

VECTORS, MATRICES and COMPLEX NUMBERS

by

Jean-Paul GINESTIER and John EGSGARD

with
International Baccalaureate
questions

Formerly published by Gage Canada as:
ALGEBRA and GEOMETRY
A Search for Meaning

VECTORS, MATRICES and COMPLEX NUMBERS

with International Baccalaureate questions

Text-Searchable Web Edition Copyright ©2004
Jean-Paul Ginestier & John Egsgard

All rights reserved

The contents of this textbook have been made available
under the CC Attribution Share-Alike 4.0 License
ISBN of Gage Edition 0-7715-3503-1

For orders contact:

Jean-Paul Ginestier
Toronto, Canada

e-mail: jpginestier@gmail.com

ABOUT THE AUTHORS

Jean-Paul Ginestier, M.Sc, B.Ed.

Originally French, Jean-Paul Ginestier was brought up in England and took his first degree there. He then taught in Cameroon, then the UK, before settling with his wife and two children in Canada, where he gained teaching and administrative experience in both the private and public systems, in English and in French. He also took his B.Ed, then his M.Sc. at the University of Toronto. In 1984-85, he was on exchange at the International School of Geneva, Switzerland, where John Egsgard had taught in the same capacity two years earlier.

Jean-Paul Ginestier also has a long experience, both as a teacher and an examiner, with the International Baccalaureate. From 1988 to 1995, he was Deputy Chief Examiner for IB Higher Level Mathematics. He has also made presentations at a many mathematics conferences in a number of countries.

Since 1995 he has been Head of Mathematics at three United World Colleges - the Nordic College in Norway, then the UWC of the Adriatic in Italy from 2004-2009, then UWC Costa Rica in 2012-2014. He is now retired.

John Christian Egsgard, M.A.

John Egsgard retired from teaching in 1998 after 47 years in secondary school classrooms. Besides being an author of 15 secondary mathematics texts and editor of the Ontario Mathematics Gazette, he has been active in mathematics associations around the world. He has been president of both the National Council of Teachers of Mathematics of the USA, and the Ontario Association for Mathematics Education in Canada. John has been on many committees preparing for the first 9 International Congresses of Mathematics Education throughout the world. He has delivered papers or major speeches at most of the ICMEs.

John's experience with the IB comes from his year of teaching at the International School of Geneva, and in the marking of exams and preparing questions for them.

John passed away on July 10, 2016.

INTRODUCTION

The International Baccalaureate is a high quality programme of study that tries to bring together the best features inspired from various educational systems around the world; the IB Diploma is recognized for university entrance in most countries. In this book, past IB examination questions can be found in each of the Review Exercises and the Problem Supplement. The questions have been selected from papers for Standard Level Mathematical Studies (SMS), Standard Level Mathematics (S) and Higher Level Mathematics (H).

The original edition of this book, published by Gage (Canada Publishing Corporation) in 1989 was designed primarily to cover the Ontario Academic Credit called Algebra and Geometry. It so happens that this course was almost entirely a subset of IB Higher Level Mathematics at that time. The coverage of Vectors and Complex Numbers is thorough, and clearly explained for students in their last years of secondary education.

Teachers will find that the most relevant chapters for the IB HL Mathematics course are 1, 3, 5 and 6, although some of the notions in chapter 2 are necessary. All Matrix and Transformation work is found in chapter 7, and all Complex Numbers in chapter 10. Chapter 9 on Induction also covers a section of the IB HL Mathematics syllabus.

One characteristic of this book is that it tries to pay tribute, both by taking a historical approach where appropriate (as in the case of Complex Numbers), and by mentioning their names, to the many mathematicians who have led the evolution of these ideas for the last 500 years or so.

The book was reprinted with modifications in 1994. Although it has become the norm to publish entirely new textbooks as often as possible, then to discard them as quickly as possible, the authors believe that the best textbooks are those that are continuously revised, corrected, and updated.

Jean-Paul Ginestier
Toronto, Canada
August 2012

All rights reserved. No part of this book may be reproduced in any form without permission in writing from the publisher. Reproducing passages from this book by mimeographing or by photographic, electrostatic, or mechanical means without the written permission of the publisher is an infringement of copyright law.

Care has been taken to trace ownership of copyright material contained in this text. The publishers will gladly take any information that will enable them to rectify any reference or credit in subsequent editions.

Canadian Cataloguing in Publication Data

Egsgard, J. C., 1925—

Gage algebra and geometry

For use in secondary schools.

Includes index.

ISBN 0-7715-3503-1

1. Algebra. 2. Geometry. I. Ginestier, Jean-Paul. II. Title.

III. Title: Algebra and geometry.

QA152.2.E83 1989 512'.12 C88-095392-6

ISBN: 0-7715-3503-1

2 3 4 5 6 7 B-G 99 98 97 96 95 94

Written, printed, and bound in Canada.

Typesetting
Trigraph Inc.

Consultants
Gary Flewelling
Mathematics Consultant
Wellington County Board of Education
Guelph, Ontario

Wendy Warburton
Department of Mathematics Head
Havergal College
Toronto, Ontario

Jack Weiner
Professor of Mathematics and Statistics
University of Guelph
Guelph, Ontario

Acknowledgements and Picture Credits

Making Connections on pages 88-89 is based on an article, in the January 1988 *Mathematics Teacher*, written by Calvin Long.

Canada Wide/Jack Holland, 47; Municipality of Metro Toronto, Management Services Dept., Central Mapping Agency, 66; Courtesy of Canadian National, 136, 137; Courtesy of CP Rail, 136; Canada Wide/Fred Thornhill, 169; British Columbia Forest Service, 166; Courtesy of Sunnybrook Medical Centre, Health Sciences, Media Services, 173; The Public Archives of Canada, 174; Air Canada, 179; North Sails/Eric Aeder, 183; Mercury Marine Ltd., 187; Courtesy of Ontario Hydro, 196, 197, 228; Jennifer Egsgard, 258; NFB Phototéque, 259; Tim Johnston, 327; Ford Motor Company of Canada Ltd., 343; The National Radioastronomy Observatory, operated by Associated Universities, Inc., under contract with the National Science Foundation, 343; NASA, 343; Province of British Columbia, 343; Gord Fung, 343; Spar Aerospace, 371; Carol Waldoch, 462; Edward R. Tufte, *The Visual Display of Quantitative Information* (Cheshire, Connecticut: Graphics Press, 1983), 463.

Text Organization

- The text is divided into 10 chapters.
- *In Search of* sections within each chapter encourage students to investigate and explore challenging topics individually, or in small groups.
- *Making Connections* pages relate mathematics to other fields and disciplines, and encourage a greater understanding of the nature and purpose of mathematics.
- The *problem supplement* at the end of the text provides an opportunity for students to synthesize the skills and ideas acquired throughout the course.
- The *answer key* provides answers for all exercises, reviews, and inventories, as well as for the problem supplement.
- The *glossary* provides definitions of relevant mathematical terms.
- The *index* lists topics and main concepts for easy reference.

Chapter Organization

- Each chapter begins with a discussion of a problem which can be solved using the mathematics developed throughout the chapter.
- Teaching material is clearly separated from exercise material.
- Worked examples enhance the understanding of each topic.
- Colour is used to highlight generalizations, rules, and formulas.
- Mathematical terms appear in **boldface** type when they are first introduced. All relevant terms are defined in the glossary.
- *Italic* type is used for emphasis.
- Exercise material is carefully sequenced from questions that utilize and apply knowledge to those that develop critical thinking skills.
- The main concepts covered in each chapter are listed concisely in the *Chapter Summary*.
- The *Chapter Inventory* provides students with an opportunity to test their skills and understanding of the mathematical concepts in the chapter.
- The *Chapter Review* provides additional opportunities for students to apply their problem-solving skills.
- IB questions (numbered in colour) are to be found at the end of chapters, and in the problem supplement.

CONTENTS

Introduction

Text Organization

1 An Introduction to Vectors

1.0 Introduction 2

1.1 What is a Vector? 4

1.2 Three-Dimensional Space 11

 In Search of Trigonometry as an Aid
 to Visualization of 3-Space 17

1.3 Vectors as Ordered Pairs or
 Triples 21

1.4 Vector Addition 26

Making Connections:
 Between Pigeons and Problem
 Solving 32

1.5 Properties of Vector Addition 34

1.6 Vector Subtraction 38

1.7 Multiplication of a Vector
 by a Scalar 43

1.8 Applications of Vector Subtraction
 and Multiplication by a Scalar 48

1.9 Unit Vectors—Standard Basis
 of a Vector Space 52

 In Search of Vectors as Classes of
 an Equivalence Relation 57

Summary 60

Inventory 62

Review Exercises 63

2 Linear Dependence

2.0 Introduction 66

2.1 Linear Dependence
 of Two Vectors 68

 In Search of a Solution for a System
 with three Variables: Elimination 73

2.2 Linear Dependence
 of Three Vectors 74

2.3 Linearly Independent Vectors
 and Basis Vectors 81

Making Connections:
 The Prisoner's Dilemma
 —a Game 88

2.4 Points of Division
 of a Line Segment 90

 In Search of a Solution for a System
 with Three Variables: Matrices 95

2.5 Collinear Points and
 Coplanar Points 97

2.6 Geometric Proofs Using Linear
 Independence of Vectors 102

Summary 106

Inventory 108

Review Exercises 109

3 The Multiplication of Vectors

3.0 Introduction 112

3.1 Projections and Components 114

3.2 The Dot Product 121

3.3 Properties of the Dot Product 125

3.4 Applications: The Dot Product
 and Trigonometry 129

3.5 The Cross Product 132

Making Connections:
 Bridges 136

3.6 Properties of the Cross Product 138

Summary 146

Inventory 147

Review Exercises 148

4 Applications of Vectors

4.0 Introduction	152
4.1 Forces as Vectors	154
4.2 Resolution of Forces	161
4.3 Work	171
4.4 Velocities as Vectors	175
<i>Making Connections:</i>	
Mathematics and	
Aircraft Navigation	182
4.5 Velocities Using Components	184
In Search of Vector Functions	188
<i>Summary</i>	192
<i>Inventory</i>	193
<i>Review Exercises</i>	194

5 Equations of Lines in 2- and 3-space

5.0 Introduction	196
5.1 The Vector Equation of a Line	198
5.2 Parametric Equations of a Line	203
<i>Making Connections:</i>	
Sailboards and Sailboats	208
5.3 Cartesian Equations of Lines	210
5.4 Direction Numbers and Direction Cosines of a Line	215
5.5 The Intersection of Lines in 2-space	218
5.6 The Intersection of Lines in 3-space	222
5.7 Geometric Proofs Using Vector Equations	229
In Search of a Proof of Desargues' Theorem	234
<i>Summary</i>	236
<i>Inventory</i>	237
<i>Review Exercises</i>	239

6 Equations of Planes

6.0 Introduction	244
6.1 Vector and Parametric Equations of a Plane in 3-Space	246
6.2 The Cartesian Equation of a Plane in 3-Space	251
<i>Making Connections:</i>	
Lines and Planes	258
6.3 The Intersection of Lines and Planes	260
6.4 The Intersection of Two Planes	263
In Search of Vector Equations of Circles and Spheres	267
6.5 The Intersection of Three Planes	268
6.6 The Distance from a Point to a Plane or to a Line	275
<i>Summary</i>	280
<i>Inventory</i>	282
<i>Review Exercises</i>	283

7 Matrices and Linear Transformations

7.0 Introduction	288
7.1 Matrices	290
7.2 Matrices and Linear Transformations	295
7.3 The Effect of a Linear Transformation	302
7.4 Rotations and Reflections	308
7.5 Inverse Transformations	315
7.6 Composition of Transformations and Multiplication of Matrices	319
<i>Making Connections:</i>	
Similarity and Folding	326

7.7 Properties of Matrix Multiplication and Matrix Equations	328
In Search of Invariant Lines and Characteristic Vectors	333
Summary	336
Inventory	338
Review Exercises	339

8 Transformations of Conics

8.0 Introduction	342
8.1 Conics in Standard Position	344
8.2 Translations of Conics	349
8.3 Translating Conics into Standard Position	356
8.4 Matrices, their Transposes and the Central Conics	361
8.5 Rotations of Central Conics	365
In Search of a Proof that $ab - h^2$ is Invariant Under a Rotation	368
<i>Making Connections:</i>	
Earth Satellites	370
8.6 Rotations that Eliminate xy Terms	372
In Search of a Method of Eliminating the xy Term using Characteristic Values	375
Summary	379
Inventory	381
Review Exercises	382

9 Mathematical Induction

9.0 Introduction	384
9.1 Making Conjectures	386
9.2 The Principle of Mathematical Induction	392
9.3 Using Mathematical Induction	396
In Search of a Solution to the Tower of Hanoi Problem	399

9.4 The Binomial Theorem	401
<i>Making Connections:</i>	
Graph Theory	406
Summary	408
Inventory	409
Review Exercises	410

10 Complex Numbers

10.0 Introduction	412
10.1 What is a Complex Number?	414
10.2 Operations in \mathbb{C}	419
10.3 Geometric Representation of a Complex Number	423
10.4 Equations in \mathbb{C}	430
10.5 Complex Numbers and Trigonometry	434
10.6 De Moivre's Theorem	440
10.7 Quest for Roots in \mathbb{C}	444
10.8 Graphing and Complex Numbers	449
In Search of Graphical Representation of Non-real Solutions of Equations	454
10.9 Exponential Form of a Complex Number	456
In Search of Other Results Using the Exponential Form	459
<i>Making Connections:</i>	
The Visual Display of Data	462
Summary	464
Inventory	466
Review Exercises	467

Problem Supplement

Answer Key	484
Appendix	540
Glossary	544
Index	547