

ii) hence, or otherwise, show that
the value of the acute angle
between these lines is 1.8°, correct
to the nearest tenth of a degree

(() S

103. In a two dimensional rectangular
Cartesian co-ordinate system the points A
and B are given such that

OA=Il and OB= 11
L2i L4

12 o]a) The matrix L, where L = i i, mapsLO 2J
the points A and B onto the points C
and D respectively.
Find OC and OD, giving your answers
in column vector form.

b) The 2 x 2 matrix M represents the
transformation which reflects in the
line y = x all points of the plane.
1) Find the matrix M.
ii) Given that the transformation M

maps the points C and D onto the
points Eand F respectively, find
OE and OF, giving your answers
in column vector form.

iii) Given the matrix N =M x L show

thatN=I° 2
[2 0

iv) a) FindthevalueofdetNand
b) hence, or otherwise, compare

the areas of the triangles OAB
and OEF.

C) The 2 x 2 matrix R represents the
transformation which rotates through
180° about the origin 0 all points of
the plane.
i) Find the matrix R.
ii) The matrix S is given such that

S = R >< N.
a) Find the matrix S.
b) Find the matrix S'.
c) The transformation

represented by the matrix S
maps the points A and B onto
the points G and H
respectively.

1) ShowthatGH2=2and
ii) Calculate the angle between OG

and OH, giving your answer
correct to the nearest degree.

(87 SMS)



Generally, answer is not provided where
this is implied in the question.
Answers which will vary are also not

provided.
Some answers have been left in
unsimpl ified form, as a hint.
In general, numerical answers which are
approximations are given with
3 significant digit accuracy, and angles
to nearest degree, unless
otherwise specified in the question.

Chapter One
An Introduction to Vectors

1.1 Exercises, pages 9—10

1. a)c)i)k)I)
2. a) b) ; none
3. a) I='

b) IwI=3
c) IABI=2.5

4. a)
b)
c) •

80 N

ANSWER KEY

6. TM'—5cm;TB=RT4cm
7. a) TB, AC (There are others.)

b) ABCD,TBC,TBA

9. +++,++—, +—+, —++,
1-——, —+—, ——+,

10. a) y=z=0
b) x=z=0
c) x=y=0

11. a) z=0
b) x=0
c) y=O

12. a plane through the origin,
containing the z-axis,
equidistant from
the x- and y-axes

9. a) F
b) F
c) T

10. a) same length, same direction
b) PM=MQ

11. PB=u,QC=v
12. a) SR d) SF

b) none e) SI
c) JR f) none

13. a) 5 b) 4 c) 3

14. a=BD=EG=CF
b = AD =FG = CE

c = BE = DG =AF

15. a) AA'=BB'=CC'
b) PP'=QQ'=RR'=SS'

Your sketches will be of
three vectors equal to

a) AA' b)PP'
16. The plane would be entirely

'shaded' in.

1.2 Exercises, page 16

1. a) TWIIUVIIQRIIPS
b) wSIIvRIUQjITp
c) PRIIABIITV

2. a) TPITWandWSITW
b) TW±WSandRSIWS
c) TP±ABandUQIAB

(There are others.)
3. a) parallel

b) skew
c) intersecting
d) skew
e) intersecting
f) skew

4. No; use a different scale, or a
different direction for QR, and
redraw.

5.

C

100 N
25 N

5. AB=PQ
6. a) Yes; equal vectors have same

magnitude.
b) No; direction could be

different.

7. a) 245km,221°
b) 122.5km,221°

8. a) no
b) yes
c) no
d) no
e) yes
f) no

T

In Search of, page 20
1. a) a=42'

b) /3=530
c) y=26°

2. a) 3A=59°
b) 0=43'
c) =53°

3. a) 0.6m
b) 13°

4. a) 81.lm
b) 100

5. 10.4 m;27°;23°
A B
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b) Q(—L7)
) R(0,2,—2)

9. P'(5,3)
11. x=fiJ
12. a) 1rj-

b) [ior2/
14. a) 700m

b) 500m
15. x=—6;w=3
16. k=7,m=2,n=—1

17.
3 3

18. a) (3,2) d) (—4,0)
b) (—3,—2) e) (—6,— 1)

c) (1,5) f) (c—a,d—b)

1.4 Exercises, pages 30—31

1. a) PR
b) PR

2. u+v=v+u
3. a) a

b) b

c) a+b
d) b+a
e) c+b
f) b+c

4. a)
b) AC

c) BG
d) AG
e) DE
f) EF
(There are others.)

5. a) u+w
b) u+w
c) v+w
d) u+v+w

6. a) b)c)

7.

8. a) w=(—2,0)
b)

1.3 Exercises, page 25

1. a = (1,3)
b= (1,0)

= (1,—2)

d = (—2,--3)

s= (0,—4)

t=(—2,0)
u = (—2,—2)

v= (3,1)
w = (-3,-i)

P

6. a)

7.

8. a)

P

2.

//
//\

5. = fi,i=

b) AC = (5,—2)

c) (x,y) = (4,3) + (1,—5)
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1.4 Exercises, pages 30—31,
continued
9. a) (1,8)

b) (5,—i)

c) (2,1)

d) (2,1)
10. a) (3,—2,5)

b) (—4,—4,—i)

c) (—1,—8,8)

d) (-1,—8,8)
1. Vector addition is commutative.

12. a) (6)
b)

c) uI=1;Iv=5;
Fu + vJ= 10

d) no (triangle inequality)

13. a) (—3,9)
b)

c) IuF='fiö;IvF=2'[i;
Iu+ vI= 3fi

d) ui-vl=IuI+vI
(vectors in a line)

14. a) (7,6)
b) (7,6)

(u+ v)+w=u+(v+w);
Vector addition is
associative.

15. p=4,q=—9
16. a=(1,0,O)
17. 100

240

1.5 Exercises, page 37

1. a) AC
b) AC

2. a)
b) AC
c) AD
d) AE
e) AC

6. a)
7. a)

b)
c)
d)

8. a)

b)
c)
d)

9. a)
b)
c)
d)

10. a)
b)

11. a)

nob) (2) * 2
AC

x
AB

QQ

A diagram gives sufficient
explanation.
PP
0
no

5

(-3,-i)
(5,5,0)

5. commutative associative

yes yes

yes yes

no;
8—3*
3—8

no;
(8—3)—1*
8—(3—1)

no;
2+8*
8÷2

no;
2—(8÷4)*
(2÷8)—4

Fl = 260; bearing 023'
18. 8.26; bearing 226'

19. a) p+qI=6.6i
b) 0=25'

20. a) 4fiöor12.6
b) 13

21. 12.6<12-1-4;
A, B, C collinear

U +V

U

3. a) u+v=v+u=(1,6)
c) asa)

b)

4. b)
Iz

U
V

w

a) c) (u+v)+w=
U + (v+w) = (3,-i)

b) neither
12. a) \fjb)

c) 23'
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1.6 Exercises, page 42
1. a) F b)T c)T d)F
2. RS=QS—QR

3.a)RP
b) XZ

c) AB

d) 0

e) AC

4. a) PQ=OQ-OP
b) QR=OR—OQ

c) RS=OS-OR
d) RP=OP-OR

5. d=a+c—b

7. a) (3,—2)
b) (-4,9)
c) (1,-7)
d) (—1,7)

8. a) (_3,4,—9)

b) (7,2,6)

c) (—4,—6,3)

d) (4,6,—3)

9. (r-p)-(pr)
10. a) (—2,12)

b) (6,—6)

c) (-7,-1,-8)
d) (U7-6)

11. m=6,n—2,k9
12. a) (5,1)

b) (-8)
c) (3:2)

13. 0 (by vector addition)

14. a) (1,2,16)
b) (-5,-6,-3)
c) (4,4,—13)

15. (3,1)
16. (_4,_4,—4)
17. (—3,—2)

18. a) u+vIii7+Iv!2
b)

j
1.7 Exercises, pages 46-47
1.

5a

2. a)b)
3. a) 2u+v

b) 2v
c) 2v
d) 2u—2v

e) —2u—2V
4.

pIlrUs
pand rin same direction

5. a) BC=2AB

b) AB=BC
2

c) same slope

6. a) BA=(—2,3)
b) AC = (6,—9)

c) CA(—6,9)

7. a) (9M)

b) (—3,—12,21)

c) (3)
8. a) (10,5,—15)

b) 0
c) coplanar

9. a) 5Ji:
b) 0

10. Answers will vary.

11. a) v
b) 2u

c) —v

d) 0

12. a) B

b) 0

c) BA

15. 1
16. a) (5,2)

b) c)

A (2,3)

21
B (8,1)

17. a) MA=—MB
b) Mmidpoint of AB

c) OM=10A+10B
2 2

18. a) 16

b) 16

c) 5

d) 8.73

1.8 Exercises, page 51

1. AB=u;CB=2V—U
parallelogram

2. rhombus

3. AB=c;CB=a—C
2 2

trapeLoid

S
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1.8 Exercises, page 51,
continued

4. a) OS=2p
OT = 4q
QP = p — q
TS = 2p — 4q

QR = 3(p — q)
OR = 3p — 2q
TR — 6q

b) TR=TS2
12. c) parallelogram

1.9 Exercises, page 56

1. a) (1,1)
b) (—5,1)

c) (0,—2)

2. a) u=2i—7j
b) v=6i+j
c) w=—3i

3. a) (1,2,3)
b) (4,0,—i)

c) (0,—i,—')

4. a) u=2i—4j+6k
b) v=—j—k
c) w=lOj

5. a) 18i—6j
b) 2i—2j±2k
c) 151—5k
d) 2i+4j

6. a) —1-1-Sf
b) —2i—ilk
c) —8k

7. b,c,d,f

8. e,='(3,—4)

= (1,0,0)

= —i--- (2,6,—i)

= (-4)

10. a) PQ = (7,—5)

eQ = - (7,—5)

b) PQ=(—i,2,—5)

e,Q = (—i,2,—5)

11.

13 2

=

12.a) Jj b)f
13. a) ——(4,4,1)

b) (12,0,—9)

c) (0,0,—2)

15. AB=—i+4j

In Search of, page 59

2. a) triangular shapes
b) Canadian families
c) the school's classes
d) directions

(pointing either way)
e) lengths
f) integers,

e.g. (4,1) €3 but (1,4) —3
g) rational numbers,

e.g. (4,6)

Inventory, page 62
1. direction
2. vector
3. scalar
4. directed; ordered pair;

ordered triple

5. length (or magnitude); direction
6. —3;2
7. points; non-skew
8. verticals; parallels
9. intersecting; parallel

10. (2,—3,4)

11. IvI;3
12. (0,2)

14. LK

15. (10,5,20)

16. parallel;IkIuI
17. PQ = (—2,—2)

18. unit
19. 4i—3j

20. unit; (4,—3)

Review Exercises, page 63—65
1. a) equal lengths AP = PM;

same direction

b) AP=PM=MQ=QB
c) BM=MA=QP

2. a) PB=u
b) RC=u
c) DR=u
d) QC=v
e) AS=v

3. c) DON, zDOM, 4ZDOP
4. a) 60'

b) 550

5. a) DBandAC(Thereare
others.)

b) DAB,DBC,DCA
6.

2

7. P'(6,0,—1)

6
9.

10. a) w = (8,—2)
b)

13. FH c) w=2Ii



11. a) u 26. a)
b) v

c) b) 3,f
d) v+u _________

c) —a,e — b,f— c),wheree) u+v+W+Z K
12. k=—4,n=0,m=6 K=)2+(e_b)2+(f_c)2
13. 27. a) 2

400m b)
c)m135

B

d)
29 E

A 161 131
30. a) OP=IOIOQ=161

IABI=927m,beariflgO63°
L3J L6J

b) 0P2=45,0Q2=81
14. a) RP 0Q2*0P2+PQ2

b) 0 ____ C) RS=
15. LM=(—13,5,7) 2

d) 6J
16. a) AC-AB

b) AD-AC

c)-AB
17. s—p—r

18. a) (3,—6,—7)
b) (3,—2,9)

(-6M,-2)
d) (4,—12,--18)
e) (6,0,—b)

\2 2/
19. a) QR=2PQ

b) collinear

20. P(3,0,—1)
Q(7,—1,1)
R(15,—3,5)

21. a) 12.5
b) 10c)

22. a) DC

b)DB
c) 0
d)DC
e)AD

25. a) —15i+24j
b) 32i+16j—47k

Answer Key 489
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ChapterTwo
Linear Dependence

2.1 Exercises, pages 71-72
1. a) allb

b) a=sb,ma+kb=0
c) sdl. m, knot both zero

2. x=syormx+ky=0
3. The line segments can be parallel

and distinct.

z and dare linearly dependent.

milk

a) aIIPR
b) a PT

7. u,w,rt
8. all cliuliw II rJ f

bil v

9. a) (4,6),(6,9),(l,1.5)
b) sameasa)
c) (1,3)

10. a) (8,2,6), (12,3,9), (2,0.5,1.5)
b) sameasa)

c) (0,1,3)
C, e11.

12. a) aU,
b) yes

13. a) r=v=0
b) no

14. a)c)d)e)
15. a) DC

b) AE,EC
c) EC,AC

d) BE,ED
16. None are parallel.

17. a) PQ=(—1,3)
PR = (-2,6)

b) 2PQ=PR
c) collinear

18. a) AB = (4,2,6)
AC = (—2,-- 1,—3)

b) AB=-2AC
c) collinear

19. a) m=k=0;no
b) ifa=b,thenm=—k

if a = —b, then m = k;

20. a) s=t=0
b) r=0,m=3
c) x=1,y=—2

21. m=3,k=-5

22.
5

23. f=2a
26. Use AC = 3AB

2.2 Exercises, page 80
1. a) coplanar

b) a=sb+rc;
ma + kb + tc = 0

c) m, k,tnotall zero

2. kx+my+tz='O
x =ay + bz

3. A vector can be represented by
many parallel line segments.

4. a) coplanar
b) not all zero

8. a) c=3a—2b
b) f=—d—3e
c) h=—2g+5n
d) p=Oq—2r

9. 17
10. 0
11. a) a=3u

b) impossible
c) a=3u+Ov
d) a=3u+Ov+Ow

12. a) impossible
b) impossible
c) a=2u—v
d) a=2u—v+Ow

13. a) a=Ou+3v
b) a=Ou+3v+Ow
c) a=Ou+3vi-Ow+Ot

14. a) impossible

b) a=Zu+v+iw
3 3

c) a=Zu÷v+!w+Ot
3 3

16. m=2,k=0,p= 1

2.3 Exercises, page 87
1. w=x=z=0
2. a,b,d

— 1= 1—4. u = — v + — w
2 2

6. a) dependent, coplanar
b) independent, not coplanar
c) independent, not coplanar
d) dependent, coplanar
e) dependent, coplanar

7. b) c=2a+b,
d = 5a — 4b,

e = 3a + Ob

8. a)b)
9. b) d=2a+b—3c

e = Oa — 3b + 4c
a — b + 2c

12. a) w=3
b) w*3

13. a) m=lorm=—1
b) m+landm*—1

14. a) At least one is a linear
combination of the other

Making Connections, page 89
3. 5
4. 366 (377 in leap year)
5. 1096 (1099 in leap year)

2.4 Exercises, page 94
1. a) 2 5

P 0 R

2 - 5
0 P R

2. a) b) 7 7

4.

5.

6.

three.

b)

yes
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3. a) 8 8

b) OP+OR
5 5

>
9 9

d) OP+--OR
17 17

OP + OR
2 2

b) OD=-30P+40R

th -
2 2

b) -OP+OR3 3

>
5 5

b) \18 4 8
c) (4,4,2)

d) \5 55
e) (9,14,7)
f) (7,10,5)

13. OT=OA+OR
5 5

14. a) (3,—i), (5,6), (1,1)
b) (3,2)

c) (3,2)
d) (3,2)

e) concurrent; divide each
other in ratio 2: 1

In Search of, page 96

a) (1,2,3)
b) (3,2,—2)

127—71 34÷91 \
c) ,tj,t€R\ 13 13 /
d) no solution

2.5 Exercises, page 101

1. a) AnytwoofPQ,PR,QRare
linearly dependent.

b) Any two of AB, BC, AC are
linearly dependent.

AB = -2AC2.

4. PR=—2PQ
6. a) collinear

b) not collinear
c) not collinear
d) collinear

7. Scalars sum to 1.
a) 2:1
b) 3:4
c) 4:—l
d) —7:8

8.
3

9. a) m=5
b) n=

9
2

c) s=—-
3

10. a) PD, PR, PS are linearly
dependent.

b) AB, AC, AD are linearly
dependent.

11. PS=2PQ+3PR

13. a) coplanar;PS= 3PQ— 2PR

b) coplanar; WZ = WX + 2WY

c) notcoplanar
d) coplanar; KN = —2KM + OKL

14. kAB+pAC=0

15. a) AB=b—a,AC=c—a,
AZ = —6a + 2b + 3c

b) AZ=2AB+3AC

2.6 Exercises, page 105
1. 2:1
2. 7:2
3. 2:1
4. 1:1
5. 1:2
6. 1:k
7. 5:2;6:1
8. 5:7
9. 2:3

10. 1:k+1
11. 1:2

Inventory, page 108
1. collinear; ka; lb
2. coplanar; combination;

sa + tb;
zero;
ma + kb + PC = 0

3. independent
4. independent
5. a) 0;0

b) 0;0;0

6. a) (6,10)
b) (3,0)

c) (4,6,2)
d) (2,3,0)
Answers may vary.

7. 0;2m+4k=0
8. linearly dependent
9. linearly dependent

7510. a) 12 12

b) 22
11. a) collinear

b) coplanar
12. linearly independent
13. two; independent
14. three; independent

e)

4. a)

5. a)

d) 11OP-OR
5_ 5

e) 20P—OR

6.
5 5

7. a) between PR, closer to R
b) outside PR, closer to R
c) D=R

8. \l0 10

/27 50
9. a) I—, -\7 7

b) (I4
\13 13
/3 13c) \2 2

d) (_65,±\8 8
/89 73

e) i--, -\8 8
f) (18,11)

10. (, II, A'
\6 3 6

/31 34 1711. a) I—.\7 7 7

12. a)
11

b) 5:6



Review Exercises, pages 109—111

1. a) parallel
b) a=kb;ma+tb=0
c) kEl;

notboth m, tcanbe zero,
m, t

2. a) coplanar
b) a=kb+mc;

sa + lb +pc = 0
c) k,m,s,t,p€l;

not all of s, I, p can be zero.

3. a=b=0
4. s=t=r=0
5. 2a, —Sb, —7d

6. a) xIy,xIz,xw,
b) q,y,z
a, b,d

a) a, bare linearly
independent

b) a, b, c are linearly
independent

19. a) linearly independent,
not coplanar

b) linearly dependent,
coplanar

c) linearly independent,
not coplanar

20. b) 4a+ 2b

21. b) 3a+4b+c2

22. k=3(c=—2a1-3b)

23. a)
16 16

b)
12 12

c) OP+-OR8 8

d) 11OP+--OR
17 17

24. a) OAOB
4 4

b) _OA+ZOB
4 4

c) OA—OB
5 5

25. 20P—OQ
26. a) (—2.5,2, 5.75)

b) (1o12)
27.

11 11

28. a) PQ=kPR
b) AB=mAC+IAD

29. a) collinear, AC = 3AB
b) not collinear

30. a) coplanar,AB = 3AC — 2AD

b) not coplanar
31. 2:5
32. k=3,m=—1

34. a) AB=b—a,
AC = C — a,

AZ = 3a+ 4b — 7c

b) AZ=4AB—7AC
11:435.

36.
37.
38. 3:2;2:1
39. 7:6
41. a) AB=b—a

AC = C — a

AZ=—5a+2b+3c
b) AZ=2AB+3AC
c) coplanar

42. 11i+2j—-k
3 3

43.
5

44. A
45. D

492

7.

8. z,h,w
9. a) (—3,—5), (6,10) (1.5,2.5)

b) (3,0)
Answers may vary.

10. a) (—7,—1,2), (14,2,—4)
(2 1,3,—6)

b) (7,1,0), (7,0,—2)
Answers may vary.

12. b) (—3,2)=—2(l.5,—1)
c) (9,3,6) = 3(3,1,2)

13. 3a+4b
14. 2a—b+3c
15. not coplanar
16. yes
18. 5:6

3:2
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Chapter Three
The Multiplication of
Vectors

3.1 Exercises, page 120
1. a) 56°

b) 0°

c) 145°

2. a) 3.830; 3.213
b) —2.394; 6.578
c) 0,13

3. a) 1.50; 1.50e,
b) 1.12; 1.12ev

4. —0.342

5. a) 2i,—3j;2,—3
b) i,0;i,O
c) —15i,3j;—15,3

6. a) i,—4j, k; 1,—4,1
b) 21,0, 3k; 2,0,3
c) —21, —2j, 0; —2,—2,0

7. u=4i+5j+Ok
v = —2 i — 3j + k

8. a) a b) bj c) —ck

9. a) b)

11. a) 2
b)

2

c) 4j

d)

12. u±;,orlul=o
13. a) LuI=JvI14+v

b) u=vorulv
14. landi

16. a) 1

(i,i)
17. a) 13 -°

b) —12j+2k

3.2 Exercises, page 124
1. a) 12

b) 18.7
c) 0
d) 32
e) —3.14

2. a) 6
b) —0.5

c) 3
3. a) 0

b) 1

c) —1
4. a) vector

b) scalar
c) vector
d) vector
e) scalar
f) scalar
g) vector
h) vector
i) vector

10. No: u or v could be 0.
11. a) 50

b) —50
12. a) 0°

b) 100°
c) 90°

13. b) e) 1) are meaningful,
a) c) d) are not.

14. a) 4;4
b) no

3.3 Exercises, page 128
1. a) 14

b) —12
c) 0
d) 6
e) 0
perpendicular

2. 1
3. a) 0

b) I
4. t=2
5. a) 40°

b) 90°
c) 105°
d) 82°

6. a) 3

b) —
5

7. a) k=—5ork=3
b) O=88°orO=85°

8. a) 13
b) 26
c) x2+y2+z2

9. a) p=(5,4)
(or any multiple)

b)

10. a) —10
b) 9
c) 12
d) —2
e) 38

13. a) 7
b) J(,p3q)fi

15. k=2.566or0.234

3.4 Exercises, page 131

1. a) =71°,fl=61°,y=144°
b) 2,3,—S

2. a) 81°
b) 40°
c) 40°
d) 135°

3. a) 1

b) 6

c) 6
d) —4

4. a)

b)

5. BA.BC<0

6. a) P=123°,
3Q = 29°,
3zR = 28°

b) 3P=154°,
3zQ= 16°,

= 10°

7. u=41+Sj±Ok
v= —21— 3j+ k

8. a) (*) b) (**)
9. a) either the vectors have the

same magnitude, or they are
perpendicular.

b) Either the vectors are equal,
or they are perpendicular.

10. a) —7.21
b) —2(—3,—2) = (6,4)
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3.4 Exercises, page 131,
continued

11. (—2,3) =! (1,1) + (—1,1)

12. a) yes
b) no
c) yes

13. a) OP=—r
b) RC=c—r;PC=c+r
c) 0,sincelrl=IcI
d) RCIPC=Carightangle

14. cos 3CABD = = cos 9ZACD

3B = lzC A, B, C, D concyclic

3.5 Exercises, page 135

1. a) 5e;u,v,eRHsystem,
with e I u and e .1. v

b) 42e; as in part a)
c) 16.le; as in part a)
d) 17.3e; as in part a)
e) 33i
f) —33i

2. a) 0
b) i
c) —k
26.8
74.8

b) c) e) are meaningful,
a) d) f) are not.

11. b) no
c) no

15. a) No,buta,b,cmustbe
coplanar,
withiblsin 0 =Iclsin 4.

b) Yes,since0=and
a, 8 ,e, in same RH system

as a, c, e2.

16. Both sides equal i — j.
3.6 Exercises, page 145

1. a) k
b) 3(4,—l,—1)

c) (—46,—11,—14)

d) 0

b) (4,—1,—1)

c)
1

(46,11,14)
2433

d) any vector

4. 64.8

1 (ac),
sJa2 + b2 +
such that a — 38 + 2c = 0

pXq
0

5. a) 9.76
b) 61.0

6. 27.
3

8. a) a=24°
b) /3=17'
c) a=28°
d) 0=81'

9. No; sin 0 = gives two angles

in [00, 1801

10. a) (uxv)xw= (—28,—14,—14)
u x (v >< w) = (—30,—20,—4)

b) not associative

11. ix(uxk)=(0,0,—1) * 0

13. axc=—5(axb),andif
normals collinear

then a, 8, c coplanar

15. 4(3,3,1)

Inventory, page 147
1. tail
2. 2i
3. —3

4. resolving
5. scalar
6. vector
7. cross
8. vonu
9. parallelogram; U; V

10. cross
11. 1

12. 0
13. 0
14. negative
15. triple scalar product

16. a.bxc
17. perpendicular

Review Exercises, pages 148—151

1. a) 6i, —5j, —3k; 6, —5, —3

b)
c) —3i, 3j, —6k; —3,3, —6

2. a) 1.147;1.638
b) —3,782; 1.302
c) —5;O

3. a) u, vcollinear, same
direction

b) u, v collinear, opposite
direction

4. a) 5.73
b) —5

c) —92.1

5. a) 5.73
b) —1
c) —9.21

6. a) 2
b) 2
c) 2
d) 4
e) 0
f) 8

7. a) 12
b) —39

c) 0
d) 0

8. k=1

12. e,= 1
(2a—b)

V5+2f
13. a) 970

b)-
c)

d)-
e)

14. 2.24 or —3.57
15. c) 3

2. a)

3. a)
b)
c) 0
d) pxr.q

3.

4.
5.
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16. a) 3zP=4°
3:Q = 29°

= 147°

b) 4J'=90°,
3Q = 35°,
4R = 55°

17. a) 2
RN = —a — b

2

18. 2Ia+2Ic
19. a) 2.54e;u,v,eRHsystem

with elu and ely
b) 3.76e;asinparta)
c) 29.6 e; as in part a)
d) (4,12,—3)

20. e1 = 1
(—14,37,—26)

= _____ (_14,37,26)ii
54.2

no

a) yes
b) no
c) no
d) yes
e) yes

25. a) p=(5,—4,l2)
(or any multiple)

b)

26. a) 0=0°
b) 0=180°

27. 0 not defined

29. c) v must be perpendicular
to u and tow

30. b) 0+pxq+pxr=0
c) qxp+0+qxr=0

rXp + rxq + 0 = 0j a) y = 109.5°

b)
y=109.5°,a=fl=35°

c) each side 'i,
each angIe 60°

d) OD=i
OE= j
OF = k

Volume = - units3
6

34 a) sketch not provided

b) 11.1 1=
L8J L—2J

c) D(—4,—8)

d) 2

e) E(0,10); F(—4,2)
f) AreaOAEF=40

Area OBDC = 40

15. ii) AG:GL=2:1
6. i) p=4,q=3

D(-3,-3)

ii) E(—,F(—-,\ 8 8/ ' 4 4
37 a) 8

b) 5

21.
22.
23.



b) c) d)

2. 73.7 N, 52' between P and R
(or 23' between Qand R)

3. 295 N; 24' to horizontal
(or 66° to vertical)

4. 90° between 10 and 24
1 57° between 24 and 26
113° between 26 and 10

5. 56' between 15 and 11
147° between 11 and 23
157' between 23 and 15

6. 57.2 N, bearing 061°
7. 70.7 N
8. 49.7 N
9. 63.0 N for 40° string

75.1 N for 50° string

10. 78.7 N for 29° string
91.2 N for 41° string

11. 30.0 N for 80cm cord
35.5 N for 70cm cord

12. 5N
13. bearing 125°

4.2 ExercIses, pages 168—170

1. a) 10;bearingo37°
b) 91.2;bearing35l°

3. a) 11.0
b) c=63°,fl=35°,y=69°

4. a) 17.3e1+10e2
b) 98.5e1 + 17.4e2
c) 17.4e+98.5e2
d) —32.1e1 + 38.3e2

5. 73.7 N, 52° between P and R
(or 23° between Q and R)

6. 57.2 N, bearing 061°
7. 20.3, bearing 021°
8. 52.1 N, bearing 070°

9. —8.94i— 49.lj

10. a) 26.2i—236j+183k
b) a=85°,fl=142°,y52°

11. 252 000N;
a=83°,/J=37°,y=53°

12. a) (18,0,—6)

b) (—3,—4,2)

13. a) 180°—0

b) IrIIFIsinOe,
where r, F, e form
a RB system,

andlet= I
c) maximumat0=90°;

minumum atO = 0° or 180°

14. 7.07e + 7.07e2

15. 4.30;, + 6.45e2;
0= 34°

16. 843N
17. bearing 125°
18. 52N
19. a) I1I=176N

IFI= 85.9 N
b) 0.488
c) 77.2 N

20. a) INI=mgcosO

IFI= mg sin 0
b) p=tan0
c) mgsin0cosO

(or mgsin 20)

21. a) 56.6 N(horizontal); 113 N
b) 117 N (horizontal); 152 N

4.3 Exercises, page 174
1. a) 140

b) 15

c) 294

2. a) 743e1+ 669;2

b) 22300J
3. 1360000J
4. 507J
5. 0; situation impossible', since

force acts perpendicularly on
intended direction of motion.

6. 421
7. a) 384J

b) 697J
8. a) 2.5m

b) 6.26m/s
9. a) 1.47J

b) 5.42 mIs

Chapter Four
Applications of Vectors

4.1 Exercises, page 160

a)

1.

e)

13 17 17.7 40.3 424

resultant
bearing 067° 107° 316° 358° 179°

equilibrant
bearing 247° 287° 136° 178° 359°
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4.4 ExercIses, pagel8l
1. a) 47 kin/h, bearing 058°

b) 106 km/h, bearing 261°
c) 888 km/h, bearing 093°
d) 13 km/h, bearing 030°

2. a) 105 km/h, westward
b) 85 kmlh, westward
c) 101 kin/h, bearing 263°

3. 206 km/h, bearing 104°
4. 4hlomin
5. a) bearing 239°

b) 28mm
6. a) atanangleof7o°toAB,

upstream
b) 5mm

7. a) atanangleofO°toAB,
upstream

w
b) mm

v sin 20

8. a) SOkm/h,bearing287°
b) 50km/h, bearing 107°

9. 23km/h

4.5 Exercises, pages 186—187

1. a) (1,6); 6.08
b) (—4,—5,7); 9.49

c) (—12,4,4); 13.3
2. a) 340 km/h, bearing 115°

b) 340 km/h, bearing 295°

3. (43,45,—2); 62.3 km/h

4. a) (—21,47,0); 51.5
b) (—22,48,—2); 52.8

c) (—20,46,—i); 50.2
5. 206 kmlh, bearing 104°
6. a) bearing 239°

b) 28mm
7. a) 0

b) —20i
c) -9.33j
d) —20i — 9.33j; 22.1 in/s

8. a) 50 km/h, bearing 287°
b) 50km/h, bearing 107°

9. 15.017 km/h, bearing 070°

10. a) 547 km/h, bearing 106°
b) 547 km/h, bearing 106°
(Wind makes no difference,
here)

11. 613 km/h, bearing 072°
12. 53.3 km/h, wind from bearing

214°

In Search of, page 191

2 v2sina

2g
2v2 cos a sin a I v2sin 2a

3. tor
S \ B

4. a) describes a circle
b) v(t) = —a sinti+acostj

perpendicular to r(t),
withsame magnitude a

c) —r(t)
centripetal

5. a) describes an ellipse
b) v(t)=—asinti+bcostj
c) —r(t)

centripetal

Inventory, pages 192—193
1. vector
2. particle
3. newtons
4.
5.

6.

7.

8.
9.

10.

11.
12.

9.8 N
added
resultant

equilibrant
equilibrium
space (or position)

v = cos ai + sin cmj

v= cosai + cos /JJ + cos y k

components
13. parallel
14. direction; , j,k
15. magnitude; displacement
16. scalar
17. joules
18. dot product
19. zero
20. relative
21. vBc;;A8,VBC

Review Exercises, pages 194—195

1. 112N,atanangleof23°top

2. a) 739N,atanangleof
51° to horizontal

b) 51° below horizontal; 739 N
3. 158° between 85 and 40

39° between 40 and 50
163° between 50 and 85

4. No; no possible triangle

5. a) P1= 83.6 N;IQI= 33.4 N;
b) P1=24.6 N;IQI=49.2 N;

6. 161°

7. T=47.3N
1T21= 65.7 N

8. a) 81.3 N

b) a=36°,/3=116°,y=112°

9. fl 2253, bearing 340°

10. F= 22.81— 76j+ 60.8k
100-° 100-° 100-°

11. F=—e1+--——e2+—---—e3

12. 526 N, up slope

13. N416N
F=260N

14. a) 328 N for 45° string
268 N for 60° string

b) tension 80.6 N

thrust 63.2 N

16. a) 1270J
b) 495J

17. a) F=111e1+792e2

b) 111OJ

18. 1830J

19. 98.5 km/h, bearing 294°
20. a) 088°

b) lhrs6min
21. a) 55.7km/h,bearing35l°

b) 55.7 km/h, bearing 171°

22. v=24i—j—k
I11FS1 = 53.2 km/h
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Chapter Five
Equations of Lines
in 2- and 3-Space

5.1 Exercises, page 202

1. a) (2,—i); (4,2)

b) (8,—3); (5,—4)

c) (3,—1,4); (5,—2,i)
d) (—4,7,5); (1,0,—8)

(Answers will vary.)

2. a) r=(3,7)+k(i,5)
b) r= (—2,0) + k(—9,—2)

c) r= (6,9) + k(—2,4)

d) r = (3,2,7) + k(1,5,3)
e) r = (0,—2,0) + k(—9,—2,5)
f) r = (2,4,—3) + k(0,0,6)

3. a) r.(4,—6)+k(—2,i3)
b) r = (4,—6,2) ÷ k(—5,8,5)

4. a) r = (—5,2) + k(2,3)

b) r = (3,—5,2) + k(2,3,6)

5. a) r=(3,—i)÷k(—3,2)
b) r = (3,—1,—5) + k(0,—3,2)

6. r = (3,—i) + k(2,3)

7. r = (3,0,2) + k(3,14,1)

8. r = (3,—1,2) + k(1 1,19,1)

9. a) 12

10. b) between P1 and P2
c) k> 1 outside segment

P1P2, closer to P2
k < 0 outside segment

P1P2, closer to P

11. a) r=(3,8)+k(1,0)
b) r=(3,8,1)+k(0,1,0)
c) r=(3,8,l)+k(0,0,1)

5.2 Exercises, pages 206—207

1. a) (5,2) (2,4)
b) (—3,1) (8,—5)

c) (—2,0) (1,3)
d) (—4,i)(6,0)
e) (5,2,2) (2,4,—5)

f) (—3,i,-—2) (8,—5,5)

g) (—2,0,4) (1,3,2)
h) (—4,1,0) (6,0,—7)

2. a) 2,4

g)
b)

3. a) (—6,3) (—2,1) (2,—i)
b) fx=—2+4k

= 1 — 2k

Jx= 2 + 4s
= —1 — 2s

fx= —6 + 8t
ly = 3 —41

4. a) (—6,3,5) (—2,1,4) (—10,5,6)
b) 1x_6+8k

y = 3 — 4k

(.z= 5—2k
x = —2 + 4s

y = 1 — 2s

(z=4 —s
x = —10 + 41

y = 5 —21

1z=6 —t

5. a) r=(—3,4)+k(5,1)
Jx= —3 ÷ 5k
Iy = 4+ k

b) r= (—3,4) + t(i0,—2)

Jx = —3 ÷ lOt
Jy = 4 — 21

c) r = (—3,4) + s(6,—2)

Jx = —3 + 6s
= 4 — 2s

d) r = (7,2) + a(4,—5)
= 7 + 4a
= 2 — 5a

e) r= (8,—3) + m(1,0)

fx 8 + m

f) r = (8,—3) + k(0,i)
fx = 8

= —3 + k

6. a) r= (5,—3,4) ÷ k(—6,2,l)
Ix = 5 — 6k

y = —3 + 2k
Lz= 4 ÷ k

b) r = (5,—3,4) + t(2,5,—5)
x = 5 + 2t

y = —3 + 5t
lz= 4— 5t

c) r (5,—3,4) ÷ s(6,7,—2)
x = 5 ÷ 6s

y = —3 + 7s
L. z = 4 — 2s

d) r'(7,2,—1)+m(4,—5,1)
x= 7 + 4m

y = 2 — Sm

L. z = —1 + m

e) r=(8,—3,4) +k(l,0,0)
Ix = 8 + k
I Y = -3

f) r= (8,—3,4)+s(0,i,0)

1x = 8

y= —3 + s

lz=4
g) r= (8,—3,4) + 1(0,0,1)

Ix = 8

I = -3
Lz=4+t

7. yes:A,D
no: B, C, E

8. yes:A,C,D
no: B, E

9. a) no
b) yes
c) no

13. a) fx=k
ly = 2.5 — 1.5k

b) fx=3+2t
= —2 — 3t

14. a) fx=—3—4k
= 2 ÷ 7k

b) k=_t3
—4k=
7x+3

—4 7

15. a) 1x=—3÷2k
y= 2 — 4k

Iz = 1 + 7k

b) k=X±_3
2

—4

7

2 —4 7
/41 3016. c) \9 9

b) 8,—5
c) 1,3
d) 6,0
e) 2,4,—5
f) 8,—5,5

1,3,2
6, 0, —7

b)
3
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=
—2 5

b) 4 —1

c) 4 2 3

—1 5
none exists

—4 3

4. a)

b)

2 5 —5

d) ==--
4 —5

e) f) g) none exist
5. r (1,—3,5) + k(4,2,—3)

6. 2
7. —0.5
9. 3
10. a) 3,4

b) 5,—2
c) 1,—5
d) 2,0
e) 0,1

11. a) —4x+y+l3=O
b) 6x+4y+20=0
c) 2x— 3y+ 29=0
d) —2x—4=0

12. parallel: a) d) e)
perpendicular: b) c) f)

13. b) r = (3,5) + k(5,—2)

14. a) r=(1,—3)+t(7,4)
b) r = (1,—3) + k(4,—7)

15. 7
16. —7.5

17. 6x—5y—8=0

18.
7 —4

19. b) no

5.4 Exercises, page 217
1. a) —3,—2,4;6,4,—8;1.5,1,--2

(Answers may vary.)
b) 0.5571, 0.3714, —0.7428
c) 56°, 68°, 138°

(or 124°, 112°, 42°)
2. a) —0.1690,0.5071,0.8452

100', 60°, 32'
b) 0, —0.5300, 0.8480;

90°, 122°, 32°
c) 0.9370, —0.3123, —0.1562;

20°, 108°, 99°
d) —0.4472, 0, 0.8944;

117°, 90°, 27°

5 2

b) 1 0 8

2 4 5

d)
8 5 5, , v
3 8 5

f —3 3.5 —9iö5 5
3

4. 0.8660

5. 69°(orlll°)
6. r = k(± 0.6855,0.7071,0.1736)
7. 60°
8. 63°

3 1 2
4 22 5v'vi'

12 6 7

13 ( i i 1

5.5 Exercises, page 221
1. a) Lines do not intersect:

no solutions.
b) Lines are identical:

an infinity of solutions.
c) Lines intersect in a point:

one solution.

2. a) intersect at(3,—2)
b) parallel and distinct
c) parallel and identical
d) intersect at (1.2,1.4)

3. a) consistent and independent
b) inconsistent
c) consistent and dependent
d) consistent and independent

4. a) (—1,5)
b) (4,—2)
c) parallel and distinct
d) (3,—i)

5.
6.

10. a) r= (3,10) + f(4,3)

b) \25 25
13c) —

5

-' (7911. r=k—,—\8 4

5.6 Exercises, pages 227—228

1. a) (—1,5,4)
b) (5,—2,4)
c) skew
d) parallel
e) (3,—1,—4)
f) skew

5.3 Exercises, pages 213—214

1. a) (3,2); 5,6
b) (—1,4);2,—7
c) (2,0); —8,3
d) (3,3); 2.5, —4

e) (2,4,1,);3,8,5
f) (—3,2,1); —3, 3.5, —9
g) (2,4,7); 3, 5, 0
h) (1,2,—2); —3,0,4

2. a) r=(3,2)+k(5,6)
b) r=(—1,4) + k(2,—7)
c) r = (2,0) + k(—8,3)

d) r= (3,3) + k(2.5,—4)

e) r= (2,4,1) + k(3,8,5)

f) r = (—3,2,1) + k(—3,3.5,—9)

g) r= (2,4,7)+ k(3,5,0)
h) r= (1,2,—2)+ k(—3,0,4)

3. a)

d)
e)
f)

(—2,—i)

(5,15)
7. (—1,2)

8. a) r=(1,4)-1-k(2,2)
b) r = (—5,6) + l(7,—5)

c) r= (3,—2) +s(5,—7)

d) \ 33
9. a) r=k(8,4);

r = (5,0) + t(—2,4)

b) (4,2)
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5.6Exercises, pages 227—228,
continued

2. consistent and
independent: a) b) e)
inconsistent: c) d) I)
(2,—1,5)

(5,2,15)

(3,—1,2)

4 126

1466' V
7 b)

8. b) fü
c) P1(2,3,—2); P2(4,—3,—4)

9. a) (4,—1,3)
- 25b) cos

10. Th lines intersect at (—2,4,—i).
11. a Lat(6,11,1)

b'

c) (2— 1,3), (4,1,—3)

12. a) r=k(,l,-)

b) (,1,L)
13.

15. a) yes b) no c) no
16. a) (5,—3,—i)

d) ForL1,leta = Oandb =

ForL2, letp = 1 andq =

(Answers may vary.)

5.7 Exercises, page 233
See answers to 2.6 Exercises

Inventory, pages 237—238
1. position vector of

any point on the line;
position vector of
a given point on the line;
a direction vector of the line;
a parameter

2. (1,4); (3,5); k

3. (5,—1,0); (—2,3,—6); 1

4. (—4,2); (3,—5); s; —

5. (0,—1,4); (—6,1,0);

6. (3,—2); (4,—3)

7. (—1,0,3); (4,4,1)

8.

9. 1;
the angle between the line and
the x-axis direction;
the angle between the line and
the y-axis direction;
the angle between the line and
the z-axis direction

10. 1
11. parallel
12. parallel (or) skew
13. an infinite number of;

an infinity of
14. one;one
15. no;no
16. the shortest distance between

two skew lines L1 and L2;
a point on L1, a point on L2;

m1 x m2

17. (2,4,7)

Review Exercises, pages 239—243

1. a) r= (2,—5) +k(3,2)
Jx= 2 + 3k
ly = —5 + 2k

b) r = (—5,—4) + t(6,—2)
fx = —5 + 61

= —4 — 21

c) r = (—7,0) + s(2,—5)

fx = —7 +
t-y = —5$

d) r= (2,1) + k(—3,—2)
Jx = 2 — 3k

= 1 — 2k

e) r=(—4,1)+k(1,0)
J x = —4+ k

= 1

f) r=(—4,1)+t(0,1)
fx=—4
ty = 1 + I

2. yes:A,B
no: C, D

3. a)
—2 —4

b)
—2 1

c)
1 —1

4. a) 4x+y+9=O

b) 8x— 2y— 32=0
c) 4y+20=0

5. a) perpendicular
b) parallel
c) perpendicular

6. r = (—3,6,1) + kc, where c is
any linear combination
ofaand b

7. b) r=k(b+d)
c) r= b+t(d— b)

8. c) r=(3,4)+k(7,2)

9. a)
—3 —1

b)
1 —3

10. —
5

11. —2

12. a) r= (2,3,0) + k(4,2,—2)
x=2+4k
y = 3 + 2k
z = —2k

4 2 —2

b) r= (—2,3,5) + t(5,—4,1)
x = —2 + 51
y 3 — 41

z= 5+1

5 —4 1

c) r= (1,0,10) +c(1,2,—4)
x= 1 +s
y = 2s

z= 10 —4s

= =
1 2 —4

d) r = (5,6,10) + m(—2,1,3)
x = 5 — 2m

y=6+m
z= 10+ 3m

—2 1 3
e) r = (—4,3,6) + k(1,0,0)

x = —4 + k

none exists
f) r = (—4,3,6) + 1(0,0,1)

x = —4

y=3
z=6+f
none exists

3.
4.
5.

6.

y=3
z=6
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13. a) yes
b) no
c) yes

14. a) r= (3,—2,1) ÷ k(1,2,6)

15. r= (—1,—2,4) 4-s(—3,L4)

16. r= (4,1,5) + k(—25,14,2)

17. r = (3,—1,3) + k(4,5,—1)

18.--
17

19.
20.
21.

22.

a), d)

a) r= (1,—2,3) + k(1,3,2)

b) r = (1,—2,3) + k(1,3,—2)

24. k—2m

I14k2 + 2km + 5m2
2k

+ 2km + Sm2

3k + m

+ 2km + 5m2

k, m C I with k and m
not both zero

2 3 425. a)

26.

27.
28.

b)
2 5 1v' ' o

2 1 3
C,

r = k(O.9063,0.0839,O.4135)
a) intersect at (2,1)
b) parallel and distinct
c) parallel and identical

29. a) consistent and independent
b) inconsistent
c) consistent and dependent

30. a) intersect at(6,—1)
b) intersect at (17,5)
c) parallel and distinct

31. a) (—2,14)
b) 27

32. r=d+k(d—b)
33. a) S(O,4,0), T(O,O,3), U(2,O,3)

b) A(O,O,1.5),B(2,4,1.5)
34. a) intersect at (2,9,1)

b) skew
c) the same line
d) skew

35. a) consistent and independent
b) inconsistent
c) consistent and dependent
d) inconsistent

36. (4,6,2)
37. (3,—4,3)

38. b)

39. a) (1,7,—5)
b) 38

40. intersect at (—7,—2,O); direction
vectors are linearly dependent

41. intersect at (8,3,5); direction
vectors are linearly independent

42. a) 7
b) r= (1,1,—3) + k(2,3,6)

43. a) yz+2
b) x==Z+5

2 4

52. r = (—1,2,1)

s3. E
54. a) 2y—x=18

b) 3y—4x=—3
c) H(12,15)
e) The three altitudes are

concurrent at H.

f) S(1,2)

—2

57,

44. 11:4
45. 5:6
46. 3:2
47. 3:2;2:1
48. 7:6
49. Q1(3,5,7)

Q2(—1,—3,—1)

50. a) P1 (3,0,2)
P2 (1,—3,—4)

5' (i) (1,1,—i);
2x — + z = 1

(ii) 1
3



b) line in plane
c) (1,—5,4)
d) (1,—2,-3)
e) (2,0,-6)
f) (0,2,5)
g) (—6,10,—8)
h) (2,—4,—6)

2. parallel and distinct: a) g)
parallel and identical: d) h)

4. 3x+6y+z—21=0
5. 4x—2y+7z=—46
6. a) A+48—6C+D=0

b) 3A÷5c+D=o
c) (A,B,C).(3,—4,2) = 0

d) 36x+29y+4z—128=0
7. 8x—y+4z=0

(4,0,5) + k(—i,2,4) + s(3,2,—6)

6. r=
(3,2,1) + k(2,—3,0) + s(0,5,—2)

7.

8.

r= (5,6,7) + t(1,0,5) + k(2,0,—1)

r=
4
7

(2,—3,l) + k(3,4,—8) + s(5,—2,4) 20.

b) r=
(1,2,—3) + k(3,—6,2) + s(4,—2,1)

11. r = (3,0,0) + k(3,2,0) + s(3,0,—7)

12. r = (2,3,1) + k(3,—7,i) ÷ s(0,0,1)

13. a)
b) r = (3,5,8) + k(—2,2,5) + sa,

where a (—2,2,5)

(2,3,1) + k(6,3,O) + s(0,4,6)

(1,3,2) + k(2,i,-2) + s(2,-5,10)
none

x + 2z = 4

2x+8y+ 13z=5
r = (1,0,—i) + k(0,3,1) + s(4,8,—i)
25x + 3y + 6z = 15

7x — 2y — 13z ÷ 49 = 0

All sets are coplanar.
33. 2x—y=0

34. 4y+z—7=0
35. 2x—y+z=6
36. a) AB

b) B=0
c) —7A+18B÷i1C+D
d) A=B=0
e) 4A—B+3C=O

f) 4 —13
37. a) cosO=

AA2 ÷ BB2 + CC2

6.3 Exercises, page 262
1. a) point (1,10,4)

b) seed)
c) point (2,2,—7.5)
d) infinity of solutions:

line lies in plane
e) point (3,5,—i)
f) g) no solution: line parallel

to, but not in, plane

3. b) (1,3,5)c)
4. —2x+3y--z=3

5. —
6

6. r = (4,0,0) ÷ k(0,2,0)
7. a) x=2+3k

y3—k
z = 2k

b) (5,2,2)c)
8. (—6,4,1)

10. (2,—3,0)

6.4 Exercises, page 266
1. a) intersect

b) parallel, distinct
c) parallel, distinct
d) parallel, identical
e) intersect
f) intersect

6.2 Exercises, pages 256—257

1. a) (3,—5,4)
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Chapter Six
Equations of Planes

6.1 Exercises, pages 249—250
1. plane:a)b)d)

line: c)

2. a) (3,4,5), (O,—4,6)(2,i,5)
b) (0,1,9), (2,3,—4)(—1,—2,9)

c) (4,—2,0), (3,4,—i)(2,0,5)
3. a) r=

(3,2,7) + k(4,6,2) + s(0,—2,5)
x = 3 ÷ 4k

y = 2 + 6k — 2s
z = 7 + 2k + 5s

b) r=
(2,-3,i) + k(5,-3,-l) + s(2,3,1)

1x= 2 + 5k +
y = —3 — 3k ÷ 3s

(z= 1 —k+s
c) r=

(3,2,—7) + k(i,5,—8) + s(5,—3,—i)

ix = 3 + k + 5s

j y = 2 + 5k — 3s

z = —7 — 8k — s

4. a) (5,—9,17)
5. r=

x — — 20z + 103 = 0
2x — y+ z = 3

— z = 0

z = 0, x = 0, y = 0
8x — — 7z + 47 = 0

8.
9.

10.
11.
12.
13.
14.

15.
16.
17.

18.

10. a) -;= -
5

(2,5,1) + k(3,—6,2) + s(4,—2,i)

14

14.

15.

21. x—4y+3z=16
22. 26
23. x—y — 2z—7=0
24. a) 62

b) 66
25. x—z= —3
26. 14x+16y+3z-1.47=0
27. 14x—19y—4zi-58=0

9 2928. k=—,m=—-—7 7

29. 19x—7y—22z=26
30. 6
31. 5x— 2y+ 1iz= 0
32. b) 6x—7y+2z+11=0

16.

17.
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2. a) r 20—19tI X =
13

i4i-14t
13

tz=te) ( 5—t
I x=—
I

1—t1'3
1.z=t

f) I '2t—1
I x=—

—50t+25
14

Z=t
3. a) 3x—2013y—14z

—19 14

e)
—1 —1

f) 7x+ll4y—25z
14 —350 7

4. 13x+4y—lOz+21=0
5. —6x—5y--4z+13=0
6. a) Ix=2t+1

j y=t—3
lz= 5t

b) (0,—3.5,—2.5),
(7,0,15),
(1,—3,0)

8. r = (—3,0,1) + t(2,4,—3)

9. a) k=4
b) k=—2.5

k=7
a) Ix=2t÷l

I = —t —
tz = 3t+ 2

c) k=3,m=l1
23x — 26y — 14z+ 17 = 0

6.5 ExercIses, page 274

1. a) CD® parallel, and distinct
not parallel

b) D identical,
®parallel and distinct

c) identical
d) parallel and distinct

2. a) point(2,1,—1)
b) intersect in a line
c) point (3,—2,—1)
d) intersect as a triangular

e) point (_21)
f) intersect in a line

3. a) consistent, independent
b) consistent, dependent
c) consistent, independent

d) inconsistent
e) consistent, independent
f) consistent, independent

4. k*—
19

5. 8

6. 3

7. Ax+By+Cz+D=0,
where B = —2A, C = 3A, D * —5A

8. a) line
b) triangular prism
c) point

9. a) m*±1
b) m=—1
c) m=1

10. a) linearly independent
b) coplanar
c) coplanar

6.6Exercises, pages 278—279

71. a)

b)

5
c)

712. a)

3 a)

b)
5

c)
d)

74. b)

105. a) 71
7b)
9

c)

6. b)

7. a)

4418
b)—-

28. —2or——
3

9. 3or—15

10.

11.--

12. (3 4i,0,0)
1313. a)

1444j 103b)

14. a) r=(—4,1,0)+k(4,0,5)b)41

prism

13.
14.

b)

c)
88

c) 2

15. a) 5x—13y—4z+33=0
33b)

11c) —
2

16. 55.69 m
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Inventory, page 282
1. the position vector of any point

on the plane;
the position vector of a given
point on the plane;
vectors parallel to the plane;
parallel to;
parameters

(1,—2,6), (2,5,—7), (3,—4,1)

(3,0,—3), (2,5,9), (—4,2,2)
two; line

(3,4,5)

parallel
in a point
in a line

a triangular prism
3A ÷ 2B + 4C=0

a point
the line itself
the distance from a point P to a
plane U;
a point on U;
a normal to U

14. the distance from the point P to a
line L;
a point on L;
a direction vector of L

Review Exercises, pages 283—287

1. a) r=
(1,3,6) + k(0,2,2) + s(1,6,5)
Ix= 1 +s

y = 3 + 2k + 6s
I z = 6 ÷ 2k + 5s

b)
(5,—1,4) + k(2,2,4) + s(4,—1,2)

ix= 5 + 2k + 4s
y = —1 ÷ 2k — s

Iz = 4+ 4k + 2s
c) r= ______

(1,2,3) + k(0,3,3) + s(i,—5,—7)
x = 1 + S

y = 2 + 3k — 5s

Iz = 3 + 3k — 7s

2. r = (0,1,4) + k(—3,4,2) + s(2,—5,i)

3. r=
(—1,0,1) + k(2,O,—4) + s(0,2,—1)

4. r=(0,6,1)+ k(1,2,5) +s(3,2,—1)

5. r=
(0,3,—i) + k(4,8,—3) + s(2,—1,5)

6. parallel and distinct: a) f)
parallel and identical: b) d)

7.

8.

x + 3y + 5z = 1

\3 3
2x — — 19z + 5 = 0

x+ l7y+ 13z=5
6x+y—z=5
y — 2z = 0
x — y + 2z + 9 = 0

r = (0,1,0) + k(2,3,0) + s(0,i,2)
21'

16. 25'
4x + 3y = 0
z= 3

a) point (—5,3,2)
b) point (2,3,0)
c) line lies in plane

20.
2

22. a) Each line has the same
normal (A,B). Different
values of C give different
lines.

b) Each plane has the same
normal (A,B,C). Different
values of D give different
planes.

24. 2x— 2y—z=3
25. x+z=0;

5x — — 3z=0

26. r = (4,0,0) + k(0,2,O)

27. (4,8,3)
28. a) parallel and distinct

b) parallel and identical
c) f 13

I x=1——t
I ii

14

Yjjt
(z=t

d) 1 4 3
I tJ 55
ly=t

z= 1 — 3t
2x + 3y — z — 6= 0
x - y — z = —6

2x + y — z = 1

32. a) —30

b) 7
33. a) parallel and distinct

b) parallel and identical

34. a) point (4,0,—2)
I 3t+13

b) iinejI=5
LZ=t

c) a triangular prism
d) point (3,0,—3)

35. a) consistent and independent
b) consistent and dependent
c) inconsistent
d) consistent and independeni

36. a) k*—3,k*—i
b) k=—3
c) k=—1

37. a=2
b=8
c =7.5
deR,d*4.5 andd* 2.25

39. a)

b)

' 44

d) 0 (point in plane)

40 a)

b)c)
e)

42. 27a—7b=0
43. _____

44I0

2.

3.
4.

5.

6.
7.
8.

9.

10.

ii.
12.
13.

9.

10.

ii.
12.

13.

14.
15.

17.
18.
19.

30.
31.



45. —2 or — 60. a) (6,—1,3)
3 b) x=1+6t,y=—t,Z2—3t

46. a) a=2 H(—5,1,5)

b) a*2 5C) 9=-
C) nba exists 3

47 Z
3

48. r = (1,0,1) + k(7,l,—5)

x=
33

13p—2q--3w
33

=
11

50. a) any plane that passes
through (2,1,—2),
for example x — y + z = —1

b) x+y+z+k(2x—3y+Z) 1+3k,
for all k,
for example 3x — 2y + 2z = 4

c) x+y+Z-I-k(2x—3y+Z)1,
where t * 1 + 3k,
for example 3x — + 2z

51. (14,6,0)
52. a—2b+100
5• a) x+y+z=1

b) x—y—z=—l
c) 71
d) 2

e) —

3

56. a) 1x=2—71
y= 1 + 5t

I.z= 3 + t
b) c=1
c) 9x+16y—17z+l7O

b) 3i+3j+4k
c) x=p+ 1,y=3,z=3p—2

(Answers will vary.)

58. a) P(—1,2,1)
b) (7,—3,—5)

7x — 3y — 5z + 18 = 0

c) 1.98 units

a) 42

b)

c) OB=i+4j+2k

Answer Key 505
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Chapter Seven
Matrices and Linear
Transformations
7.1 Exercises, page 294

1.

a11 = 3, a14 = l.a23 = 5,
a33 = 8
a13 = 0, a32 = 0
x = 4, y = 2, w = 0,z = 3
x = 3, y = —2, w = 8,z = 8
x = 1, y = 9, w = 5, z = 1

a = 16, b = —3, c = 0,
d = —12

2 8a = 17, b = ——, c = —,
3 3

d = —29
x = 3, y = 2, z = 0

[—2 —3
[1 1

1—15 0
L 90
1—17 —3
L 10 1

[ 4 12

[—2 5- -18

[:2]
[ 18 24
[—io 10

18 24
L—io 10

[—30 0
[ 18 0

[—30 0
L 18 0

0
2

2
6 9

_—3 —3
7 3

—4 —i
.—1 —

2

1
2

7. x=2,y=5
contradicts
x—y=4

8. Answers will vary.

7.2 Exercises, page 301
1. F,G,T: yes

H, R, S: no

2. =13 0
LO 4

G=[l i
Li —1

r=I 0 3
[—1 0

4. a) [ 3]
b) []

5. a) x=——,y=——

b) x=2,y=i
c) x=y=0
d) x=±3,y=±i,

z can have any value

6. x2+y2=0=.x=y=0
contradicts
3x + 5y = —i

7. Mu=I
L8
1—12Mv = I

L 9
EiiMw =
L —2

1188. a) I
L 24

b) P7Lii
hoc) I
L66

d) 1 174

[—102

so M(N;) * N(Mv)

9. a) MO=[0]

b) Mi=[2]

c) MJ=[3]
so MO =0

Mi= first column of M
Mj = second column of M

10. a)

11. For example,
a) A(0,l) B(i,3)
b) A'(5,0) B'(12,2)

2 10
c) y=—x—-—-

d) L'

A2 x4
B3 x 2
C4 x 1

2. a)

b)
3. a)

b)
4. a)

b)

c)

d)

5. a)

b)

c)

d)

e)

f)

g)

h)

1)

6. a)

b)

c)

d)

b)

2

y

6

Nv —
32 6

w
x
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12. a) C(—2,3)
b) A'(—5,3)

B'(2,12)
C'(7,9)

O'(O,O)
c) a parallelogram

7.3 Exercises, pages 306—307
2. 1 leaves plane unchanged

022 maps plane to 0
13 0

3. a)
LO 3

b) 1 0
L0 —1
101

c) I
[—1 0

d) 1_i 0
L 0 —'
lo 0

e) I
LO 1

f)
0 —1

[—1 0
4.

6. A: projection onto y-axis

B: dilation x
2

C: shearllx-axis of factor 3
D: dilatation x —2
E: stretchllx-axis of factor 4
F: shearijy-axis of factor 4
G: maps to line y =x
H: dilatation x —3 and

reflection in y = x
I: identity
J: projection onto x-axis and

reflection in y-axis

A

0 R'R 0
o p'p

B

RLQ
R' fth a

E

(1,0)

(a,0) — (a,0)
b) remains unchanged
c) (0,1) -* (2,1)

(a,!) -÷ (a ÷ 2,1)

d) moves 2 to the right
e) (0,b) — (2b,b)
f) if b> 0: moves to the right,

by a factor of 2b
if b <0: moves to the left, by

a factor of 2b

15 111. a) L ii
•i: 0141b)
0

4J
2 01c) 0 3]

ri iiiI
d) 1 1

L 2•]
Ii —i]e) L 'i
11 01
L5 1]
1—4 01

g) L 0 4]

10

10. counterclockwise rotation by
30,about0 0'

a
R'

0 Px

12.
a)

G yI

0'
R Q
ROP x

f)

C H fl
RLQ R—1Q________ RI

OL _________0' P

o yI

I RI Q

PL
x 0 PP x

RLO

RRLO0.

b) ,

0 R R]
y1 J yI 01

P P

RRQ

0 C) y
I I P R1__-_.O

Q'
0 P Px p fl x

RkQ
OIPP,

e) y1

R

' RQR 1° __________0 P P'

1pp'

a)

b)

RLQ
I IP

01 IP

R.rQ

C) Y
RLQ
I IP

01 IR'

d)

RLQ
01 I

P1 I
0 R

e)

0' R'
H 0

p,P
I'

t)
ALa
oI IRI I P x

alp'

f) y1
P.

RR Q

OFPP,

8. 0
9. a)

5. same transformation

d)

RLQQ
R'-VflP'

DIP



b) [3 _11[01[_2
L2 4iL2i L 8

[3 —i][ il_I 4
[2 4j[—lj — L—2
[3 —1][3]_[8
[2 4j[ij[10

c) new directionvectors
181 [—8
I iandi
L1OJ L—10

7.3 Exercises, pages 306—307, 16. a) dilatated by k

13. 1 cos 45° —sin 45°1I or

continued

k[sin 45° cos 45°] F? 0
P.

p kXI-7
] b)Ii 1 Ixl rk1 k[XlsI 1=1 1=

Ly] LkyJ [yJ
c) entire plane dilatated by k

14. a) s1opeAB=s1opeDC=— 17. a)5
AB I DC

5. a)

b)

c)

6. a)

b)

c)

7. R3=

1 1

1 1

1

2 2

2

2 2

2

_i i_

1 1i
2 2

2 2

2 2

2 2.i.
2 2 =R

-60

2 2-in
2 2 1=M210

_2 2

c) slope A'B' = slope D'C' =

A'B'IID'C'
15. a) direction vectors collinear

y

/4

/

b) s[x]=[2x+3']=[ a]y 6x+9y 3a
c) entire plane mapped to line

y = 3x

7.4Exercises, pages 313—314
[0.77 —0.641. a) i

L0.64 0.77

b) [0.17 —0.98

[0.98 0.17
10 —i

c) I

Li 0

d) [—0.34 —0.94
L 0.94 —0.34
1—0.94 0.34e) I

L—0.34 —0.94

f) 1
0.95 0.31

[—0.31 0.95
10.77 0.642. a) I

L0.64 —0.77

b) 10 1

[1 0
[—0.94 —0.34c) I

L—0.34 0.94
3. b) det(la))= 1

det(2a)) = —1

4. b) det(le))= 1
det(2c)) = —1

det(1) = 1

same area and orientation
det(022) = 0
zeroarea, orientation not
defined

det. a.s.f. orientation10.

A 0
B 0.25
C I
D 4
E 4
F 1

G 0
H -9
1 1

J 0

0
0.25

4
4
1

0
9
1

0

undefined
same
same
same
same
same
undefined
reversed
same
undefined
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11. a) k=4
b) k=1
c) 2

12. det(S) = 1

same area and orientation

13. det(M)=0
area zero

14.

P.

a) 3
b) O'(O,O)

P'(—12,15)
Q'(6,—4)

c) 21
d) OPQ and O'P'Q' have reverse

orientation

15. a) OP.OQ=O
b) O'P'.O'Q'=-132

4zP'O'Q' = 1620
no

4. 3cos 6 = —, sin 0 = —

5 5

[4
13
Ls 5

[4 3I
13
Ls 5

18. K: rotation through 37°
L: rotation through —60° (or

3000)
M: reflection in line

I i\y = tan _8)x
where 0=—37°

that is, liney =

N: rotation through 67° + 180°,
that is, 247°

7.5 Exercises, page 318
1. A,G

2. B_1=I2 0
LO 2

c-'—I'
LO 1

0
D'=l 2

I 0 —
L 2

0
E' = I

LO 1
1 0

L—4 1

0 -
H'=

— 0
3
0

LO 1
cos 30° sin 30°

L—sin 300 cos 30°

[4 3
K'=II "

L5
L' =-1 —3

25L3 4

-1 YIH I

R
R 0 IP

a,P,

3.

c_i

R' a RLQ
—z1IP

01

P.

0 x

a,

c)

17. a)

b)

c)

J_i Y
R1B a

a'
oN'p

P.

E1 Kl YI
R'IQ Fb0_a °'

RI iO _________

P,P
x P

'IR' a
R

oI,\ p

\\ p.0'
\\a p

a



7.
2

8. I'=i
• s'=P —2

LO 1

horizontal shear of factor —2

10. a) M'=[ 3 —10]
b) Mv=[']
c) M'v'=[']

11. a) M'='—[ 2 1]

b) Mv=[-8]

6

:)

15. a) 1 3x—y =[ a

L12x—4yJ L4a

b) y=4x
c) no, det(S) = 0

c) 4,for both
5. a) BJ=

1i , 1.i —cos 30 ——sin 30
12 2Ii. 1
t —sin3o —cos3O
L2 2
= JB

b) rotation then dilatation =
dilatation then rotation

6. a) JK=[0 _il=KJ
Li 0]

b) rotation 30° then rotation 60° =
rotation 60° then rotation 30° =
rotation 90°

b) identity then identity =
identity
projection to y-axis then
projection to y-axis =
projection to y-axis

0
9. a) 82=1

lo
L

E2=[16 0
L 0 16

b) 82: dilatation x
4

E2: stretch x 16

rotation 30°, then 30°, then 30° =
rotation 90°
rotation 30°, six times, =
rotation 180°

12. a) M'=[
L—1 2

b) MM'=MM=

7. a) AK=[ 0 0
Lsin 60° cos 60°

KA = 10
—sin 60°

LO cos6O°
b) 0, forboth; both singular

8. a) 12=1
A2 = A

7.5 Exercises, page 318,
continued

a.s.f orientation

4 same
C 1 same

IF' same

U' same

1 same

if' reversed

1' 1 same
F' 1 same
U' 1 same

U' same

5. a) JandK

b) R=[ cosO
5mB]—sin 0 cosO

the transpose of R

IcosO —sinB6. a) R=l
LsinO cosB

b) R-'=[
cos0

5mB]—sin 0 cos 0
Icos(—0) —sin(—O)
[sin(—O) cos(—O)

7.6 Exercises, pages 324—325

1. LM=P 13
L32 25

ML=Ii 4
L26 38

LN=I2 5
[10 15

NL=I21 32
[—2 —4

MN=I26 20
[16 25

NM=I 29
[—8 2

2. a) A,G
b) I
c) B
d) C
e) J,K
f) C,1,J,K

3. a) 1B=B,IC=C,IK=K

4. a) CE=I
LO 1

EC=I 12

LO 1

b) CE: stretch, then shear
BC: shear, then stretch

y

RLQ 1? cl---=-°l p x

y

[ifi
10. a) 12_I 2 2

Ifi I
[2 2

310 —i
[1 0

1 J6_ft1 0
L0—i

b) rotation 30° then rotation 30° =
rotation 60°

Ii 01
Lo 1j12x2

c) MandM' commute.
Their product is
the 2 x 2 identity matrix.
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14. AB=BA=I

Ii 0 01
15. AB=BA=I 0 1 0

Lo 0 ii
16. KL=IapfT aq+bs

Lcp+dr cq+ds

pw+qy px+qz
Lrw+sy rx-I-sz

(KL)M =

f apw + brw + aqy + bsy apx ÷ brx + aqz + bsz
Lcpw÷drw+cqy+dsy cpx+drx+cqz+dsz

= K(LM)
17. det(K) = ad — bc

det(L) = ps — qr
det(KL) = adps — adqr —

bcps ÷ bcqr
= (ad — bc)(ps — qr)

18. a) K= 1 fd —b

ad—bcL—c a
c) yes

19. a)
yI

P,.X

b) c) M2=I,M3=M,M4=1
20. a)

yl
P R

0' Q

RO P 5

b) M2=I1 0
L 0 —1

(rotation 180°)
M=I 0 1

L—1 0
(rotation 270°)
M4 = i
(rotation 360°)

21. a) back to original
b) T2=I

22. a) rotation through 20
1COS 20 —sin 201b) R2=ILs2O cos20]

1C0S2 0 sin2 0 —2 sin 0 cos 01
L 2 sin 0 cos 0 cos2 0 — sin2 0]

23. a) P: rotation through a = —53°

1 4
I tana = ——

3
Q: rotation through a = 53°

(tan a =
3

b) PQ=I
c) P=Q,Q'=P

24. a) AB=I 31BA=I1 2
L4 2j [3 8

b) A'=I
L—1 2
1l 1 1B=-[ ]1r _il

c) A'B I 3 1 IL J
r 24 101

d) (A'B)(AB) = I 17 7 IL -]
(A'B')(BA) = I

e) (AB) =BA

7.7 Exercises, pages 331—332

1. a) L'=F 2 —3
L—1 2

M1=I1 4
Li 5

b)
L3 —2

L'M' = f—1LI 6
M'L' =

[_2 5]

c) (LMY1[_25]
d) (LM)(M'U')=I

(L)(LM') * I
1 0

2. B'A' =A'B = 2

lo !L 2
reflection in x-axis then
dilatation x 2 =
dilatation x 2 then
reflection in x-axis
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7.7 Exercises, pages 331—332,
continued

3. 7a) x=4,y=—
b) nosolution

2k — 4c) x=k,y=—

7a) (only possible) x = 4, y = —

a) none

b) 12k_4Lk
[3 + 2kc) ILk

d) none

6. 12 '11 x =
[4 2JL—2x-+-2
2x 2x+ 2][2

L4x—4x-i-4i [4

7. a) L+M=[P+W q+x
Lr+y s+z

KL=1aP+ aq+bs
Lcp+dr cq+ds

KM=Iaw1uiY ax+bz
Lcw+dy cx+dz

K(L + M) =

ap+br+aw+by aq+bs+ax+bz
Lcp+dr+cw+dy cq+ds+cx+dz

pb+qd
[ra+sc rb+sd

MK=Iwa÷ wb+xd
Lya+zc yb+zd

(L + M)K =

pa+qc+wa-i-xc pb+qd+wb-I-xd
Lra+sc+ya+zc rb-i-sd+yb+zd
[o 08. a) I[0 0

b) no; a) is a counterexample
9. a) PQ=RQ=(PQ)Q'=

(RQ)Q
P(QQ') =
R(QQ)
P=R

b) Ifdet(Q)=0,Pdoesnot
have to equal R.

10. no, in general

r2 0111. br
L 0r x Y1 x,y€l,y*0
L4-x2

I'
_x]

12. a) A(I—A)=I=I—A=A'
b) A3=A2A=(A-I)(A)

=A2 -A
= —I

c) p=2,q=—i

13. a) Q[2a1-4b 5b+a
L4a+20b 19b+5a

b) Q[0 1]

14. a) R =
[cos

0
—sin 0]sin0 cosO

M=[0 1
Li 0

b) RM=MR='sin0=—sin0
2 sin 0 = 0
0€ (o°,i80°)

18. b) x=99,y= —52,z=—36

3
19. c) y=—x,andy=—x

In Search of, page 335
1. a) 5,—i

b) [1]and[2]
c) y=xandy=-x

2. a) 3

a)
b) none

c) none
4. b) a=bandh=0
5. a) sv•u=su•v

b) pu.v=qv.u

c) Sincep*q,u.v=0

Inventory, page 338
1. 4
2. pxq
3. n;n
4. 6;3;2
5. Tu+Tv;k(T;)
6. the origin

d) none
7+ke) x=k,y=—

3 32f) x=—,y=-—17 17

4.

5.
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7. parallelism

8. ibyM; -
image of j by M

9. —0.8

L0.8 0.6

10. B;A
11. commutative

12. q=r;pXs
13. det(M)*0;

1 Id —1'

det(M)L —c a
14. det(M) = 0

15. reversed
16. singular transformation
17. det(M)
18. det(M) > 0; det(M) <0

Review Exercises, pages 339—341

1. a) 1_i
L—2 0

b) 118 0

L—6 —9

1—i 15
c) I

Li2 3

d) {12 2

L—4 4
1—19 7

e) I
L 18 —28

Iii 1

f) 2 2
L-3 2
1 24 —6

g)
L—22 39

h)
—8 —24

L—16 0

i) 1 —8 —24
L—16 0
12 02. a) I - -1L3

b) {2 6
L4 0
1—4 4

c)
L 6 —7
113 3

d) II'
L2 2

0

10 iL
1—' 0
Lo i
101
L—i 0
11 0
Lo 0
10 1
Li 0

8. A: null transformation
B: stretch IIy-axis

of factor 3, and
reflection in x-axis

C: reflection in y = x and
dilatation x 2

9.

D: reflection in origin and
dilatation x 5

E: mapping toy =x
F: counterclockwise rotation of

65° about origin

11
3. a) x=i,y=—-—

b) x=y=0

4. Mu=[']M;=[']

Mw=[7]

U,

w

5. a)

b)

c)

d)

e)

6.

A

R1Q
0 P OR

0 PX

B
RI_bP0 P'xE Yi -

RO' V101 P x
CY F

Q'RO

RLQI R4ThP'0 PR' X Q1P X

a.s.f. orientation

0
3
4

25
0
1

undefined
reversed
reversed
same
undefined
same

10. a)

A
B
C
D
E
F

b) AandE

c) B'=

C-1=

=

a) Y_, d)
Y1

I RL,..O
Rho' o'I P

I 01F'o

b) Y e)

_____ Pft/
P' of x of R' X

C) YIR 0
P0 R' x

P. 0'

Y/Lz1 = cos 65° sin 65°
L—sin 65° cos 65°

o



10 0111. a) L 0]
F 0 —101b)
L—io 0]

c) 1—5 —51
L—5 —5]
12 21d) [2 2]
ro.64 —0.77112. a)
[0.77 0.64]
1—0.57 —0.821

b) [ 0.82 —0.57]
1—i 01

c)
L 0 —1]

N: reflection in y =
(tank a)x.

tan a =
x

Icos2O sin 2018. a) Me=i
Lsin 20 —cos 20

- Icos2O sin 20b) M9 =1
LS1fl 20 —cos 20

c) M01=M0

19. [2Y}([2k])
20. a) A'=A,B'=B,C'=C

b) Reflections are self-inverses.
21. a) Plane is brought back to

original status.
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ReviewExercises, pages 339—341,
continued

17. M: rotation through a,

tan a =
x

29. c

30. {7
(.0

31. a) O'(0,0)A'(1,2)B'(4,3)
C'(3,1)

d) shear with invariant line
y = 2x;of factor 1

e) image ofA under r': (1,2)
image of C under T': (1,—3)

1_0.77 0.64113. a) [ 0.64 0.77]
1_O.iO —0.991b)
[—0.99
1—i 01

c)
L 0 1]

14. R225 = R135, same rotation
16. a)

b) I
22. a) AB=I 1 —3

1—10 —6
BA=I 8 —4

L17 —13

b) det(A) = —3

det(B) = 12
det(AB) —36 = det(BA)

23. no, for example
12 0110 o]_[o 0] butb ojli 4iLO oJ'
[o 0112 01_I 0 0
.1 4iL3 oiLl4 0

24. a) yes
b) no (sometimes many,

sometimes none)

25. [ 0 bt
L—ct 0

27. a) 2 —p
4—4pL--4 2

p= 1

c) p=—2,q=—1
d) p=—lorp=3

28. a) sketch not provided

b) ji=
d) D(8i)

'
ii= iii=

e) A'(3,—4) R'(—2,5)

c'(,2 D'(i-,_7\2 / \2
a = -2

1÷k1 i]b) Li':r=[ ] L—4i- 1 —1
L2': s=[2]+p[2]

c) no
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Chapter Eight
Transformations of Conics

8.1 Exercises, page 348
1. a)

b)

c)

d)

b)

c)

d)

3. a)

b)

c)

d)

e)

f)

g=f=Oforeach

e)

e)
f)

radius
4
3
2

2

2. Circles as follows
centre

a) (0,0)
b) (0,0)
c) (0,0)
d) (0,0)
e) (0,0)
f) (0,0)
9 =f= 0 for each

abc
a) 1 1 —16

b) 1 1 —9
c) 4 4—16
d) 3 3 —15
e) —2—2 8
f) —5 —5 10

a'
a) 9

b) 25
c) 4

d) -4
e) —32
f) —2

4. a)

b

16
4

25
—9

—18

—3

—144
—100
—100

36
144

18

9=f=0 for each

a b c

a) 9 —16 —144
b) 9 —16 144
c) 4 1 4
d) —8 2 8
e) —1 1 9
f) 3 —5 —30
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8.1 Exercises, page 348,
continued
5. a)

b) 4

c) 3

d) —1

e) 0

f) 0

6. a) circle
b) hyperbola
c) parabola
d) hyperbola
e) circle
f) ellipse
g) hyperbola
h) parabola
circles
a) (0,0), 5
e) (0,0),4
ellipses
f) (0,0), (±3,0), x-axis
g) (0,0), (0,±4), y-axis
hyperbolas
b) (0,0), (±3,0), x-axis
d) (0,0), (0,±2), y-axis
parabolas
c) (0,0), (positive) y-axis
h) (0,0), (negative) x-axis

7. a) ellipse
b) hyperbola
c) parabola
d) circle
e) parabola
f) hyperbola
g) ellipse
h) circle
i) hyperbola
j) ellipse

8.2 ExercIses, pages 354—355

1. a) (6,11)
b) (—3,11)
c) (5,—2)
d) (0,0)

a

1a)

2. a) 25x2+9y2—150x--18y+9=0
b)

C

0

0

0

0

0

0

1'

0

0

0

0

4

5

S

0

0

0

0
1
2

0

E

I
1

2
1

2
1

2
1

0

1
2

b)

c)

d)

e)

f)

c) a b c g f
E 25 9 —225 0 0,ab>0
E' 25 9 9 —75 —9, ab> 0

3. a) 9x2+16—54x--192y+513=0
y

9

ab c g f
F 9 16 —144 0 0,ab>0
E' 9 16 513 —27 —96,ab>0

b) x2+4y2+2x—56y+181=0
y

E
abc g f

F 1 41—i 0 0,ab>0
E' 1 41181 1 —28,ab>0

c) 8x2+200y2+48x+800y—728=0

ab c g f
E 8 200 —1600 0 0,ab>0
F' 8 200 —728 24 400, ab> 0
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d) 4x2-1-9y2—32x—90y+253=0

y
c

b) x2—4y2—2x+56y—179=0: —

x

ab c g f
E 4 9 —36 0 0,ab>0
E' 4 9 253 —16 —45,ab>0

4. a) x2—16y2+6x+64y—71=0
b)

c) abc g f
P40 0 0—,ab=O
F' 4 0 37 —12 , ab=0

7. a) x2+2x—y+7=O

yP
y

2

x

ab C gf
H 1 —4 —16 0 0,ab<0
H' 1 —4 —179 —1 28,ab<0

c) 8x2—50y2-1-48x—200y—928=0

y4H

a b cg f
H 1 —16 —16 0 0,ab<0
H' 1 —16 —71 3 32,ab<0

5. a) 9x2—16y2+54x+160yI-463=0

4\
al b c ll I

abcg f
P 1 0 0 0 ,ab=0

P' 1 0 7 1 ab=0

b) 4y2—x+24y+35=0

H 8 —50 —800 0 0, ab <0
H' 8 —50 —928 24 —100,ab<0

d) x2—y2—8x—6y—29=0

(V

a blc 01
H 9 —161-14 0 0,ab<0
H' 9 —161 46327 80,ab<0 alb c lli

6.

abc g f
P 0 4 0 0,ab=0

F' 0 4 35 12,ab=0

c) 8y2+x+32y+30=0
y.

P t

abc 91
P 0 8 0 0,ab=0

F' 0 8 30 16,ab=0

H 1 —1 —36 0 0,ab<0
H' 1 —1 —29 —4 —3, ab <0

a) 4x2—24x—y+37=0
b)



P/I
abcgf

P 4 0 0 0 ,ab=0

F' 4 0 1 4 'ab=0

8. a) x2+y2+6x—2y--15=0
b)

c) ab C 9f
C 1 1 —25 0 0,ab>0
C' 1 1 —15 3 —1,ab>0

9. a)x2+y2—6x-1-2y—134=0
C: centre (0,0) radius 12
C': centre (3,—i) radius 12

ab c g f
C 1 1 —144 0 0,ab>0
C' 1 1 —134 —3 l,ab>0

b) x2÷y2+iOx-1-4y+4=0
C:Centre (0,0) radius 5
C': centre (—5,—2) radius 5

c) 8x2+8y2—48x1-32y÷88=O
C: centre (0,0) radius JT
C': centre (3,—2) radius 'Ji

a b C g f
C 8 8 —16 0 0,ab>0
C' 8 8 88 —24 16,ab>0

d) —4x2--4y2+32x+40y—148=0
C: centre (0,0) radius 2
C': centre (4,5) radius 2

a I, C 9f
C —4—4 16 0 0,ab>0
C' —4 —4 —148 16 20,ab>0

b) 2x2+y=O
parabola

d) two lines, rather than a
circle, ellipse, parabola, or
hyperbola

14. a) ax2 ÷ by2 — 2ahx + 2bky
+ ah2 ÷ bk2 ÷ t = 0

15. (x,y)—.(x+2,y+3)
17. b) (h,k)

c) 2a; 2b (ifa> b)
2b; 2a (if b > a)

18. a) (x—h)2(y—k)21
a2

b) y—k=a(x—h)2
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8.2ExercIses, pages 354—35 5,
continued

d) 4x2+8x+y+i=0
y

d) 4x2—y2—4=0
hyperbola

x

\
13. 2x —y = 0,2x +y = 0

4x2—y2—40x+4y4-96=0
a)
b)
c)

11. a) 4x2—y=0
b) parabola
c)

N/
7/c

x

x

12. a) x2+y2—25=0
C': circle centre (0,0)
radius 5
C: circle centre (—2,—3)
radius 5

c
/2

c) 9x2-I-4y2—144=0
ellipse

ab C 9f
C 1 1 —25 0 0,ab>0
C'il 452,ab>0

y

8.3 Exercises, page 360

1. ellipse: a) e)
circle: d)
hyperbola: b) I)
parabola: c)

2. a) ellipse
b) (x,y) -÷ (x + i,y — 3)
c) 4x2+y2=4
d)

c
2

2

x
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3. a) hyperbola
(x,y) — (x — 1,y + 1)
4x2 — 9y2 = 36

c) ellipse
(x,y) -+ (x — 6,y ÷ 4)
4x2 + 25y2 = 100

T! '-'

d) parabola
(x,y) —, (x + 4,y — 1)
x2 — l6y = 0

e) ellipse
(x,y) —, (x ÷ 1,y — 3)
9x2 + y2 = 9

N

g) circle
(x,y) - (x + 2,y + 3)
2x2 + 2y2 = 25
C: circle centre (—2,—3)

radius v
C': circle centre (0,0)

radius

h) parabola
(x,y) — (x — 8,y — 6)
y2 + 4x =0

4. a) (x,y)—.(x—1,y÷2)
b) 4x2—y2=0;

2x — y = 0, 2x ÷ y = 0

c) 2x+y=0,2x—y—4=0
d) ab<0,butgraphistwo

lines

6. b) g2+f<c
c) g2+f=c

8. a) parabola

12x2 ÷ 2Oxy + 2y2 = k
—2x2 + l8xy + y2 = k

1 3] [3][3 5J'
b) 1 7 —4]

L—4 3]'
c) 12 o] [9]

L 0 ii'
1 —1.5d) _
19 01e) L _][5]
1 1 —0.51f) I 1,131
[—0.5 5 1

14
3]1x1[314. a) [x L3 5 Ly]

b) [x Y1[ 7 4h1x14 3]Ly] = [1]

c) [x Y1[ ][;]=[91
1

_1.5]Ix][8]d) [x — ii
e) [x Y][ _'][] = [—5]

f) [x yIF
1 —0.51[xl = [31

—0.5 5I1y1
17 815. a) L8 9]
16 01

b) L7 —1]
13 .51

c) L ]
1—2 —41d)
L—4 3]
112 101e) L 2]
r1 71
I 4 1 I
L3 ZJIii 41

6. a) [19 8]
Iii 191

b) [ 8]
12 4] Ii 31 [11 191c) L3 5i'L2 oj'L 4 8]

3 417. a) (ABY=BAL=[
17]

1—15 —21
b) (AR)t=BtA=[ —8 8]

114 81
c) (AB)t=8A=[ 8]

f) hyperbola
(x,y) —, (x + l,y ÷ 2)

— 4y2 = —25

e)
f)

3. a)/
b) circle

(x,y) -+ (x — 3,y + 5)
x2+y2= 36
C: circle centre (3,—5)
radIus 6
C': circle centre (0,0)
radius 6

y

4-
C

2
x

C y

C;

2)
x

C

C;

8.4 ExercIses, page 364

1. a) [46 52]
b) 1'

L23

2. a) 7x2-I-l6xy+9y2=k
b) 6x2—y2=k
c) 4x2—lOxy+2y2=k
d) —2x2—8xy+3y2=k



6. a) 6.5x2+8.6xy—1.5y2=9
b)

y

H
-

7. a) —0.3x2 ÷ 4.3xy — 2.8y2 = —4

520

8.4 Exercises, page 364,
continued

ro.87 —0.508. a) I
L0.50 0.87

b) [0.94 —0.34

L0.34 0.94
1—0.77 —0.64

c) I
L 0.64 —0.77

d) 1 -'
Li 0

t-JI1
9. a) 2 2I1v

[2 2

b)

1

c) 2 2

2 2

10. 13.06
L2.57 6.89

12.10 —1.6311. a) I

L2.37 4.83

b) 10b0 —0.23

L 5.83 3.60

3 1 5

12. a) 2 2 2 2

2 2 2 2--- --
b) 2 2 2

2 2 2
13. b) RR=RR=I

8.5 Exercises, page 369

1. a) [x i[ o][x][4]

b) x y1[: i1[;]=41
c) 1.8x2—2.6xy+3.3y2=4
d)

2. a) 2.5x2+3xy+2.5y2=16
b)

3. a)

b) 22.5x2 — 13.5xy + 6.5y2 = 100

c)

'1.- 2'''

d) 1.5x21- 1.7xy+2.5y2=4

5. a) x2+3xy÷.y2=i6
See 2b) for sketch.

b) 3x2_4,/xy+7y2=9
See 3a) for sketch.

c)
See 3d) for sketch.

—40
b) —14.8x2 — 35.5xy + 5.8y2 = 400

Y

H/
120

72
c) —0.2x2 — 2.Oxy + 0.2y2 = —1

Tx
x7-N
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9. a) x2+5,/xy_y2=9
See 6b) for sketch.

b) _x2 — + = 4004 2 4
See 7b) for sketch.

c) _2x2+2,/xy=_3
See 7d) for sketch.
9x2 + 4y2= 36
—9x2 + y2 = 9
x2 + 4y2 = 16

ellipse
9x2 + 25y2 = 225

y

c..

13. a) hyperbola
b) 2x2—2y2=----1
c)

y.

14. Sincef* 0 andy * 0, the
equation cannot be written
ax2 + 2hxy + by2 = k

8.6 Exercises, page 378

1. a) ellipse
b) 67.5°

2. a) hyperbola, 13.3°

b)
c)
d)
e)
f)
a)
b)
c) x2+4y2=4
d) y

5. a) ellipse
b) 45°

c) 9x2+25y2=225
d)

d) —2x2+3.5xy=—3 ellipse, 45°
ellipse, —38.0°
hyperbola, —4 1.8°
hyperbola, 39.2°
ellipse, 3 5.8°

ellipse
45°

3.

d) ellipse, 20.1°
25x2 ÷ 4y2 = 100

x

10. a)
b)
c)

12. a)
b)
c)

e) hyperbola, 3 0.0°
3x2 — y2 = 3

y

_)/_45

ellipse, —20°
4x2 ÷ 9),2 = 36

4. a)

b)2
x

f)

hyperbola, 30.0°
16x2 — y2 = —5

1

Y/
—3O

ellipse, 40.0°
25x2 + 9y2 200

y
x

x

/
c) hyperbola, 40.1°

— y2 = —l

C

y

y

-40

2\

x

x
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8.6 Exercises, page 378,
continued
6. a) hyperbola 300

x2 — y2 = 1

b) ellipse,450
4x2 + 9y2 = 4

8. a) ellipse
b) 45°

c)
d)

e) f) g)

9. a) ellipse
b) 450

c) 4x2+y2+8x—4y+4=0
d) (x,y) —* (x+ l,y —2)

+ y2 = 4

e) f) g)

10. same answers as 9
'11. 100 REMPROGRAMTO

ELIMINATE XV

TERM FROM AXA2÷2XY-s-BYA2=K

110 PRINT "STATE THE VALUE
OF A"
120
130
H"

INPUT H

PRINT "STATE VALUE OF

INPUT B

PRINT "STATE VALUE OF

x 180 INPUT K

184 IFA< >BTHENGOTOI9O
185 IFA=BGOTOI86
186 T=3.1415925/4
188 GOTO 200
190 T=0.5*ATN
C2*H/CB_A))
200 PRINT"ANGLEOF
ROTATION IS

"T*180/3. 14158265"

DEGREES"

210 A1=(A÷B)/2÷(A—B)/2*
COS(2*T)_H* SINC2*T)
220 B1=(A+B)/2—(A—B)/2*
COSC2*T)+H* SINC2*T)

230 H1=CA_B)/2* SIN(2*T)
+H* COSC2*T)

240 PRINT"H="Hl
250 PRINT "AN EQUATION OF

THE CONIC IN STANDARD

POSITION IS"

260 PRINT
A1"XA2+"B1"YA2="K
270 STOP

Inventory, page 381
1. circle; centre; radius
2.
3.

4.
5.

ellipse; centre;
hyperbola; centre; not real

hyperbola; centre; not real;

parabola; vertex;
(positive) y-axis

6. parabola; vertex;
(positive) x-axis

translation; square; 6x; 9x2
3;9
(x — 2,y — 3)
ab — h2; greater than;
ab — h2; less than

11. rotation;xy

12. 20; ——; not equal to;b—a
equals; 135°

13 fcoso —sin 0
Lsin0 cos0

cos0 sinG
[—sin 0 cosO

14. 4;5;3;1x1;14 1;[71
LyJ L3 5J

15. Icos 20° —sin 20°1 1
Lsin 20° cos 20°J L3 7

(7
C,rrTh

7.
8.
9.

10.

c) ellipse, —60°
x2 + 3y2 = 18

y

c,

INPUT A

PRINT "STATE VALUE OF

140
150
B"
160
170
K"

4x2 + 9y2 ÷ 16x + l8y = 0
(x,y) — (x + 2,y ÷ 1)
4x2 ÷ 9y2 = 25

c
—45°
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4. a) hyperbola
b) circle
c) parabola
d) ellipse
e) hyperbola

circle
(x,y) -÷ (x+ 3,y ÷ 6)
x2 + y2 = 47
C: circle centre (—3,—6)

radius
C': circle centre (0,0)
radius 'f
parabola
(x,y) —. (x — 6,y — 8)
xz + 4y = 0

y-I

Review Exercises, pages 382—383
1. a) circle centre (0,0) radius 2

b)

y

"x
ellipse
(x,y) -÷ (x + 4,y — 1)
x2 + 8y2 = 15

y

C
x

25x2 + y2 — 150x — 2y 1-201 =0

y

E

h)

2. a)
b)

6

3.a)9x2—16y2+54x—32y—79=0

y

1

x

2

5. a)
b)
c)
d)

6. a)

b)

x

c)

d)

e)

f)

'

' ): (' '
C

2 /
b) x2+y2+4x—6y—3=0

C: circle centre (0,0) radius 4
C': circle centre (—2,3) radius 4

c) 4x21-24x—y+34=O

p

c) hyperbola
(x,y) — (x — l,y + 1)
9x2 — 4y2 = 36

x

.5g) circle centre (0,0) radius —

d) ellipse
(x,y) —, (x + l,y — 5)
4x2+y2= 16

C
2



Tm T
C

parabola
(x,y) —* (x + 5,y + 2)

— 8x = 0

h) circle
(x,y) -* (x — 4,y + 3)
x2 + y2 = 26
C: circle centre (4,—3)

radius Ji
C': circle centre (0,0)
radius

1 l,K=[7]M=1 4]

.—3 —1J
2 1.5lK [9].1.5 —1 J
3

-' —5]
l,K=[15].0 —12J-

5

.—2 5]

8. [x Y]M[']=K
using M, K from question 7.

9. a) 4x2—6xy+9y2=k
b) 4x2—y2=k
c) —7x2—8xy+3y2=k
d) 17x2+2Oxy+7y2=k

10. a)

'7
14. a) [x i[: o][x][36]

[31 5/II521
x2+ !xy + = 36

b) See sketch for 1 2d)
15. a) The circle maps to itself.

b) no
17. a) ellipse

b) 13.3°
18. a) hyperbola, —7.0°

b) ellipse, 22.5'
c) ellipse, —22.5°
d) ellipse, 45°
e) hyperbola, —41.4°
f) ellipse, 18.4°

19. a) ellipse
b) 45°
c) x2+16y2=16

524

e) hyperbola
(x,y) —. (x + 2,y ÷ 1)
4x2 — 4y2 = —

2/C\ /

c) 1.9x2 — 5.lxy — 8.0y2 = 36

y.

4.

[4 _3]
b) []

E

f) ellipse
(x,y) — (x — 2,y — 4)
x2 + 25y2 = 400

y

d) 3.5xy+2y2=4

x

Hr2 011. a) I
Lx y

b) x=0,y€Il

12. a) [x i[: o][x][36]

b) 17.8 2.2
L2.2 5.3

c) 7.8x2 + 4.4xy + 5.3y2 = 36

d)

g)

13. a) 2.8x2—3.Oxy+2.2y2=9

x

N

C-

b) —8.6x2 — 4.4xy + 3.6y2 = 36

7. a)

b) M=

c) M=

d) M=

e) M=

f) M=

d)/ 4
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20. a) ellipse, 45
3x2 + y' = 4

b) hyperbola, 30.0
149.9x2 — 49.9y2 = 600

c) hyperbola, 29.9
39.9x2 — 39.9y2 = 40

e) ellipse,—l8.4
3x2+2y2= 12

18.4

f) ellipse, 33.7
2x2 + y2 = 5

y

g) hyperbola, 45
—4.0x2 + 14y2 = 26

<1

h) ellipse, 26.6
x2 + 5y2 = 10

y.

''i)1-266

ellipse, 33.7'
3x2 + 5y2 = 15

y

j) hyperbola, 26.6
x2 — 3y2 = —6x

k) hyperbola, 36.9
3x2 — 2y2 = 6

I) ellipse, 45
3x2+ 5)J2= 15

y.

45

(7

/c'
C

21. a) Seeanswerl9.
b) See answer 4b,

8.6 Exercises.

22. a) 45
b) y2=2x
c) parabola
d)

y

1)

d) ellipse, —20.4
26.8x1 + 53.2y = 360

y

x 'N

C

1

-26.6
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Chapter Nine
Mathematical Induction

9.1 Exercises pages 390—391

2
2. a) 2"'—2

b) 2—1
3. a) 1,3,6,10

b) 2,3,4,5

2

4.
2n + 1

n5. a)
4n + 1

b) 2n + 4

c) 1—--2
6. a) 3

b) 4
c) 5
d) 6
e) n+1

n+2
7. a)

2(n + 1)
b) (n-f-i)2

8. a) 2,8,20,40
b) alIneN

9. alineN
10. a) all

b) all
c) all
d) all
e) evenneW
f) evenneW

11. n4
12. a) n>7

b) n2
c) alIn

13. a) 1,9,36,100,225,441,784
b) 1,3,6,10,15,21,28
c) [tI(ZI + l)]2

L 2 J
14. a) 3

b) 6
c) 10
d)

2

15. a) 2
b) 5
c) 9,14

d) n(n—3)

16. a) 4
b) 7
c) 1
d) n+n+2

2

9.2 Exercises, page 395
1. Step lShow the statement is true

forn = 1.

Step 2Assume the statement is
true for n = k.

Step 3 Prove the statement is true
for n = k + 1, using result
of step 2.

5. a) 43,47,53,61
b) 412+41+41=

41(41 + 1 + 1) = 41 x 43
c) steps 2 and 3

6. a) step
b) no

9.3 Exercises, page 398

No answers provided.

9.4 Exercises, page 405
1. a)

11
121

1331
14641

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8

b) 24,720
c) 35
d) 1,5,10,10,5,1

2. a) C(4,0)a4x°-I-C(4,1)a'x'+
C(4,2)a2x2 + C(4,3)a'x3 +
C(4,4)a°x4

b) C(5,0)a'x° + C(5,1)a4x' +

C(5,2)a'x2 + C(5,3)a2x3 +

C(5,4)a'x4 + C(5,5)a°x' +
c) C(6,0)a6x° + C(6,1)a'x' +

C(6,2)a4x2 + C(6,3)a3x' +
C(6,4)a2x4 + C(6,5)a'x' +
C(6,6)a°x6

d) C(7,0)a7x° + C(7,1)a6x' +
C(7,2)a'x2 + C(7,3)a4x' +
C(7,4)a3x4 + C(7,5)a2x' +
C(7,6)a'x6 + C(7,7)a°x7

e) C(8,0)a8x° + C(8,i)a7x' +
C(8,2)a6x2 + C(8,3)a'x3 +
C(8,4)a4x4 +C(8,5)a3x' +
C(8,6)a2x6 + C(8,7)a'x7 +
C(8,8)a°x8

f) C(9,0)a9x° + C(9,1)a8x' +
C(9,2)a7x2 + C(9,3)a6x3 +
C(9,4)a'x4 + C(9,5)a4x' +
C(9,6)a'x6 + C(9,7)a2x7 +

C(9,8)a'x8 + C(9,9)a°x9

3. a) a4+4a)x+6a2x2.f4ax3+x4
b) a'+5a4x-t- 10a3x2+ 10a2x3+

Sax4 +

c) a6+6a'x+ 15a4x2+2Oa3x+
1 5a2x4 + 6ax' + x6

d) a7+7a6x+2iasx2+35a4x3+
35a3x4 + 21a2x' + 7ax6 +

e) a8 + 8a7x + 28a6x2 + 56a'x3 +
70a4x4 + 56a3x' + 28a2x6 +
Sax7 + x8

f) a9 ÷ 9a8x + 36a7x2 + 84a6x3 +
126a'x4 + i26a4x' + 84a3x6 +
36a2x7 + 9ax8 +

4. a) a4+4a3y+6a2y2+4ay+y
b) b44b3c+6b2c24bc3+c4
e) rn3+ 3rn2z+ 3rnz2+z3
d) 32+80x+8Ox21-4Ox3+1ox

e) aS+8a7+28a6+56a5+70a4
+ 56a3 + 28a2 + 8a + 1

f) 81—108b+5452—12b3+b4
5. a) a4+ 8a38+24a2b2+ 32ab3 +

i6b
b) 81a4 +432a3b + 864a2b2 +

768a83 + 256b4

c) 27—54rn+36rn2-8rn3
d) 64a'—240a2+300a-- 125
e) 32x' +240x4a+ 720x3a2 +

1080x2a' + 810xa4 + 243a'
f) 16rn2+i5rn42orn°+

15rn8 — 6rn'°+ rn'2

6. a) C(40,0)a49b° +
C(40,1)a398' +
C(40,2)a38b2 +
C(40,3)a'783

b) C(34,0)rn34(—lc)° +
C(34,1)rn33(—k)' +

C(34,2)rn32(—k)2 +
C(34,3)rn31(—k)3

c) C(23,0)323x°+
C(23,1)322x' +

C(23,2)32Y +
C(23,3)320x3

+ x'
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d) C(85,0)485(2a)° +
C(85,1)464(2a)' +
C(85,2)483(2a)2 +

C(85,3)482(2a)3
e) C(25,0)(2m)25(—3t)° +

C(25,1)(2m)24(—3t)' +
C(25,2)(2m)23(—3t)2 +

C(25,3)(2m)22(—3t)3
f) C(36,0)136(b2)° +

C(36,1)135(b2)' +
C(36,2)134(b2)2 +

C(36,3)133(b2)3

7. a) x4 + + 6 + - + -
b)

8032
x7 x'°

8. a) C(6,k)x12_3k
b) 6x'
c) 15

11. 4
14. a) 1—2x+3x2—4x3

b) l÷-+284
inventory, page 409

1. 1
2. k;instep3 prove;k+ 1
3. a) sometimes

b) sometimes
4. a) 1;1

b) l+3+5+...+(2k—l);
k2

c) 1+3+5+...+(2k+1);

5. a) 2;2

b) (1+1)(1÷!)(1÷!)...
(1 + k + 1

c)
(1+;k+2
\ k+1/

6. a) f(1)=6=2
is a natural number

k3 + 3k2 + 2k
b) f(k)= 3

is a natural number
3

7. a) 24<4t
b) 26<k!
c) 2"'<(k+1)!

8. 6;
C(5,0)a5x°+ C(5,1)a4x' +
C(5,2)a3x2 + C(5,3)a2x3 +

C(5,4)a'x4 + C(5,5)a°x5
9. 1,9, 36, 84, 126,84,36,9, 1

Review Exercises, pages 410—411
1. Step lShow the statement is true

forn= 1.
Step 2Assurne the statement is

true for n = k.

Step 3Prove the statement is true
for n = k+ 1, using result
of step 2.

3. n3

10. step 1
13. b) nottrueforn=1
15. a) a4+4a3x+6a2x2+4ax3+x4

b) 243+405b+270b2+90b3+
15b4+b5

c) 8+12x2+6x2+x3
d) 64k6 — 960k5m + 6000k4m2

— 20 000k3m3 + 37 500k2m4
—37500km5 + 15 625m6

16. nottrueforn=4
21. 7

23. i) + 1)

iii) -(n + 1)(n + 2)(2n + 3) — 5

(k + 1)2

is a natural number

c) f(k + 1) (k + 1) + 3(k + 1)2 + 2(k+ 1)
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ChapterTen
Complex Numbers

10.1 Exercises, page 418
1. a) 9+31

b) 1

c) 17+7i
d) 10
e) —3+4i
f) —3—4i
g) —4+6i
h) —11—2i

2±i

4
2 2

5. a) 4±31
b) —2±15 i/c)

6
7. (4i-3i)+(4—3i)=8

(4 + 3i)(4 — 31) = 25
order does not matter

b c8. sum ——; product —

a a
9. a) Oor4i

b) 4ior—i

c) zi\ 2
d) 2iorl—i

10. a) 4,6
b) 0,7
c) 9,7
d) 26,0
e) 0,2
f) 7,—24

11. z+w=(a+c)+i(b-s-d)
=w+z

commutative

12. (z-fw)+u=(a+c+e)
+ i(b+d +J)

= z + (w + u)
associative

13. zw=(ac—bd)+i(ad i-bc)

commutative
14. (zw)u = (ace — bde — adf — bcJ)

+ i(ade + bce + acf — bdf)

15. zwi-zu=(ac—bd+ae—bf)
+ i(ad — bc + af — be)

= z(w + u)
distributive over addition

10.3 Exercises, page 429
1. a)

101

p

— U
p

p.
U

7 51
2

2.

3.

w
10.2 Exercises, page 422
1. a) —i

b) 1

c) I
d) —1
e) —i
f) —1
g) 1
h) i
j) —1

2. a) 1—4i
b) —2+21
c) 6i
d) —2+16i
e) 52—81

3. a) 4—i
b) 55
c) 3+7i
d) 29 29

2 3.e) ———i
13 13

f) 25 25
6g)

h) 3721 3721
5. c) Yes.

8. b) 13 13

2a 2a
conjugates

10. a) x=17,y=0
4 18

b) x=—,y=——17 17

11. a) Re(Z)=_Z_
Im(z) = 1

b) Re(z) = —4

Im(z) = 0

12. Re(z) = 3, Im(z) = 3
Re(z2) = 0, Im(z2) = 18

13. 10000

14. —+5ior+7i
2 2

15. cosa±isina

•1•0 'rR

w

b) z=1—3i
w = 12 + 5i
p = —61

= —4+ 1

u = —3 — 21

2. a) IzI='[i
IwI= 13
p1=6
IqI=
I UI =

b) argz=72°
arg w = —23°

argp= 90°
arg q = —166°

arg u = 146°

3. a) IzI=JTh,IwI=13
b) arg=—72°,arg=23°
c) same modulus,

opposite argument,
4. a) impossible

b) IzI<IuI<IqI<IpI<IwI
5. a) z+w=13—2i

b)

2i

c) numbers represented by
vectors, as shown

= wz

= z(wu)
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6. a) z+=2
z — z = 61

zz = 10

—
z —z

7. a) Ifa€,
IaI= J=±a
arga =0 or 1800

a=a
b) ifbeu,

IbI=J
argb =
b = —b

8. IzI=l,lI=3
9. a)

if

A
wB

c) lzI=IziI=1z21=1z312
arg z = 600

argz1 1500
arg z2 = 2400

arg z3 = 3300
d) rotates counterclockwise

about 0, by 900

c) It is true that
(1 + iJj3 = —8, but

= —8 alsol

10.4 ExercIses, page 433
1. a) 2or—3

b) l±i
c) —or±i

4

d) 0or—2ior+2i

2. a) b) c)
3. a) z2—(2+5i)z—4+8i0

b) z2—2pz+p2+q2=0
5. a) 3—(3+2i)z2+(13+7i)Z

—20(1 + i) = 0

b) z3—2pz2+(p2+q2)z0
7. a) w3=1

b)

b)

z

li

10. zi = — + —ior

1 1.

Z-fZ

0
zz

FR

11. a) z2=_2+2iJ
z3 = —8

b)
if

z

z

1 FR

'0 'FR

11. 3+3i'.(1+3_/
2 2

3 —
+ (l — 3/:)

2 2

12. a)

z=1 i2 2
b)

12. a) IzI=3'Ii
arg z = 45°

0,

b) 3+i
C)

2

d) MmidpointofAB,
N divides AB in ratio 1: 3

10. a) z=—'/+i
z1 = —1 — i'J
z3 = — I

b)

13. a) trüeinllLbut
in , z

b) true in Ii only;
in C, z = wor

-w 1W\f
2

14. b) or—or2±i
3 2

15. a) real coefficients, so
root 2 + 1 root 2 —
root —2 + i root —2 —

b)
It-I

FR

7 118. x=—,y=——-
34 34

9 =_ +j bc—ad'Y a+b'
yes

2*1

—2—i

16. z = r is the only real root.

17. a) r=4,s=—5
b) 5



10.5 Exercises, page 439
1. a) a =2.57 +3.06i

b =2.57— 3.061
C = —1.64 + 1.15i

3. a) IzI=3,argz=

b) zI=4,argz=O
c) IzI=17,argz=it

d) lzI=l,argz=—

4. a) jzl=3,arg=-
b) IzI=4,arg=O
c) IzI=17,argi=ir

d) jI=1,arg=.?

5. a) 115°

b) 65°

2it
c) ——

3

d) -
6

6. s = 5(cos 37° + isin 37°)
= /(cos 117° + i sin 117°)

u = 5(cos 90° ÷ i sin 90°)
v = 2(cos 180° + i sin 180°)
z= 17(cos 152°—isjn 152°)
w = I(cos 66° — i sin 66°)

Iuirpir

r/ 3ir . . 3it7. a) V2Icos—+zsrn—\ 4 4
/ ir..irb) 2icos—+jsin—\ 6 6ri it . . itc) 4v31 cos — —, sin —\ 3 3
i—f 5it . . 5itd) 2v31c0s——,sin—\ 6 6

8. Oorlr
9. a) r=5,0=30°

b) r=6,0=—32°
itc) r=1,0=——
8

11. a) 50(cos 105°+jsin 105°)
b) 2(cos 37° ÷ I sin 37°)

c) -(cos — i sin 37°)

13. zI=2,argz=

1w = 4, argw =
6

14. a) 4(cos
. 4iti sin I\ 3 3/

b) 16(cos+jsin?\
3 3)

c) 8(
Sit . . 5ir\cos + i sin I
6 6/

d) 2(
it . . it\cos — — i sin — I2 2/

it15. a) iI=1,argi=—

b) length unchanged;
itrotates about origin, by —

16. a) arg(z2) = 20

10.6 Exercises, page 443
— 1. a) —0.766 — 0.6431

b) —365—6311
c) —928—4331

2. a) 65536
b) 4096
c) —1

d
2 2

3. a) —0.766 + 0.6431

b) —0.000686+0.001191
c) —0.000885 +0.000413j

4. a) -
b)-4
c) —1

d)
2, 2

5. a) —1024
b) —32i

6. a) —1
b) 1

7. cos40=
cos4 0 — 6 cos2 0 sin2 0 + sin4 0
sin 40 =
4 cos 0 sin O(cos2 0 — sin2 0)

8. d) cos3O=4cos3O—3cos0
9. b) sin3O=3sjn0—4sin'O

10. c) cos40=
8 cos4 0 — 8 cos2 0+ 1

2. d=4+4if

f= —i

U

21

S
t.

V

z

U

ii

—
8

w

///

d

12. a) z='fi(cos51°—isin51°)
w = '1i(cos 124° + i sin 124°)

b) zw =iii(cos73°— i sin 730)

Z =
.\J'(cos 175° — i sin 175°)

W =
.\/i3( 175° + i sin 175°)

10.7 Exercises, page 448
2. a) w0=1

=
w2 = -1
Wi = -i

IL'
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b) w0=1
w1 = 0.309 + 0.95 11

w2 = —0.809 ÷ 0.588i
w3 = —0.809 — 0.5881

w4 = 0.309 — 0.9511

c) w0=1
w1 = 0.809 + 0.588i
w2 = 0.309 + 0.95 ii
w3 = —0.309 + 0.9511

w4 = —0.809 ÷ 0.5881

w, = -1
w6 = —0.809 — 0.5881

w7 = —0.309 — 0.95ii
w8 = 0.309 — 0.95ii
w9 = 0.809 — 0.588i

1 1W-

b) W0=+
2 2

WI = — + —22
W2 = -i

c)

Wi77

FR

d) w0 = 2.74 + 1.22i

w1 = —2.43 ÷ 1.76i
W2 = —0.314 — 2.98i

e) w0= 2.85 + 0.9271

w1 = —0.927 + 2.85i
w2 = —2.85 — 0.927i
w, = 0.927 — 2.85i

f) w0 = 1.91— 0.585i
w1 = 1.46 + l.36i
w2 = 0.450 + 1.95i
w3 = —1.91 + 0.585i
w4 = —1.46— 1.36i
w5 = 0.450 — 1.951

c) z'—l=
(z — 1)(z2

— 2 z +

tz —2cos——z+ 1
5

6. a) (z+1)
— 2 + i)
— 2cos—z+ 1

5

b) (z—1)

(z2 — 2 z +

z — 2 cos z÷ 1

(—2 cos + i)
c) (z+1)

(z—1)

( — 2 +

(Z2
— 2 cos z +

7. b) other roots are

8. a) The arguments of the
non-real roots of unity are

2irthe multiples of ,

with coefficients in
S = (1,2,3,4,5,6)
Taking any one of these,
and multiplying by
the numbers 1-6
yields results as follows.
(This is known as
multiplication modulo 7.)

123456
12345 624613 536251 441526 35316465432 2

1

Each row yields all the
members of S.

1 FR

FR

FR

3. a)

FR x

'FR

2
3
4
5
6

4. 21cos . 2ir\— I 51fl — ) or
5 5/

2(cos — i sin —) or2
" 5 5,

5. a) ze

{
2ir . 2ir 4r .

,cos—±,sin——,cos—±zSin——}
5 5 5 5J

b) z'—l=
(z 1)(z {

2ir . 2Jr1'
— — cos—-I-lsin—j)5 5

( [
2ir .

— cos___isin__j)5 5

( [
.

— cos_+lsIn__j)5 5

( [— cos___zsin_j)5 5
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10.7 Exercises, page 448,
continued

b) Let
1 +w+w2+w3+w4-i-w'-tw6
=
If w isa non-real 7th root,
w + w2 + w3 ÷ w4 + w' ÷ w6 + w7
= zw,
or
w+w2+w3+w4+w5+w6+ 1
= zw

z = zw

z(1 — w) = 0
z=0
(sincew* 1)

c) No: a multiplication table as
above holds only if n is prime.

9. a) i=cos72°+jsjn72°
Wk

b) Each root is the previous
root, rotated by 72°.

10. a) (z+1)
(i — 2 cos + i)

3ir \
(z2 — 2 cos z + 1)

(2
5ir— 2 cos — z + ii = 0
7 /

b) On expansion all powers of
z have zero coefficients,
except z; the coefficient of z is
I' it 3it 5irr1—2cos——2cos——2cos——7 7 7
which equals zero.
Thus,

it 3ir 57r 1cos — + cos — +cos — = —
7 7 72

11. z = /(cos kit i sin kit),

999

2. a) lzI=6
b) Iz+1—3i1=5
c) z—uI=a

3. a) (x+4)2+(y+3)2=4/ \2
b) x2+iy÷_\ 4/ 16

8. x=Oory=0
9. y=0orx+y=2

10. a) Iz—21=Iz+61
b) Iz—2—iI=Iz—3+2i1

12. a) x=9
2

I 8\ / 4\2 80b) X--) +Y--)
c) (x+1)2--(y—1)2=2

d) (x÷)2÷_1)2=
13. xy=1
14. a) interior of circle:

centre 0, radius 5
b) interior of circle

and circumference:
centre 5 — 31, radius 3

c) °exterior' of hyperbola
x2 — y2 = 2

d) annulus:
centre 21, radii 2 and 3

15. a) parabola
b) y2=4x

16. a) circle: centre 2 + 31
radius 4

b) line segment
17. a) IzI=7.61

b) Iz=4
10.9 Exercises, page 461
1. a) r22'°

b) re'°
1 —.c) —e
r

d) re'°
2. a) z = 2.24e°46'

b) w = 3.16e'89'

3. a) u=10e3
b) v=3Jie

4. a) 4e
b) 32

1 2i1
c) —e

2
1 4LA

d) —e
4 ae) v2e'

f) —4'J•
6. e2k=1,ke7L

An infinite number of
different arguments
give the same number.

0
SR

c)

d)

e)

f)

g)

h)

FR

FR

10.8 Exercises, page 453
1. a)

b)

FR

5. z°'—(2+i)+pi
6. x2+y2=lorx=O
7. y=—'Jx+2+4'Jandx<4
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10. a) kir

b) (k+])m
11. Z2 r2e =W0,OrI II

Z2 = —r2 e = w1

16. f(0)=ie'
= i(cos 0 + i sin 0)
= Icos 0 — sin0

or
f°(0) = —sin 8 + I cos 0

Review Exercises, pages 467—47 1
1. a) 10

b) 25—8i
c) 120—221
d) —2+2i
e) —i
f) 1

g) I
h) —2+61
i) —7+1
j) 241

k) —6—111
2. a) —3—i

4 3.
b) ———--z55
c) —5+81

9 7.d) —÷—--i
10 10
3 4.e) —+-----z25 25
1 2.

f) —+—-:55
267 24.g) —+———i962 481

688 134
h) ---——-———z7225 7225

3. a) 4bi
2bb)

c) a(a2+b2+1)+
a2 + b2

ib(a2 + b2 — 1)
a2 + b2

4. 5±21
5. a) 6±1

b) —2±41
3 i.JTii

c) 2
4 or i

3 570 125

b) z=2—i
= 3 + 41

p=5i
q = —6 + i
u=4

c) zi=J
1W1 5
p1=5
IqI=
uI=4

d) argz=27°
argw = —53°

arg p = —90°

arg q = —171°

arg U = 0°

11. a) =a—bi
b) z+=2a€l
c) ñ=a2 +b2€IR

12. a) 180°
b) rotate by 180°; yes

13. a) b)

One side of a triangle is
shorter than the sum of the
other two sides.

c) One side of a triangle is
greater than the difference
between the other two sides.

14. a) midpoint between z and W
b) divides segment from z to w,

in ratio n: m

15. b)

riR

imaginary axis
of z plane

/ •

•/real axis of
z plane

Inventory,page 466
1. —1

2. imaginary
3. a+ibora+l'i
4. RCC
5. real; imaginary
6. non-real
7. a=c;b=d
8. a;b;a—bi;

tan(arg z) =

9. reflections;
real axis

10. z
11. Complex
12. r(cos 0 + i sin 0)
13. equal;

any multiple of 211

14. product
15. difference

16. r"(cosn0-i-isinnO)
17. z'—l=O
18. n

19. two
20. Iz—WIorIW—zI
21. e°;y
22. —l

6.
8.

9.
10. a) It—

p

q ii

w

z.

q
._ U

z

•w
p
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Review Exercises, pages 467—471,
continued
16. a) z2—(5—2z)z÷(—1—5i)=0

b) z2—[a+c-I-(b—d)iJ
+ [ac + bd + i(bc — ad)J = 0

17. b) 0,2,4...orn
18.

19. a) z2=1
b)

c) It is true that

(*)2=i,
but there is
another 'root of i'.

20. x2+y2=(x-1-iy)(x—iy)
(only in C)

21. a) 1±3i,-
2

b)

22. a) w3=1
4v . . 41rb) w2 =cos + i sin
3 3
2ir . 2ir= cos — z sin
3 3

(w2)3 = 1

24. Yes; e.g. z =1 or z =
are roots of

— (1 ÷ z)z + i = 0
25. a) i

b) I
c) cos45°+isin45or

cos 135° — i sin 135°
d) —1

26. b) z=2(cos0+isin 0) or
z = cos 0 — i sin 0

28. a) Izl=y,argz=90°
b) IzI=x,argz=180°

29. a) = 3(cos 67° — i sin 67°)
b) =2(cos 123°+isin 123°)
c) zw = 6(cos 56° — isin 56°)
d) zw= 6(cos 56° + isin 56°)

e) (cos 190° ÷ i sin 190°) or

(cos 170° — isin 170°)

f) (cos 190° — i sin 190°) or

(cos 170° + i sin 170°)

30. a) Z='/ii(cos6°÷isin6°)
b) w='J(cos60°—isin60°)
c) zw =°J 565(cos 54° — isin 54°)

d) =/ii(cos66°+isin66°)

e) = /i(cos 66° — isin 66°)

31. a) IzI=2,argz=120°
IwI= \I, arg w = —135°

b) z3=8
w4 = —4

32. a) 2J(cos 15° — isin 15°)
b) J(cos 255° + i sin 255°) or

°1(cos 105° — isin 105°)

c) ——(cos 105° + i sin 105°)

33. a) 30
b) cos3O=

cos3 0 — 3 cos 0 sin2 0
sin 30 =
3 cos2 0 sin 0 — sin3 0

34. a) 1

b)
c) 32i

d'88
e)

2 2
f) I

35. cos0+isin0
36. modulus 1

argument 20

2k,r . . 2kir38. b) cos + i sin
6 6

k (0,1,2,3,4,5)
That is,

1, + i, +
2 2 2 2

—1,—— — —i, — —

2 22 2
I 2kir\ . . I 2kir39. cosIJr+—p+:slnIlr÷-——\ 5/ \ 5

k (0,1,2,3,4)
that is,
—1, —0.31 0.95i,
0.81 0.59i

40. a) z—3—4i1=5
b) Ifz=0,

L.S. =!—3 — 4ij= 5 = R.S.

41. a) (x—1)2+(y+3)2= t

b) \ 7/ 49
1 2.42. circle: centre — —33

radius 1.49
3

43. a) 4ef
b) 5Je

4. i)
ii) centre —4 + 31, radius 5

3x — 4y + 24 = 0

lb i) z='Ii+i'/,—2—h/,
i,-Ji÷W

ii) 0=±48.6°or0=±131.4°

a)
2 2
Fr .. Frb) cos—±lsin—
3 3

E

11

FR

FR

If

li

1FF



d) All three roots have
modulus 1.

49. i) z=2,—1+3j,—1—3j
3A=90°B=45°,3C45°
arg of—i + 3i is 1.89
arg of—i — 3i is —i.89

ii) 0= 15°, 75°, 195°, 255°
iii) 0= 167° or 3000

50. a) z2=(x2—y2)+2ixy
b) x=±5,y=±4;

z = 5 + 4i or z —5 — 4i

d) OP=OQ=sI'ii
e) 4zPOX39°
f) 3P0R=39°

51. i) z=i+2i
w=3-i

ii) -hasmodulus---,
Z2

5
argument —Jr

12

1 1has modulus —,
64

argument 2t
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it Jr
Arguments are it, —' ——33

A

FR

C

52. 1) z=
[ / 13m\ . . / 13ir2i cosu — i + i sin i —
L \ 181 \ 18

z = 1 + 2i, z = 1 — 2i

ii)

/5 \ . 4
53. i) i—,Ojradius—\3 / 3

ii) cos 54° =
4

c)

Si -

0

R

/P
1R
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Problem Supplement,

a) no; not coplanar
b) yes; coplanar
c) no; not coplanar

b) a—0.5b

8 + 2c + 3d

8.5

b) —OA+11OB6 6
9. a) R, K, M collinear;

R divides KM externally
in ratio 5 : 3;
the four points are
coplanar

b) (11,4.5,—i)
AD = 3AB + 5AC

13:5

b) any vector ka + mb,
where 21k — 69m = 0

13. b) (3,0,1)
46 6714. k=——,m=-—
17 17

2a — b+ c — 3d

OD=m(b—c)+k(c—a)

16.

20.

21. BM = (a + c)

AM=.1(c—a)

AM2 = BM2

23. AB=b—a
BC = C —

OB.AC= 0
25.

26. (—2,3) =
(1,1)

+ (—1,i)

27. u1v1 + u2v2 + u3v3

29. 5 km/h

30. a) (6,6,0).(i,—i,2) = 0
diagonals perpendicular

b)
a=32°,fl=148°

33. II= 70.7 N
0=135'

34. a) 3.91 km/h;
bearing 040°

b) 208m
c) 5mm

35. a) bearing 304°
b) 1.66km/h
c) 9mm

36. a) = 375 km/h
b) bearing 173°

37. a) r=(2,5,3)+k(2,3,6)
x =2 + 2k
y = 5 + 3k

I z = 3 + 6k

2 3 6

b) r= (—2,—i,4) + t(5,3,—2)
x = —2 + St

y = —1 + 3t
Iz= 4—2t

5 3 —2

38. a) skew

b)

39. r= (8,—6,7) + t(8,1i,—10)

40. r = (6,—i) ÷ k(3,5)

41 (+-- 3+_L 2--

42. a)
3

43. a)c)
44. a) 45°

Z b) 45°; 90°

48. r=
(1,2,3) ÷ k(1,—2,2) + 5(1,2,—3)

49. (1,1,3)
50. lix+28y+9z=i0
51. 14x— 13y+8z=—18
52. (i,2,—3)
54. a) k*—3,k*—i

b) k=—3
c) k=—i

55. x—y+3z=3
1456. a) —

b)
58. One matrix being m x n,

the other is n x m.

59. a) (0,1) -÷ (0,1)
(0,8) — (0,b)
Points on y-axis
remain invariant.

b) (1,0)—.(1,k)
(1,b) -* (1,b + k)
Points on x = 1

move upward by k.
c) (a,0) — (a,ka)

Points on x-axis
'dilated' by k, upward.

d) det(s)=1
same area,
same orientation

IcosóO°60. a) z-÷i
Lsin 60°
F sin60°b) j—i
L—cos 60

c) R =Icos 60° sin 60°
[sin 60° —cos 60°

d) R=I0s20 sin2O
Lsin 20 —cos 20

61. M, = (same line)
62. a) ellipse

pages 472—48 3

4.

5.

6.
7.

8. a) OA+OB8 8

10.
11.

12.

V

w

b) 16x2+y2+96x—2y+129=0
c)

45. a) 3
b) (—1,—6,3)

46. a) Line can be on either
side of AQ = u.

b) r=(2,1)+k(1,—7)
r= (2,1) + t(7,1)

47. r=
(— 1,2,1) + k(2,O,3) +s(0,1,0)
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65. a) ellipse
b) (x,y)—.(x+l,y+4)
c) 8x2+y2=15
d)

66. a) parabola
b) (x,y) -+ (x+ 2,y + 1)

c) x2+8y=0

67. a) hyperbola
b) (x,y)—.(x—4,y+2)
c) 4x2—y2=--4

73. b) 323 160
79. a) a' + 5a4x + 10a3x2 +

10a2x3 + 5ax4 + x'
b) 256a4 — 768a3 + 864a2

— 432a ÷ 18

2kir . 2kir80. a) cos + i sin
9 9

k (1,2,4,5,7,8)

b) 9
k e (2,4,5,7,8)

82. a) Oor3
b) 4w;or4w2

83. a) A=!I1 —1
9L7 2

x= 2,y= 3

b) [3tI_2t2]
= 1 or 2

c) v.w*0
= 1, t2 = —2

d)

84. i)
lii) 3ZABC 48'

IZABO 23'
Adjacent sides have length[i and 3,
— OABC not a rhombus

85. a) ipidpointof
[EF]=(a+b+c+d);
midpoints of IGHI
and [LMI
have same position vector;
the lines are concurrent

P1(3,0,2); P2(1,—3,—4)
2x + 3y + 6z = 18

(12 2
a) i—,--,——\33 3

b) p=k;
1k I is the
perpendicular
distance from 0 to
plane Ilk; 11k and
are on different sides
of the origin

d) (—1,—1,—3)
e) Jiiunits

ii) b) (x,y,z) =

(3,0,0) + s(0,1,1)

63. a) parabola
b) 16x2—32x—y+21 =0
c)

C
d)

64. a) hyperbola
b) 9x2—y2—36x

— 8y — 34 = 0
c)

68. a) 1.7x2—2.6y+3.3y2=16
b)

69. a) —21.6x2 + 18.6xy — 0.6y2 = 100

b)

70. a) hyperbola
b) 450

c) 16x2—y2=64
d)

d)
6. a)

c)

7. i)

71. a) ellipse
b) 40.0'
c) x2+25y2=100



88. 1
a) =--

b) t'=2
I =5

c) 1-1(1,0,5)
K (0,2,4)

89. b) OA=[4]OB=[4].

L —2

k = 3, 1 = 4

c) n=—1
d) p=—l

90. a) x+4y=18
b) Q(-6,6)
d) R'(3b,3b), if R(b,b)
e) T is a one-way stretch.

by a factor of 3,
in the direction x = y
11

91. s= 2 2
13
22

92. a) F b) T c) F d) F
Ix+4y93. a) w=i
[2x — y

b) (1—)x÷ 4y=O
2x— (1+)y=0

For=3:[2Y]and [i]
ForA=3:[X]and []

10 —ii 1 0 i
I on
Li OJ L—i 0

I
2 2

2 21
2 2

fi
2 2

M6=[1 0
[0 1

d) counterclockwise rotations
about the orgin, of 120',
240', and 0' (identity)

M=[1 0[01
= 2, ). = ii

1 21 -' 11
e1=I l,e2=I

[—3] L3
a) 3x+2y=Oand

y = 3x

b) p1Ap12 0
[0 11

98. M=[2 —1
[1 2

1o [—sin 0. i) LI 1=1Lii L cosO
MI°l=I sin

Lii L—cos2a
[cos0 —sin0

ii) A=I[sin0 cos0
B=1c052 sin2a

[sin 2a —sin 2
2 [cos20 —sin20in) A =1[sin20 cos20

i.e. a rotation of 20

B2=[1 0
[0 1

i.e. the identity matrix

00. b) Fora=0:
(x,y,z) = k(1,-1,-1)
Two coincident planes
meet the plane x + y = 0
in a line.
for a = —1:

(x,y,z) = (—1,1,0) + s(0,1,1)
Three planes intersect
in a line.

01. a) —4d2+26d—36

b) d=2ord=9
2

c) Ford=2:
(—10,4,0) +s(13,—5,1)

(115Ford=0:i—\ 266
9

Ford = -: no solution
2

103. a) OC=[6],oD=[2]
b) M=10 1

Li 0
o=141,o=18• L6j [2
det(N) = —4

OEF = 4(OAB)
1—i 0c) R=I
L 0 —1

0 —2

[—2 0

0 —s' 2

—' 0
2

3ZGOH 42'
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95. b)

c) M2=

M4 =

96.

97. 02. a)

b)

c)
d)

e)

1— 4

L 4 —3
x=20,y= —12
4unit2

-3)

Ix+4y
c) u=

L—2x —y
No.

94. a) u=(2,1)
v = (-1,2)

b) corresponding lou: y = —x

corresponding to v: y = —2x

c) T is the reflection

in the liney = x.
2



APPENDIX

NOTATION

(, 'iitt i 1
U..) set notation
(xl...) setofallxsuchthat
0 empty set

belongs to
C is a subset of
N natural numbers
7 integers
Q rational numbers

real numbers
C complex numbers
V2 two-dimensionalvector space
V3 three-dimensional vector space

vector space of 2 x 2 matrices
implies or therefore
is equivalent to or if and only if

II is parallel to
J is perpendicular to

Ari iii Pitt'! it
= equals approximately *
3.204... (more decimals exist)

A/,qcl'ra

C(n,r) (nchooser)
(n — r)!r!

seriest1+t2+t3+...+t

lxl absolute value of x
f:x — y or {(x,y) I y = f(x)} function f mapsx onto y

Malt i 's
a element in the ith row, jth column
I unit matrix
02X2 zero matrix (of dimension 2 by 2)
M' inverse of M
det(M) determinant of M
Mt transpose of M

*withifl given restrictions, may be written =
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Vcctor.c

V vector

AB vector defined by two points

lvi, IABI length or magnitude of a vector

(x,y) or lxi vector as ordered pair
LYJ

[xl
(x,y,z) or ' vector as ordered triple

Lz]
i, j, k standard basis vectors

unit vector in the direction of v

u•v dot product
u x v cross product

VpQ velocity of P relative to Q

(:ntpIe. Nui iber

Re(z) real part of z
Im(z) imaginary part of z

conjugate of z
izi = r modulus or absolute value of z
arg z argument of z

The notation used in the International Baccalaureate questions is not
always the same as the notation given above. The context of any 'different'
notation should make the meaning obvious.

FORMULAS IN TRIGONOMETRY

sin 0 = cos 0= tan 0 =
hyp hyp adj

cos(90° — 0) = sin 0
0

sin(90° - 0) = cos 0. adj

4nqIe in 1'il! Quadrants

The position vector OP = (x,y), where I OPI =r, defines an angle 0 with the
positive x-axis such that

sin O= 2
Sin All

cos 0 0 x Tan Cos

tan 0 =
x

The diagram on the right indicates where the ratios are positive.
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Svecial Angles
• 0 1 0sin 45 = — = cos 45

tan 45° = 1
• 01 0sin 30 =—=cos60

2• °sin 60 = — = cos 30
2

0 1tan 30 = —

tan 60° =

Pythagorean Formulas
sin2 A + cos2 A = 1

sec2 A =1 + tan2 A

csc2 A =1 + cot2 A

A isosceles right triangle

semi-equilateral triangle

Compound Angles

sin(A + B) = sin A cos B + sin B cos A

sin(A — B) = sin A cos B — sin B cos A

cos(A + B) = cos A cos B — sin A sin B

cos(A — B) = cos A cos B + sin A sin B

tan A + tan Btan(A + B) 1 — tan A tan B

tan A — tan Btan(A — B) =
1 + tan A tan B

sin 2A = 2 sin A cos A

cos 2A cos2A — sin2 A = 2cos2 A — 1 = 1 — 2 sin2 A

2 tan Atan 2A =
1 — tan2 A

Solution of Triangles

The cosine law

a2 = b2 + — 2bc cos A

The sine law
a = b = c

sinA sinB sinC BaC
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8 sin 0 cos 0 tan 0

degree radiant approx.value

=0.52
6 2 2

30

-
= 0.79

J * 1

—

60 =1.0 1

90 = 1.6 1 0 undefined

120 -=2.1

135 -24. -i--
Ii

——i-- —1

150 2.6
6 2 2

180 iv=3.1 0 —1 0

210 3.7
6

J
2 2

1

-./

225 57.39
4

.
1

i:
1

\f 1

240 4.2 J

270 4.7
—

—1 0 undefined

300 5.2 TL

315 755
4

. L Lii 1—

330 = 5.8
6 2

JTi
2

J

360 2ir=6.3 0 1 0

The values of the other ratios can be obtained from the identities

csc0= —'---—,secO=---'--—,andcotO= —--—
sin 0 cos 0 tan 0



GLOSSARY

This abbreviated glossary provides definitions for
mathematical terms as they are used in this text.
Consult a mathematics dictionary for more complete
or alternative definitions.

Acceleration. The rate at which a speed or velocity is
changing.
Angle between a line and a plane. The acute angle
between a line and its perpendicular projection in
the plane.
Angle between planes. Either the angle between
normals to the planes, or the supplement of that
angle.
Angle between vectors. The angle between two
vectors is the angle between them when they are
drawn with a common tail.
Argand diagram. See Complex plane.
Argument. If P is the point representing the
complex number z in the complex plane, then the
argument of z is the angle between OP and the
positive real axis.
Associativity. The operation * in the setS has the
associative property if, for all a, b, c 5,
a(bc) = (ab)c.

Basis. A set of vectors forms a basis for a
vector space V if:
1. it is a linearly independent set and
2. it generates the space; that is, every vector
of V can be expressed as a linear combination
of the vectors of the set.
Basis vectors for V2. Any two linearly independent
vectors a and b form a basis for V2.
Basis vectors for V3. Any three linearly independent
vectors a, b, and c form a basis for V3.
Bearing. Direction expressed in degrees measured
clockwise from north.
Binary operation. Given a set S. a binary operation
* in S combines any two elements of S to give an
element of S; that is, if a, b s then a*b S.

Commutativity. The operation * in the setS has the
commutative property if, for all a, b S. a*b =b*a.

Complex plane. Complex numbers can be
represented geometrically in a complex plane,
determined by a real axis (representing all the real
numbers) and an imaginary axis. (It is also known as
an Argand diagram.)
Complex number. A number that can be expressed
as z = x + iy, where x, y J, and i2 = —1. The real
numbers form a subset of complex numbers.

Component. The component of the vector u in the
direction of v, where the angle between u and v is 0,
is the scalar I u os 0.

Components. If a vector vis expressed as
V = xe + ye2, where e1 and e2 are unit vectors, then
the scalars x andy are the components of v in the
directions of e1 and e2 respectively.
Composition of transformations. The composition
of two transformations is the result of applying one
transformation after the other.
Conic. A curve such as a circle, parabola, ellipse, or
hyperbola that can be obtained from the intersection
of a cone and a plane.
Conic, general form.
ax2 + 2hxy + by2 + 2gx + 2fy + c = 0
For a central conic g =f= 0.
If axes are parallel to x-axis and to y-axis, then h = 0.

Coordinates. Numbers that locate a point in 2-space
or 3-space.
Coplanar vectors. Three vectors are coplanar if
directed line segments that represent them can be
translated so that all three segments lie in the same
plane.
Cross product. The cross product of vectors u and v,
making an angle 0, is the vectorlu v sin Be, where e
is a unit vector normal to u and v, such that u, v, e
form a right-handed system.

Degenerate conic. A point, a straight line, or part of
a line formed by the intersection of a cone and a
plane.
Determinant. The determinant of a 2 x 2 matrix

b is the real number ad — bc.
Lc dJ
The value of the 2 x 2 determinant a b = ad — bc.cd
The value of the 3 x 3 determinant
mnp
q r =m(rv—su)—n(qv—st)+p(qu—rt).
t U v

Direction. A set of parallel lines with arrows
pointing the same way.
Direction cosines of a line. The numbers

cos a = J-, cos /3 = , cos y = , wherea, /3, and y
mi imi imi

are the angles made with the x, y, and z axes
respectively and m = (m1,m2,m3) is parallel to the line.
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Direction vector of a line. A vector that is collinear
with, or parallel to, a line.
Displacement. A directed distance (which can
hence be represented by a vector).
Distributivity. In the set S. the operation * is
distributive over the operation # if, for all a, b, c 5,
a*(b#c) =(ab)#(ac) and (b#c)*a = (b*a)#(c*a).
Dot product. The dot product of vectors u and v,
making an angle 0, is the scalar lullvicos 0.

Dynamics. The study of how objects change their
motion under the action of forces.

Equilibrant. Given that R is the resultant of a
number of force vectors, then the equilibrant of the
force vectors is —R.
Equilibrium. A particle is said to be in equilibrium
when the vector sum of all forces acting upon it is
zero.

Gravitational force. A particle of mass m kilograms
has a gravitational force of mg newtons acting upon
it, where g is the acceleration due to gravity. (On
earth,g 9.8 rn/s2.)

Identity. See Neutral element.
Image. Given a transformation T and a vector v, the
vector v' = Tv is the image of v.
Imaginary number. The name describing any
number ki where k R, and i2 = —1. Imaginary
numbers form a subset of complex numbers.
Invariant lines. Lines that are their own images
under a particular transformation are known as
invariant for that transformation.
Inverse element, a' e S is the inverse of element
a S for the operation * ifa'*a = aa' = e, wheree S
is the neutral element for .
Isometry. A transformation that maps a line
segment into a congruent line segment.

Linear dependence of two vectors. Two vectors a
and b are linearly dependent if and only if a and I'
are collinear.
Linear dependence of three vectors. Three vectors
a, b, and c are linearly dependent if and only if m, k,
and p exist, not all equal to 0, such that

ma+kb+pc=0,m,k,pEIJt
Linearindependence of vectors. Vectors that are
not linearly dependent are linearly independent.

Linear transformation. A linear transformation T
of a vector space is such that, for any vectors u, v, and
any scalar k:
1. T(u+v)=Tu+Tv
2. T(ku) = k(Tu)

Magnitude. The length or norm of a vector.
Matrix. A rectangular array of numbers. A square
matrix can be used as an operator to effect
transformations of a vector space.
Modulus. The modulus of the complex number
z = x + iy is Ix2 + y2. (It can also be called the length,
magnitude, or absolute value of z.)

Natural measure. Angles are commonly measured
in degrees. However, the "natural measure" of an
angle is defined as the ratio of the arc subtended by
the angle and the radius of the circle. (Natural
measure is in radians.)
Neutral element. The set S has an neutral element or
identity element e with respect to the operation *if
for all x €5, e*x = x*e = x.
Norm. See Magnitude.
Normal vector. A normal vector to a plane (or a line)
is a vector that is perpendicular to the plane (or the
line).

Orthogonal. Perpendicular.
Orthonormal set. A set of unit vectors that are
mutually orthogonal.

Parameter. An arbitrary constant or a variable in a
mathematical expression that distinguishes various
specific cases. In the parametric equation of a line a
parameter determines a point in the line.
Parametric equations of a line.
in 2-space: x =x0 ÷ km1

y=y0+km2
where (x0,y0) is a point on the line, (m1,rn2) is parallel
to the line, and k is a parameter.
in 3-space: x = x0 + km1

YYo km2
z=z0+km3 ______

where (x0,y0,z0) is a point on the line, (m1,m2,m3) is
parallel to the line, and k is a parameter.
Parametric equations of a plane.
in 3-space: x = x0 + km1 + su1

Y = Yo + km2 + su2
z = z0 + km3 + su3

where (x0,y0,z0) is a point on the plane,
m = (m1,m2,m3) andu = (u1,u2,u3) are vectors parallel
to the plane, m 4' u, and k and s are parameters.
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Particle. An object that is modelled by a single point.
Position vector. If 0 is the origin and A is any point,
then OA is called the position vector of A.

Projection. The projection of the vector u in the
direction of v, where the angle between u and v is 0,

is the vector Julcos 0)--
lvi

Projections. If a vector v is expressed as
v =Xe1 + ye2, where e1 and e2 are unit vectors, then
the vectors xe1 and Y2 are the projections of v in the
directions of e1 and e2.

Radian. See Natural measure.
Relative velocity. The relative velocity of A from B
is the velocity of A as perceived by the observer B.

Resultant. Given two vectors a andb, then the vector
a + b is called the resultant of a and 1,.

Right-handed system. Three vectors u, v, and w
form a right-handed system if their directions are
such that they could be represented respectively by
the thumb, the first finger, and the second finger of a
right hand. (See diagram, page 11.)
Roots. The roots of an equation in a single variable
are the values of the variable that satisfy the
equation.

Scalar. A term used to describe real numbers, to
distinguish them from vectors.
Singularity. A singular transformation is one that
destroys one or more dimensions by its action. Its
matrix is also known as singular, and the
determinant of this matrix is zero.
Skew lines. Lines in 3-space that are neither parallel
nor intersecting.
Statics. The study of forces acting upon objects that
are stationary in a given frame of reference.
Supplement. The supplement of an angle of 00 is
1800 — 00.

Tension. The pulling force in a taut string.
Thrust. The pushing force exerted by a strut.
Transformation. Any action that changes vectors,
points, or figures is a transformation of those
vectors, points, or figures.
Translation. A transformation in which the image
of a figure is obtained by sliding or displacing the
original figure without rotation. It can be defined by
the vector (h,k) which maps the point (x,y)
to the point (x+ h,y+ k).
Triangle law of vector addition. OS + ST =OT

Triangle law of vector subtraction. ST =OT — OS

Triangle inequality. Given any three points F, Q,
and R, the lengths PQ + QR >PR.

Unit vector. A vector whose length is 1.

Vector. A mathematical entity that can be
represented by a directed line segment, or by an
ordered n-tuple of numbers, and that obeys a law of
addition.
Vector equation of a line. r =r + km, where r is
the position vector of any point on the line, r0 is the
position vector of a given point on the line, m is a
vector parallel to the line, and k is a parameter.

Vector equation of a plane. r = r0 + km + su, where
r is the direction vector of any point on the plane,
r0 is the direction vector of a given point on the
plane, m and u are vectors parallel to the plane,
m u, and k and s are parameters.
Vector space. A set of vectors, together with the
operations of vector addition and multiplication by a
scalar.

Work. The product of the component of a force along
a distance moved and of the distance moved.
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ab — h2 invariant under rotation, proof of, 368
Abel, Niels Hendrik, 443
Absolute value, 43
Absolute value of a complex number, 426
Addition of matrices, 291
Affine transformation, 476
Airspeed, 152, 177
Algebra, fundamental theorem of, 430
Algebra of matrices, 291
Angle, cross product and, 144
Angle between a line and a plane, 18
Angle between two planes, 18
Angle between two vectors, 114
Angle of elevation, 19
Angles, cross product and, 142
Area scale factor, 311
Argand, Jean, 415, 424
Argand diagram, 424
Argand plane, 424
Argument, principal, 427
Argument of a complex number, 426, 434
Arrowgraph, 57
Associativity of matrix addition, 292
Associativity of matrix multiplication, 321
Associativity of vector addition, 35
Augmented matrix, 95
ax2 + by2 + 2gx + 2fy + c = 0, graph of, 380
ax2 + 2hxy + by2 = k, graph of, 373, 381

Basis, orthornormal, 53
Basis, orthonormal, dot product and, 127
Basis, standard, 52
Basis, V2, 82, 83, 107
Basis, V3. 84
Bearing, 4, 19, 156, 167, 177
Binary operation, 132
Binomial expansion, infinite, 456
Binomial theorem, 401, 408
Binomial theorem, for n 404
Binomial theorem, proof by induction, 403
Bombelli, Raffaello, 419

C, 416
C(n,r), 393
Calculus of vector functions, 189

Cardan, Jerome, 413
Cardano, Girolamo, 413, 415
Cartesian equation of a line in 3-space, 210
Cartesian equation of a line in 2-space, 198, 210, 211
Cartesian equation of a plane, 251
Cartesian form of a complex number, 434
Cartesian graph, 57
Cayley-Hamilton theorem, 335
Centre of mass, 472
Centripetal acceleration, 190
Centroid, 472
Characteristic equation, 334
Characteristic equation of a matrix, 334
Characteristic values, 332, 334, 367
Characteristic vectors, 332, 334, 367
Circle, 344
Circle, imaginary, 360
Circle, point, 360
Circle in the complex plane, 450
Circular functions, 460
Class of equivalence relation, 58
Coefficient matrix, 95
Coincident lines, 217
Collinear points, 46, 97, 98
Collinear vectors, 68, 106
Column vector, 21, 295
Columns of a matrix, 290
Columns of a matrix as an operator, 303
Commutativity of matrix addition, 292
Commutativity of vector addition, 34
Completing the square, 356, 380, 414
Complex conjugates, 420
Complex number, 412, 416
Complex number, absolute value of, 426
Complex number, argument of, 426, 434
Complex number, Cartesian form of, 434
Complex number, exponential form of, 456
Complex number, length of, 426
Complex number, magnitude of, 426
Complex number, modulus of, 426
Complex number, modulus-argument form of, 429, 434
Complex number, natural logarithm of, 461
Complex number, polar form of, 429, 434
Complex numbers, geometric representation of, 423
Complex numbers, properties of, 421
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Complex numbers and graphing, 449
Complex numbers and trigonometry, 436
Complex numbers and vectors, 425, 450
Complex numbers as a vector space, 425
Complex plane, 424
Complex plane, distance in the, 449
Component, 116, 129, 161
Components, 21, 82, 184, 290
Components, rectangular, 118
Components and vector addition, 28
Composite transformation, determinant of, 323
Composition of transformations, 319, 320
Composition of transformations, properties of, 323
Composition of translations, 26
Compound angle identities, 130, 542
Concurrent lines, 474
Concyclic points, 131
Conics in standard positions, 344
Conjecture, 386, 408
Conjugates, complex, 420
Conjugates, geometric representation of, 423
Conjugates, polar form of, 437
Conjugates, properties of, 421
Consistent system of equations, 219, 237
Convergent series, 456
Coordinates, 21
Coplanar points, 97, 100
Coplanar vectors, 75, 106
Cosine defined in exponential form, 459
Cosine law, 17, 130, 156
Counterexample, 37, 149
Cramer's rule, 329
Cross product, 132
Cross product, component form of, 139
Cross product, properties of, 138
Cyclic points, 131
Cyclic property of triple scalar product, 149

Degenerate conics, 355
De Moivre, Abraham, 441
De Moivre's theorem, 441
De Moivre's theorem in exponential form, 458
Dependent system, 219, 237
Desargues, Girard, 233
Desargues, theorem, 234
Determinant, 310
Determinant, cross product and, 140
Determinant of a composite transformation, 323
Diagonalized matrix, 375
Diagonalizing a symmetric matrix, 375
Diagram, position, 156
Diagram, space, 156, 176
Diagram, vector, 156, 176

Dilatation, 304
Dimension of a matrix, 290
Dimensions, 11
Directed line segment, 5
Direction, 6, 154, 175
Direction, cross product and, 133
Direction, wind, 177
Direction cosines, 214, 236
Direction in 3-space, 167
Direction of motion, 171
Direction numbers of a line, 203, 211, 215, 236
Direction vector of a line, 199, 236
Displacement, 4, 27, 171, 175
Displacements and vector addition, 27
Distance, 175
Distance, speed and time and, 179
Distance from point to line, 271, 276
Distance from point to plane, 271, 276
Distance in the complex plane, 449
Distributivity of cross product over vector

addition, 139
Distributivity of matrix multiplication over matrix

addition, 328
Divergent series, 456
Division of complex numbers, 437
Dot product, 121, 132
Dot product, commutativity of, 125
Dot product, component form of, 126
Dot product, distributivity of, 125
Dot product, properties of, 125, 126
Drawing, scale 159
Dynamics, 154

e, 456
Eigenvalues, 334
Eigenvectors, 334
Element, 290
Elimination, 73, 267
Ellipse, 344
Ellipse, graph of, 346
Ellipse, property of, 452
Ellipse in the complex plane, 452
Enlargement, 304
Entries, 290
Equality of matrices, 291
Equality of vectors, 8
Equations, matrix, 329
Equilibrant, 155
Equilibrium, 155
Equivalence class, 58
Equivalence relation, 57
Equivalent matrices, 96
Euler, Leonhard, 456



Euler's formulas, 457
Exponential form of a complex number, 456
Exponential form of De Moivre's theorem, 458
External line division, 90

Factor theorem, 430
Factoring in C, 444
Fermat's last theorem, 387
Fixed vector, 156
Force, 154
Four-colour problem, 386
Free vector, 156
Friction, 164
Frictional force, 166
Function, vector, 188
Fundamental theorem of algebra, 430

g, 154
Gauss, Karl Friedrich, 424
Geometric representation of complex numbers, 423
General form of conics, 345
Generalized pigeonhole principle, 89
Gibbs, Josiah Willard, 2
Graphing and complex numbers, 449
Grassmann, Hermann, 2
Gravitational force, 154
Gravity, acceleration due to, 154
Grid lines, 22
Groundspeed, 152, 177

Hamilton, Sir William, 2, 425
Harriott, Thomas, 413
Heaviside, Oliver, 2
Height, 138
Hyperbola, 344
Hyperbolic functions, 460

i, 415
i, 52
Identity element, 41
Identity matrix, 324
Identity transformation, 304
Image, 289
Image figure, size and orientation of, 310
Image of i and j by a matrix, 303
Image of parallel lines by a linear

transformation, 302
Image of 0 by a linear transformation, 302
Imaginary axis, 424
Imaginary circle, 360
Imaginary number, 412, 416
Imaginary part of a complex number, 416
Inconsistent system, 219, 237
Independent system, 219, 237
Inductive property of RJ, 392, 408
Infinite series, 404

Index 549

Infinity of solutions: matrices, 96
Internal/external division of a line property, 92
Internal line division, 90
Intersection of lines, 15
Intersection of lines in 3-space, 222
Intersection of lines in 2-space, 212
Intersection of planes, 14
Intersection of three planes, solving by

elimination, 270
Intersection of three planes, solving by matrices, 271
Intersection of three planes in a line, 269
Intersection of three planes in a point, 268, 269
Intersection of three planes in a prism, 269
Invariant lines, 332, 327
Inverse, 41
Inverse of a matrix, 315
Inverse of a transformation, 315
Inverse of a translation, 356, 357
Invertible matrix, 315
Isometry, 349

j,52

k, 53

Koenigsberg bridge problem, 387
Kinetic energy, 174

Length, 8
Length of a complex number, 426
Length of a vector, 23, 43
Line, Cartesian equation of, 198, 210,211
Line, image under a linear transformation, 298
Line, parametric equations of, 205
Line, symmetric equation of, 210
Line, vector equation of, 199, 203
Line of intersection of three planes, 268
Line of intersection of two planes, 263, 264
Linear combination, cross product and, 149
Linear combination of three vectors, 77, 79, 83
Linear combination of two vectors, 81, 106
Linear dependence, cross product and, 141
Linear dependence of three vectors, 74, 75, 106
Linear dependence of two vectors, 67, 68
Linear equation, 198
Linear independence of three vectors, 81, 106
Linear independence of two vectors, 70, 81, 106
Linear systems and matrix equations, 329
Linear transformation of a line, 298
Linear transformation of a plane, 302
Linear transformation of a vector space, 302
Linear transformations, 295
Linear transformations, examples of, 304, 305
Linear transformations, properties of, 303
Locus, 449
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Maclaurin, Cohn, 456
Magnitude, 154, 175
Magnitude of a complex number, 426
Magnitude of a vector, 5
Mapping, 295
Mass, 154
Mathematical induction, principle of, 392, 408
Mathematical induction, proof by, 392, 408
Mathematical induction to prove De Moivre's

theorem, 441
Mathematical induction to prove the binomial

theorem, 403
Matrices, multiplication of, 321
Matrices, properties of, 293
Matrices as operators, 290
Matrix, 290
Matrix, 3 >( 3, 332
Matrix, augmented, 95
Matrix, coefficient, 95
Matrix, columns of, 290
Matrix, components of, 290
Matrix, determinant of, 310
Matrix, dimension of, 290
Matrix, elements of, 290
Matrix, entries of, 290
Matrix, equivalent, 96
Matrix, identity, 325
Matrix, inverse of, 315
Matrix, leading diagonal of, 316
Matrix, multiplication by a scalar, 292
Matrix, negative, 292
Matrix, non-invertible, 316
Matrix, null, 291
Matrix, order of, 290, 291
Matrix, orthogonal, 332
Matrix, reading a, 303
Matrix, rotation, 363
Matrix, row-reduced form, 96
Matrix, rows of, 290
Matrix, shape of, 290
Matrix, singular, 316
Matrix, square, 291
Matrix, symmetric, 375
Matrix, transpose, 362, 380
Matrix, unit, 325
Matrix, writing a, 303
Matrix, zero, 291
Matrix addition, 291
Matrix algebra, 291
Matrix equality, 291
Matrix equations, 329
Matrix multiplication, properties of, 322, 328
Matrix subtraction, 291
Median, 149

Midpoint formula, 50
Midpoint theorem, 50
Modulus of a complex number, 426, 434
Modulus-argument form of a complex number,

426, 429, 434
Moment, 169
Multiplication of a matrix by a scalar, 292
Multiplication of complex numbers, 437
Multiplication of matrices, 321

, 154
Natural logarithm of a complex number, 461
Natural measure of angles, 456
Neutral element, 41
Neutral element of matrix addition, 291
Newton metres, 171
Newtons, 154
Non-intersection of line and plane, 260
Non-invertible matrix, 316
Non-parallel planes, 263
Non-real numbers, 416, 424
Normal reaction, 166
Normal vector, 142, 236
Normal vector to a plane, 251, 252, 253, 280
Normalizing, 54
Null matrix, 291
Null transformation, 305
Number sets, 423

Octants, 13
Operations in C, 419
Operator, matrix as an, 290
Opposite directions, 38
Opposite vectors, 38
Order of a square matrix, 290
Ordered pairs, 21
Ordered triples, 21
Orientation of image figure, 310
Origin, 12
Origin, choice of, 39
Orthogonal, 53, 367
Orthogonal matrix, 332
Orthogonal projection, 114
Orthonormal basis, 53, 127
Orthonormal basis, cross product and, 139

Parabola, 344
Parallel, 15
Parallel lines, 253, 263, 280
Parallel lines, image by a linear transformation, 302
Parallel planes, 14
Parallel vectors, 43



Parallelepiped, 30, 138
Parallelepiped, volume of, 138
Parallelogram, property of, 48
Parallelogram area, cross product and, 134
Parallelogram law, 34
Parameter, 188, 199, 236, 247
Parametric equations, 188, 203, 205, 236, 247
Particle, 154, 188
Partition, 58
Pascal's triangle, 402, 408
Perpendicular vectors, cross product and, 140
Perpendicular vectors, dot product and, 123
Pigeonhole principle, 88
Plane, 14, 143
Plane, Cartesian equation of, 251
Plane, complex, 424
Plane, parametric equations of, 247
Plane, vector equation of, 247
Point circle, 352
Point intersection of three planes, 268, 269
Points, 21,40
Polar form, multiplication and division in, 437
Polar form of a complex number, 429, 434
Polar form of conjugates, 434
Polygon law, 36
Polynomial equation in C,430
Position vector, 21,22,40
Principal argument, 427, 435
Principal root, 447
Principal square root, 432
Projectile, 191
Projection, 19, 115, 129, 161, 305
Properties of complex numbers, 421
Properties of conjugates, 421
Properties of linear transformations, 302
Properties of matrix multiplication, 322, 328
Pyramid, 16, 142
Pyramid, volume of, 145
Pythagoras, theorem of, 23, 157

Q, 423
Quadrants, 13
Quadratic equation, 413, 430

R, 416
Radian measure, 427, 456
Rate of climb, 185
Rational power of a complex number, 446
Ray, 451
Reaction, normal, 166
Real axis, 424
Real part of a complex number, 416
Real number line, 424

Real numbers, 416
Reduced matrix, 96, 269
Reflection, 304, 308, 309
Reflexive, 57
Relation, 57
Relative velocity, 175
Resolution of a vector, 118
Resolution of forces, 161, 184
Resolving a vector, 118
Resultant, 26, 28, 154
Rhombus, 474
Right-handed system, 11, 132, 138
Roots of unity, 446
Roots in C, 445
Roots of equations, 430
Rotation, 305, 308
Rotation matrix, 363
Rotation of central conics, 365
Rotation through 0, 366
Rotations that eliminate xy-terms, 372, 373
Row-reduced form of a matrix, 96
Rows of a matrix, 290

Index 551

Scalar, 6
Scalar, multiplication of a matrix by, 292
Scalar, multiplication of a vector by, 43
Scalar, multiplication of a vector by, properties of, 55
Scalar equations, 211
Scalar product, 121
Scalar product, triple, 138
Scale drawing, 159
Semi-circle, angle inscribed in, 131
Series, convergent, 456
Series, divergent, 456
Series, geometric, 456
Series, infinite, 456
Set, 57
Sets of numbers, 423
Shear, 299
Shortest distance between two lines, 226, 237
Sigma (i), properties of, 402
Significant digits, 160
Sine defined in exponential form, 459
Sine law, 17, 157
Singular matrix, 316
Singular transformation, 316
Size of an image figure, 310
Skew polygon, 36
Skew lines, 15, 197, 223
Slope, 167
Slope of normal, 212
Solution for a system with three variables:

elimination, 73
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Solution for a system with three variables:
matrices, 95

Space diagram, 180
Speed, 175, 180
Speed, distance and time and, 179
Speed, vertical, 185
Square, completing the, 356, 480,415
Square matrix, 291
Square root, principal, 432
Standard basis vectors, 53
Standard basis vectors and cross product, 134
Standard basis vectors and matrices, 303
Standard form of conics, 345
Standard position of conics, 345
Statics, 154
Stifel, Michael, 413
Straight line in the complex plane, 451
Stretch, 305
Subtraction of matrices, 290
Supplement, 158
Symmetric equation of a line, 210, 236
Symmetric form, 57, 210
Symmetric matrix, 375
Symmetric matrix, characteristic values of, 335
System of three equations, geometric description,

269, 281
System of three equations, number of solutions,

269, 281

Tail, 27
Taylor, Brook, 456
Tensions, 158
Tetrahedron, 51
Tctrahedron, regular, 63
Thrust, 170
Time, distance and speed and, 179
Tip, 27
Tower of Hanoi, 399
Trajectory, 191
Transformation, inverse, 315
Transformation, linear, 295, 302
Transformation, singular, 316
Transformation matrix, 297
Transformations, composition of, 319
Transitive, 57
Translation, inverse, 356, 357
Translation, special property of, 349
Translation and vector addition, 26
Translation of conics, 349
Translations, 7
Transpose of a matrix, 362, 380
Trapezoid, 49

2-space, 11

Triangle area, cross product and, 135
Triangle inequality, 31
Triangle law, subtraction form of, 39
Triangle law of vector addition, 27
Triangles, solution of, 17
Trigonometry, 17
Trigonometry and complex numbers, 434
Triple scalar product, properties of, 138, 139
Triple vector product, 146

Unit matrix, 325
Unit square, 300
Unit vector, 25, 52, 132
Unity, nth roots of, 446

V, 23
V3. 23
Values, characteristic, 332, 334
Vector, 6, 40
Vector, column, 295
Vector, definition as class of an equivalence

relation, 59
Vector, fixed, 156
Vector, free, 156
Vector, norm of, 23
Vector addition, 26
Vector addition, properties of, 55
Vector diagram, 156, 176
Vector equation of a circle, 264
Vector equation of a line, 199, 205, 236
Vector equation of a plane, 246, 247, 280
Vector equation of a sphere, 267
Vector functions, 189
Vector product, 132
Vector space, 55
Vector space of complex numbers, 425
Vector space of 2 x 2 matrices, 293
Vectors, 4
Vectors, characteristic, 332, 334
Vectors and complex numbers, 449
Vectors and points, distinction between, 21
Vectors as complex numbers, 425
Velocity, 175, 180
Velocity, relative, 175
Vertical speed, 185

Weight, 154, 165
Wessel, Caspar, 424
Wind direction, 177
Wind velocity, 177
Work, 171

7L, 423
Zero matrix, 291
Zero vector, 38

3-space, 11 Zero vector, image by invertible matrix, 318


	VMCN - Intro+.pdf
	International Baccalaureate
	ABOUT THE AUTHORS

	VMCN - Intro+.pdf
	International Baccalaureate
	ABOUT THE AUTHORS

	VMCN-Chapter1.pdf
	VMCN Chapter 1.pdf
	COMPLEX NUMBERS
	
	International Baccalaureate




	VMCN-Chapter2.pdf
	VMCN Chapter 2.pdf
	COMPLEX NUMBERS
	
	International Baccalaureate







