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CHAPTER TEN

Complex Numbers

Is V—1 a number?

You know that V25 = 5,1 = 1,Vo= 0,v0.49 = 0.7, etc. Also, you know
that V3 cannot be written as a terminating or periodic decimal, but it is
quite close to 1.732 050 808. Where could V-1 possibly fit in? You know
that both positive and negative real numbers square to positive numbers.
(For example, 2* = 4, which is positive, and (-1)? = 1, which is positive.)
Zero squares to zero. So what could possibly square to —1?? These

considerations indicate that no place can be found for V-1 on the real
number line.

V-1 2
-5 -4 -3 -2 -1 0 1 2 3 4 5
- = |R

The mathematicians who first encountered “v—1" quite naturally called it
“imaginary”. And so the name continues to this day, although these types
of numbers are frequently used in mathematics and physics. Such
numbers are now considered to be no more imaginary than irrational
numbers, points, vectors, or any other mathematical object with which
you are familiar.

This change came about very slowly. In general, the time-lag is such that
the first person to make an important discovery does not see it fully
accepted in his or her lifetime. As for many new ideas in mathematics, the
introduction of numbers containing an “imaginary” component, now
called complex numbers, had to go through at least three stages.

1. The ground had to be prepared for the discovery to take place. (In this
case, simple “‘negative numbers” had to be accepted first.)
2. The discovery itself had to occur and be used. This meant going beyond

writing “~1”, and actually attempting to ‘work’ with it. (This took a
lot of courage, because it required going against accepted practice at the
time.)

3. The new discovery had to be applied by other mathematicians—
preferably well-respected mathematicians—before it could be fully
accepted.
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It may surprise you to learn that negative numbers did not gain a foothold
in Europe until 1544, through the German mathematician Michael Stifel
(1486-1567). The theory of negative numbers had in fact been completely
developed more than 800 years before that, in India. However, in Europe,
until the 1500s, the difference a — b was deemed meaningful only for a
greater than b. A first-degree equation such as x + 3 = 7 could be solved,
but x + 7 = 3 was avoided because a solution was considered to be
‘impossible’. And amazingly, this belief was not eradicated until the
1800s!

The theory of second-degree equations (that is, quadratic equations) was
even more muddled. Writing such equations in the form ax* + bx + ¢ =0
did not appear until 1631, through a posthumous publication by Thomas
Harriott (1560-1621). Indeed, 0 was not really considered a number that
could be used like the others.

Before Harriott, quadratic equations were broken down into ‘types” as
follows, each with its own set of rules.

lax*=bx+c Il ax*+c=bx TIIl ax’*+bx=c.

Writing these equations in the form ax’* + bx + ¢ = 0 takes care of all
possibilities as well as simplifying the theory of quadratic equations. This
is a good example of the way that the discovery of a new entity can
sometimes lead to a simplification of an entire theory.

As well as extending the concept of ‘number’, the acceptance of negative
numbers led mathematicians to try ‘solving’ equations for which no real
solutions could be found, such as x*> + 1 = x. You will see that the solution

to such an equation contains “v-1"".

The first appearance of an imaginary number was in a publication by
Girolamo Cardano, in his quest for a solution to a cubic equation. The time
span between this first appearance, in 1545, until the full acceptance of
complex numbers by the mathematical community in the mid-1800s,
exceeded 300 years.

As you work through this chapter, you will have an opportunity to
understand how these ‘non-real’ numbers grew into full acceptance. At
the same time, you will extend your concept of number, and unify some of
your theories in algebra.
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Example 1

Solution

Example 2

Solution

10.1 What is a Complex Number?

The discovery of complex numbers was likely linked to the analysis of the
problem of finding two numbers, knowing their sum and their product.
The following will guide you through this discovery process.

Find two numbers whose sum is 4 and whose product is 3.

Let one number be x, then the other number must be 4 — x. The product of
the numbers is 3, thus

x(4-x)=3
4x - x*=3
x*—4x+3=0

x-1)x-3)=0
x—1=0o0orx-3=0
x=1or x=3.
If x=1, then (4 — x) = 3, and
ifx=3,then(4-x)=1.
Thus the required numbers are 1 and 3.

A very important part of this discovery process is the following.
Check: the sumis 1 + 3 = 4, and
the product is (1)(3) = 3, as required. H

The next example yields a more complicated solution.

Find two numbers whose sum is 6 and whose product is 3.

Let one number be x, then the other must be 6 — x.
Thus x(6 — x) =3
6x —x*=3
xX*—6x+3=0.

But this quadratic expression will not factor over the integers. By
‘completing the square’ (as in section 8.3, page 356),

xX*-6x+9 9+3=0
x-3)?-6=0
x-3)2=6
x-3)=ve or (x - 3)=—V6
x=3+V6or x=3-e.
Thus the numbers required are (3 + \/Z) and (3 — \/Z), or approximately

5.44948...and 0.55051....0nce again, although the numbers are
irrational, check the result, using the exact values.
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Check: the sum is (3 + \/E) +( - \/Z) = 6, as required, and

the productis 3 + V6)(3 —V6) =3*-3V6 +3V6 — V6’ =9 — 6 = 3,
as required. H

In the next example, it will appear that no numbers exist to give the
required sum and product. Most mathematicians did not attempt to go
beyond the seemingly insurmountable difficulty encountered, but simply
classified the problem as unsolvable. Then the Italian mathematician
Girolamo Cardano (1501-1576) made a breakthrough in 1572, as you
shall see presently.

Find two numbers whose sum is 6 and whose product is 10.

Let one number be x, then the other is 6 — x.

Thus x(6 —x) =10
6x —x*=10

x*-6x+10= 0.

Completing the square, x*—6x+9 9+ 10= 0
x-3P%+1= 0

(x—-3)=-1.

This appears to be ‘impossible’. Indeed, the square of any real number,
whether positive, negative, or zero, is always greater than or equal to zero.
Thus, no real number has a square of —1. Now Cardano had the insight
and the courage to simply ‘carry on regardless’, as follows.

x-3=vV-lorx—-3=—-V-1.
Thus the numbers ‘are’ (3 + V-1)and 3 —v-1). B

Although these numbers may appear to be meaningless, attempt the
following check. Assume that V-1 is a number with the usual algebraic
properties, including (V—1)? = —1.
Check: the sum is (3 + \/:T) +(3- \/—_1) =6, and
the product is (3 + \/-—_l)(3 -V-1)

=9 -3V-1+3V-1 - (V-1)?

=9 - (-1)=10.
These ‘numbers’ seem to work!
As pointed out in the introduction, this breakthrough did not have
immediate results. The world had to wait more than 200 years before these
inventions were fully accepted. Cardano’s ideas were finally formalized by

Jean Argand, Leonhard Euler, Karl Friedrich Gauss and other
mathematicians towards the end of the 18th century.

The Acceptance Phase
To simplify matters, the symbol i will be used to represent a number
(which does not belong to R) that has the property i* = —1.
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It is now tempting to write i = V=17, and by analogy,
“f-a=V-1/4a= @)(2) = 217, “[3=V-1V3= iV3”, etc. However, great
care must be exercised in the use of the symbol “ " when dealing with
roots of negative numbers. Examine the paradox illustrated by the two
following ‘simplifications’.

V-a/-1=V(4)(-1)=Va=2 ©)
or V=4vV—1 = (2i)(i) = 2i* = 2(-1) = -2 @

Two different results are obtained. Which of these is correct?
@ uses the familiar algebraic property of real positive numbers

Vavb = Vab

@ makes use of the symbol i, where i* = —1.

The paradox is resolved as follows.

The algebraic property Vavb = Vab is true only for non-negative real numbers
a,b.
Thus, becausea = -4 and b = -1, Q) is false, but Q) is correct.

All positive numbers have two square roots. For example, the two square

roots of 9 are V9 = 3 and -9 = -3,
Negative numbers also have two square roots. One must accept that i can

represent either V-1 or —v-1. You will have an opportunity to verify this
allegation in the exercises.
Imaginary numbers

¢ i, and the scalar multiples of 7, that is 37, iV2, —4i, etc, shall retain their
original name of imaginary numbers.
® The set of imaginary numbers will be denoted by I.

DEFINITIONS

Complex numbers

® The sum of a real number and an imaginary number, that is, z = a + bi,
where a € R and b € R, will be called a complex number.

® The set of complex numbers will be denoted by C.

Real and imaginary parts

Given the complex number z = a + bi, wherea € R, b € R,

® a is called the real part of z, or a = Re(?)

® b is called the imaginary part of z, or b = Im(2)

If b= 0, zisreal. If b # 0, z is non-real.

Thus it appears that the real numbers form a subset of the complex numbers.

Equality

® Two complex numbers z = a + bi and w = ¢ + di, where a, b, ¢, and d are
real, are equal if and only if a = c and b = 4.

In the following example, you will save time by obtaining the solutions
with the quadratic formula, instead of completing the square.
You will use the fact that the solutions of az* + bz + ¢ = 0 are given by the

—b + Vb* — 4ac

2a

formula z=
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Solvea) 222+2z+5=0 b) z2-2z+3=0.

a) Herea=2,b=2,c=5.
Substituting in the quadratic formula gives the roots

2% V22— @9)@)(5) _ —2+V-36 _-2+6i _-1+3i

2(2) 4 4 2
. 1 3. 1 3.
Thus the solutions arez=——+ ~iorz=—— — =i.
2 2 2 2

b) Here,a =1, b= -2, c= 3. Using the formula, the roots are

Z=z:m/zz—(4)(1)(3)=z¢\/-8=zii\/§=1+@
2(1) 2 2 T2
Note that, although these solutions are correct, they can be simplified

by writing V8 as a mixed radical, as follows.

2+iV8 _2+iV@Q@) _2:22 _20£i2) _ |, ;15
2 2 2 2

Thus the solutionsarez =1 +ivV2orz=1-iv2. W

The previous discussion leads to the following formulas for the addition
and multiplication of complex numbers.

e Complex numbers can be added as follows:
(@a+bi)+(c+diy=(@+c)+ (b+d)i

e Complex numbers can be multiplied as follows:
(a + bi)(c + di) = ac + adi + bci + bdi®
but recall that i* = -1, thus
(a + bi)(c + di) = (ac — bd) + (ad + bc)i

Note: that it is easier to use the processes that employ the usual rules of
algebra, together with the fact that i* = -1, than to learn the above
formulas.

Thus, when complex numbers are added, or multiplied, other complex
numbers are produced. This can be verified in the following example.

Given z=3 — 5iand w = 1 + i, calculate the following.
a) z+w
b) zw

a) z+w=3-5+1+i=4-4i

b) zw=(3 - 5i)(1 +i)
= (3)(1) + BG)() — (50)(1) - (51)(3)
=3+3i-5i -5
=3-2i—(5)(-1)
=8-2. N

You will be looking at operations in C more formally, and in more detail,
in the next section.
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10.1 Exercises

1. Simplify the following.
a) (4+i)+(5+20)
b) (4 -3i) + (-3 + 3i)
c) B+2)(5-1)

d) 3+1)(3 -1
e) (1+2i)?
f) (1 -2i)?
g) i(6 + 4i)
h) 1+ 2§)’

2. Find two numbers whose sum is 7 and

whose product is 18%.

3. Find two numbers whose sum is 4 and
whose product is 5.

4. Find two numbers whose sum is —1 and
whose product is 2.

5. Find the roots of the following equations.
a) 2-8z+25=0
b) Z2+4z+5=0
c) 322=5z-17

6. The roots of an equation satisfy that
equation. By substitution, verify that each
of the following is a root of the given
equation.

a) z=2;2243z-10=0

b) z=-5722+3z-10=0

c) z=-7"+1=0

d) z=2-V3;22-4z+1=0
e) z=4+3;7"-82+25=0
f) z=2022+(1-2)z-2i=0

5 i 2 .
I==—-—=32"-5z+iz=0
g) 3 3

7. Consider the expressions z = 4 + V-9 and

w =4 —v-9.Show thatz + w = 8 and
zw = 25 with either of the following
interpretations.

a) letv-9=3i
b) letv-9=-3i

8.

10.

The equation az® + bz + ¢ = 0 is such that

b* — 4ac < 0, where a, b, and ¢ are real. Find
the sum and product of the roots of this
equation in terms of 4, b, and c.

. Find the roots of the following equations.

a) 22-4iz=0
b) 22 -3iz+4=0
c) Z2=iz-3

2

d) Z2-(1+)z+2+2i=0

Solve the following for the real numbers x
and y.

a) x+yi=4+ 6i

b) x+yi=7i

c) x+yi=(3-i)2+3i)

d) x+yi=G5+0)(5-i)

e) x+yi=(1+1i)?

f) (x+yi)=(4-3i)?

In the remaining questions of this exercise, use
z=a+ib,w=c+id, andu = e + if, wherea, b, c,
d, e, f are all real numbers.

11.

12.

13.

14.

15.

a) Calculatez+wandw +z.

b) Draw a conclusion concerning the
commutativity of the addition of
complex numbers.

a) Calculate (z+w) +uand z + (w + u).

b) Draw a conclusion concerning the
associativity of the addition of complex
numbers.

a) Calculate zw and wz.

b) Draw a conclusion concerning the
commutativity of the multiplication of
complex numbers.

a) Calculate (zw)u and z(wu).

b) Draw a conclusion concerning the
associativity of the multiplication of
complex numbers.

a) Calculate zw + zu

b) Calculate z(w + u)

¢) Draw a conclusion concerning the
distributivity of multiplication over
addition of complex numbers.



Example 1

Solution

Example 2

Solution

10.2 OperationsinC 419

10.2 Operations in C

Through the discovery of complex numbers in section 10.1, you learned
that complex numbers could be added and multiplied. In questions 11-15
of 10.1 Exercises, you proved certain properties of these operations in C.

In particular, multiplication in C is associative. That is, for any complex
numbers z, w, u,
(zw)u = z(wu)

This means that a product such as zwu can be calculated without worrying
about the order of the operations. Powers can be calculated in a similar
fashion, as in the following example.

Calculatea) # b) (i)’

a) P=ixXixXixXiXixXixXixXi=XPExXPExi?=(-1)*=1.
b) (<)’ = (D)) = ~(i X i X i) = ~(@)i = ~(-1)i = . "

You will now see that other operations can be defined in C. The first
person to use the four operations of addition, subtraction, multiplication,
and division of complex numbers was Raffaello Bombelli. A contemporary
of Cardano, Bombelli published his work in Bologna, Italy, in 1572.

T'he Subtraction of Complex Numbers
The usual rules of algebra are applied to define the subtraction of complex
numbers as follows.

(@a+biy—(+diy=a+bi—c—di=(a-c)+ (b-d)i.

Calculate (3 + 4i) — (5 — 2i).

As before, it is easier to go through the process than to learn the formula.
B+4))—(5-2)=3+4i—-5+2i=-2+6i. ]

The Division of Complex Numbers
One operation that has not yet been mentioned in C is division.
Attempting to ‘divide’, say, 6 + 2i by i might yield 6—2 = 9 + E = 9 + 2.
i i 0

This answer is not in the form a + bi. Is it a complex number, or something
new?
Observe the following strategy.
6_6,i_8i
i1 i -1
Thus, division by i does yield a complex number!

6+2i

Hence, —— = —6i + 2, or 2 — 6i.
i

= —6i.
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Example 3

Solution

DEFINITION

Example 4

Solution

A similar trick is used to divide a more general complex number, as in the
following example. Observe the solution carefully.

Divide (3 — 8i) by (1 — 2i).

3-8 _(3-8)(1+2) 3+6i-8i—16_3-2i+16_19-2i
1-2i (1-2i)(1+ 2i) 1-(-4) 1+4 5

The numbers (1 + 2i) and (1 — 2i) are known as complex conjugates, or
simply conjugates.

The complex conjugate of z =a + biis 7 = a — bi.

The quotient of two complex numbers z = a + bi and w = ¢ + di is obtained
as follows.

a+bi_ (a+bi)c—di)_ (ac+bd)+(bc—ad)i=ac+bd+bc—adi.

c+di  (c+di)(c — di) A —d*(-1) c+d P+ d

Again, the above formula represents the definition of the division of two
complex numbers, but it is much easier to learn the process rather than the
formula. In the work above, you have used one of the important properties
of conjugates. That is, given z = ¢ + di, then zz = ¢* + d* is real.

In the exercises, you will have an opportunity to prove the other properties
of conjugates that are listed at the end of this section. .

2+171,1-3i
41i 4 -5

a) 21, 1-3i_Q+0@) , (1-3)@+50)

2 3
1-i 2+3i

Simplify the following. a) b)

41i  4-5i 4l (4 - 5i)(4 + 5i)
_2i-1_ 4+5i-12i-15(-1)
T -4 16 — (-25)
_2i-1,19-7i _18_ 5,
41 41 41 41
b) 2 3 __2(+d) 3iQ2-30)
1-i 2+3i (1-0(1+7) (2+30)(2-30)
_2+2 6i+9
141 4+9
=1+i—i—”:'36'

=13+131—9—61=i+li ]
13 1



SUMMARY

10.2 Operations in C

Here is a summary of the essential properties of C with respect to the
operations of addition and multiplication.

E. Equality a+bi=c+diifandonlyifa=candb=d
S. Sum (@+biy+ (c+diy=(a+c)+ (b+ad)i
P. Product (a + bi)(c + di) = (ac — bd) + (ad + bc)i
Given any numbers z, w and u of C,
1. Closure z+ wand zw belong to C
2. Commutativity z+w=w+zandzw = wz
3. Associativity (z+w)+u=2z+ (w+u)and (zw)u = z(wu)
4. Distributivity w+u)y=zw+zu
5. Neutralelements z+0=0+z=zand (2)(1)=(1)2) =12
6. Inverseelements z+ (-z)=(-2)+z=0and
z(%) = (%)z =1, provided that z+ 0

Note 1 The neutral elements of C are defined as follows.
For addition: 0 =0+ 0i  For multiplication: 1 =1 + 0i

a1

2 All of these properties apply to real numbers. You can check this

by letting the imaginary part of each complex number be zero.

3 By virtue of satisfying all these properties, the set C is called a field.

Properties involving conjugates
Consider two complex numbers z, w, and their conjugates Z, w.

1. z+2z=2Re(2)

2. 7 —z=2iIm(2)

3. zz = [Re(2)]* + [Im(2)]?
4. Z+w)y=z+w

5. @w)=zw

6. 7=12

7. Division: T _w

w oww W
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10.2 Exercises

1. Simplify the following ( n € N).

a) 7 d) i* g) i*

b) i* e) 1 h) i+

c) f) i i) i
. Simplify the following.

a) (5-i)—(4+3i)

b) (-1+i)—(1 -1

c) A3 +2i) - 2(6 + i)

d) 2+i)- (3 - 2i)?

e) (5+30)3 —i)+3(1+i(l—i) — 43 + 7i)i

. Express in the form a + ib, where a € R and
beR.
a) 1 +'41'
i
1+4i
2+i
7-3i

b)

c)

d)

e)

f)

1 1
+
3+4i 3-4i
11
6+5i (6+ 5i)>

g)

h)

. Given z = cos # + isin § and
w = cos 0 — isin 0, prove the following.

(Use the formulas on page 542.)

a) z+w=2cos @

b) z-w=2isin 0

c) w=1

d) z* = cos 260 + isin 26

e) w?=cos 20 — isin 20
1 1

f) =14 Lianle
1+w 2 2 2

For questions 5 and 6, refer to the properties
listed in section 10.2.

5.

10.

11.

12.

13.

14.

15.

By making the imaginary part zero, verify
that the following properties in C also hold
true in R.

a) properties E, S and P.

b) the properties of conjugates 1, 2, and 3.
c) IsthesetR also a field?

. Prove the properties of conjugates 1, 2, 4, 5,

and 6.

. Prove thatifzw=0,thenz=0o0orw=0.

(Hint: if z = a + bi and w = ¢ + di, you must
provea=b=00rc=d=0.) ‘

S
. a) Prove thatz + L = 22+2
z  |zf

b) Simplify 3 — 2i +
) plify P

. The equation az* + bz + ¢ = 0 is such that

b* — 4ac < 0, where a, b, and ¢ are real.
Prove that the roots of the equation are
complex conjugates.

Solve the following for the real numbers x
and y.
a) LY _ 4
4+i
6 — 2i
3+5i
Find the real and imaginary parts of
a) ﬁ_l + _7__
1+5i 1-5i
b) (1+i)*
Given z = M + il _;f, find the real and
i — 2i
imaginary parts of z, and of Z2.

Simplify (1 +4)*(4 — 3i)*(1 - i)*(4 + 3i)%

b) x+yi=

Find the number b such that

2-3iV5
+ bi

Find z in terms of cos « and sin ¢, if
2 —2zcoso+1=0.
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10.3 Geometric Representation of a
Complex Number

The previous sections have shown you that there is some validity in
working with non-real numbers. However, there is still one major
difficulty.

You know how to represent an integer, a rational number, even an
irrational number on a number line. Where can i be placed? Where can the
multiples of 7, and other non-real numbers, be represented? These
questions will be answered in this section.

There is a parallel between the history of civilization and the growth of the
number sets used. However, the partial list below follows a logical rather
than a historical thread.

The simplest number set is the set of natural numbers,
N={1,2,3,...}

Next is the set of integers,
z={...,-3,-2,-1,0,1,2,3,...}

- . . . . . . . . > Z
3 -2 -1 0 1 2 3 4
(The symbol Z comes from the German “‘zahlen”, to'count.)
Then the set of rational numbers,

a
o=1%
b

anandbeN}

3 -2 -1 0 1 2 3 4
(The symbol Q comes from the word ““quotient”.)

It appears that the most complete set is the set of real numbers, R, which is
the union of Q and the set of all irrational numbers.

-5 Vo 4 n
L PR S

3 2 -1 0 1 2 3 4

Recall that the representation of the real number line R is
indistinguishable from Q. However, for example, the irrational numbers

V2, V5, m, /4 are elements of R, but they do not belong to Q.
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Note: Each of the number sets described is a subset of its successor,
as follows.
NCZCQCR

i?

Venn diagram

As observed in the introduction to this chapter, there is certainly no
appropriate spot on the real number line for i. However, R C C, the set of
complex numbers. Indeed, note that x € R can be written 1x + 0i € C. A
brilliant idea came from the Swiss mathematician Jean Argand
(1768-1822), from a work published in 1806. He simply let the non-real
numbers burst out of the real number line R, by drawing another line |
through 0, bearing the purely imaginary numbers.

Hence, any point in the entire plane thus created will represent a complex
number. The origin, O, represents the number 0 (that is, 0 + 07).

I

4 o R

His invention bears the name complex plane or Argand diagram.

Similar methods of picturing complex numbers were invented

independently, at about the same time, by a Norwegian surveyor,

Caspar Wessel (1745-1818), and by the famous German mathematician

Karl Friedrich Gauss (1777-1855).

Note: The real number line, or real axis, is a subset of the complex plane.
That is, all numbers can be represented by a point in this plane.

¢ If a number is on the R-axis then it is real. It could be a natural number,
an integer, a rational number, or an irrational number. [example: —4]

¢ If a number is on the [-axis, then it is imaginary. [example: 2i]

* If a number is not on the R-axis, then it is non-real. [example: 4 + 3i]
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Locate each of the following numbers in the complex plane.
z=—i,w=3-2i,u=-4.5

To plot the point representing z = —i, go one unit down from 0

on the l-axis.

To plot the point representing w = 3 — 2i, go 3 units to the right of 0
on the R-axis, then 2 units down, parallel to the l-axis.

To plot the point representing u = —4.5, go 4.5 units to the left of 0
on the R-axis.

N
|

Consequences of Representation in the Complex Plane

1. Complex numbers as two-dimensional vectors
Note that z = a + bi could be written as the ordered pair (a,b). This was first
done by Sir William Hamilton in 1835.

Compare the addition of complex numbers with the addition of vectors
of V,.

e@+bi)+(c+diy=(@a+c)+(b+d)i

e (ab)y+(cd =(+cb+ad)

Similarly, compare “multiplication of a complex number by a real
number” with ‘“‘multiplication by a scalar” in V,.

® k(a + bi) = ka + kbi

®  k(a,b) = (ka,kb)

e ka +kbi
/ __—44bi i

(0] R

You can see that the results match exactly.

Thus, the set C of complex numbers can be considered a vector space.
All the properties of vectors of V, with which you are familiar, including
the geometric properties of addition and subtraction, can be applied to
complex numbers. (See page 61.)
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2. The modulus of a complex number

Consider the real number 5. It may be represented in the complex plane
either by the point A, or the position vector of A, that is, 0A.

The absolute value of 5 is the length or magnitude of 071, that is,
|04]=15|=5.

Similarly, if B is the point representing the real number -5, the absolute
value of -5 equals |b§| =|-5|=>5.

In the same way, if C is the point representing the complex number

w =3 + 4i, then
|OC|=|w|=V3%*+4*=5.

|w|is called the length, magnitude, absolute value or modulus of the
complex number w.

Ce
3+4i

3. The argument of a complex number

Although you know that|w|= 5, this fact is not sufficient to locate w
precisely in the complex plane. (The numbers 5 and -5 also have a
modulus of 5. Yet all three of these numbers are different, and are
represented by different points). However, w can be fully determined by its
modulus and the angle ¢ that it makes with the positive real axis.

In this case, tan ¢ = % s0 ¢ = 53° or ¢ = 0.927 radians.

Alternatively, ¢ can be determined by both sin ¢ = ‘;1 and cos ¢ = %, giving

as before ¢ = 53° or 0.927 rad.
¢ is called an argument of w, written arg w.

PROPERTY In general, if z = x + yi, then the modulus of z, |z| = Vx* + y?

PROPERTY In general, if z = x + yi is represented by the point P, then 6 = arg z is the
angle that OP makes with the positive real axis; that is, 0 is determined by

sin 60 = lllandcos0= X
z

|zl I p
)
0=arg z
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Note 1 Arguments of complex numbers are frequently expressed in

radians. The reasons for this will be made clear in section 10.9.
(Recall that 7 radians = 180°. There is a table of degree-radian
equivalences on page 543.)

2 Any angle coterminal with 6 is also an argument of z. That is, if 0
is an argument of z, then so is any other angle 0 + 2kn (or
& + 360k°), k € 7.

3 The principal argument of z is the angle 6 chosen such that
- <0 <m(or-180° < 0 < 180°).
The principal argument is denoted by Arg z.

Examp|e 2 a) Draw the following complex numbers as vectors in the complex plane.
z=—i,u=-45 w=3-2i
b) Find the modulus and the principal argument for
each of z, u, and w. (Give the arguments correct to the nearest degree.)

Solution a) The numbers z, u, w are represented by the points A, B, C respectively,
or by the vectors OA, OB, OC respectively.

b) |z|=V0*+ (-1)*=1 Argz=-90°
|lu|=4-5 Argu=180°
|lw|=V32+ (-2)*=V13 sin(Arg w) = 2 and cos(Arg w) = 2
V13 V13
so Arg w = —34° |
4. Conjugates in the complex plane

Consider the following complex numbers:
7=5+2i,50z=5-2i;w=-1-3i,sow=-1+3i;u=isou=—i

You can see from the diagram that the conjugate of a complex number is
obtained by reflecting the complex number in the real axis.
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SUMMARY

5. Orderin the set C

You are familiar with the order property of real numbers. That is, given
any two distinct real numbers a and b, then either a > b or b > a. This is
interpreted on the real number line by saying that ““greater than”’ is
equivalent to “‘to the right of””. Since C cannot be represented by a line, it is
impossible to “‘order’’ complex numbers. The task of defining an order relation
in C would be equivalent to that of defining an order relation for points in
a plane.

However, since the modulus of a complex number is real, it is possible to
say that the modulus of one complex number is greater than the modulus
of another.

In the exercises, you will familiarize yourself more with the visual aspects
of complex numbers.

NCZCQCRCC

The complex plane is determined by a real axis and an imaginary axis,
crossing at 0.

Complex numbers have all the properties of vectors of V,.
If z = x + yi is represented by P in the complex plane:

The modulus of z, |z| = Vx* + y?

Any argument of z is the angle that OP makes with the positive real axis,
that is, an angle satisfying both sin(arg z) = |l| and cos(arg 2) = |_x|

z ‘ z

The complex conjugates z = x + yi and z = x — yi are reflections of each
other in the real axis.

There is no order in C.
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10.3 Exercises

In these exercises, where appropriate, calculate
all arguments in degrees, correct to the nearest

degree.

In questions 1-6, use the numbers z =1 + 3i,
w=12-5I,p=6i,q=-4—i,u=-3 + 2i.

1. a)

b)

2. a)
b)
3. a)
b)

c)

4. a)

b)

Plot the points representing numbers
Z, W, p, 4, u in a complex plane.

Find the conjugates z, w, p, 4, and u,
and plot them in the same complex
plane.

Find the moduli |z|, |w|, |p|, |9], and

|ul.

Find the arguments Arg z, Arg w, Argp,
Arggq, Arg u.

Find the moduli of the conjugates,
namely |z| and |w/|.

Find arguments of the conjugates,
namely Arg (z) and Arg(w).

Draw conclusions about the modulus of
a conjugate and the argument of a
conjugate.

Attempt to list the numbers z, w, p, q, u
in order, from smallest to largest.
Attempt to list the moduli of these
numbers in order, from smallest to
largest.

Calculate the number z + w.

Draw z, w, and z + w as vectors in a
complex plane.

Use the diagram in b) to explain how
Z + w could be considered an addition
of vectors.

Calculate z + 7, z — z and zz.
Plotz,7,z+2 z-z andzzina
complex plane.

Verify that

z+ g = 2Re(2),

z — 7= 2iIm(z), and

zz=|zP

7.

429

Describe the modulus, the argument, and
the conjugate of the following.

a) areal number

b) an imaginary number

8. If 6 is any angle, calculate the modulus of

10.

11.

12.

13.

z=cos 0 +isin 0 and
w =3 cos 0 — 3i sin 6.

. a) Plot the points A and B representing the

numbers z=-2 +3iandw=8 —i
respectively in a complex plane.

b) Calculateu = %z + %w and plot the

point M representing u on the same
diagram.
c) Calculatev = (i)z + iw and plot the
point N representing v on the same
diagram.
Describe M and N geometrically with
reference to A and B.

d)

Consider the numbers

z=1+iV3,z,=1iz, 2, = iz}, and z; = iz,.

a) Calculate the numbers z,, z,, and z;.

b) Draw all four numbers as vectors in a
complex plane. .

c¢) Calculate the modulus and an argument

of all four numbers.

Draw conclusions on the effect of i as a

multiplier in the complex plane.

d)

Givenz=1+ i\/s,
a) calculate 7> and 2?,
b) plotz, 7% and 2’ in a complex plane

c) discuss the statement: “3J/—8 = 1 + iV/3".

a) If z=3 + 34, find|z|and Arg z.

b) Verify that z could be expressed as
z = 3v2(cos 45° + i sin 45°)
(For an exact solution, use the table
on page 543.)

If |z| = r and arg z = 6, show that the
number 7 can be represented in the form

z = r(cos 0 + i sin 6). (This is known as the
polar form or modulus-argument form
of a complex number.)
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THEOREM

THEOREM

10.4 Equations in C

Recall the following vocabulary.

® az’ + bz + ¢ =0, where a + 0, is a quadratic equation,
or a polynomial equation of degree 2.

®az’ + bz> + cz+ d = 0, where a # 0, is a cubic equation,
or a polynomial equation of degree 3.

©a," + a2 +. .+ a2+ ai7 + ap=0, wherea, + 0 (®
is a polynomial equation of degree n.

Consider the quadratic equation az* + bz + ¢ = 0. Recall that the solutions

—b + Vb* — dac

are given by z =
2a

If the variable z € R, three cases need to be considered.

1. If b* — 4ac > 0, then z can take two different real values.
2. If b* — 4ac = 0, then 7 has a single real value.
3. If b* — 4ac < 0, then there are no values for z.

Now if you let z take any values in C, roots of az* + bz + ¢ = 0 will always
exist. The three previous cases can be replaced by the following single
statement.

All quadratic equations have two roots

(which may or may not be real, and may or may not be equal).

This result can be extended to the following general case, which is one
version of the fundamental theorem of algebra.

A polynomial equation of degree n always has #n complex roots.

Note 1 The coefficients a,, a,_,,...., a,, a,, a, are not necessarily real.

2 Recall that “complex roots” includes real roots.

3 Some of the roots may be equal.

4 It was not possible to make such a clean statement before the
advent of complex numbers. In this way, complex numbers have
simplified our view of algebra.

5 Given that the roots of the polynomial equation (¥) are
21, 2y« -+ 2y, then (%) is expressible in the factored form
a,(z-21)(2-23)....(2-2,) =0,
or (z-z,))(z-23)....(z-2,) =0, since a, # 0.

I'he Factor Theorem

Consider the polynomial p(z) = (z - 2,)(z = 23). .. .(z — 2,). You can see
that p(z,) = 0 where k € {1,..., n}. The factor theorem is stated as
follows.

If p(zi) = 0, then (z - z,) is a factor of p(z).
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This theorem is exactly the same as for R. The factor theorem can be used
as an aid in factoring polynomials.

Form a quadratic equation whose roots are
a) 3+2iand3 - 2i
b) 3+2iand1 i

a) In factored form, a quadratic equation is
Z-[B+2i])(z-[3-2i])=0
Z-[3+2i+3-2z+[3+2{][3-2i]=0
Z2-6z+13=0.

Notice that the coefficients of this equation are real.

b) z-B+2ihz-[1-i)=0
Z2-[B+2i+1-d]z+[3+2][1-1]
Z-[4+ilz+5-i=0 W

Notice that the coefficients of this equation are not all real.

By solving the equation 2’ = 1, find the three cube roots of 1.

The equation is equivalent to z> — 1 = 0, a cubic. By the fundamental
theorem of algebra, you know that there are three (not necessarily distinct)
roots.

To solve the equation, express it in factored form. -
[Recall that A> — B> = (A — B)(A* + AB + B%)]

2-1=0
= @z-1)(Z+z+1)=0

Thus,z-1=0 or Z2+z+1=0

z=1 S NS TI)
2(1)
,olE iv3
2
Hence, the cube roots of 1 are 1, —% + %, —% - ? [ ]

One of the most useful aspects of working with complex numbers is that
each equation in C incorporates two equations in R, because of the
definition of the equality of two complex numbers. This will be illustrated
in the following examples.
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Examp|e 3 Solve the equation (2 + )z — 4i = 0 by writing z = x + iy, where x, y € R,
and solving a system of equations in x and y.

Solution 2+i)z-4i=0
Q+i)(x+iy)—4i=0
2x + 2iy+ix—y—4i=0
2x-y)+iQy+x-4)=0
Thatis, 2x-y=0
and x+2y-4=0 @
Thus, the original equation in C has produced two equations in R.

2x Q+Q@gives5x —4=0,s0x = % Substituting this into (D gives y = g

Thus,z=x+iy=§+§i. |

Note: This equation could also be solved by writing
z= i and simplifying, to obtain z = 4 + §i.
2+1 5 5

Examp|e 4 Solve the equation z* = 16 — 30i.

Solution ze€C.Hence, letz=x + iy, where x and y are real.
Thus (x +iy)*=16 — 30i
x>+ 2xyi — y* =16 — 30i
(x* — y?) + 2xyi = 16 — 30i
Thatis, x> —y*= 16 @
and 2xy = -30 ()
Once again, the original equation in C has produced two equations in R.

From@,y=—3—0=—E ®

|

2x X
15\’
Substituting into @,  x* - (———) =16
x
x*— 225 = 16x* multiplying both sides by x

xt—16x*-225=0
(K =25)(x*+9)=0

x' =25 or x* = -9 (which is
x=50rx=-5  mpossible, since x is real)
and so y=-3ory=3, from

> Thus,z=5-3iorz=-5+3i. W

Note: These numbers can be considered the ‘square roots’ of the number
(16 — 30i), since the original equation was z* = 16 — 30i. However,
the notation v (16 — 30i) = 5 — 37" will be avoided, since there is
more than one square root. The term ‘“principal square root” can
only be used in relation to a positive real number.
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. State the roots of the following equations.
a) (z-2)(z+3)=0

b) z-1-d(z-1+0)=0

c) 4z-1)(z+i)(z—-i)=0

d) z(z+2)(2z-3-4i)=0

. Which of the equations of question 1 are
polynomial equations with real
coefficients?

. Find quadratic equations in the form
az* + bz + ¢ = 0 with the following roots.
a) 4iand 2 +1i

b) p+giandp —gqi

. The quadratic equation az*> + bz + ¢ =0 is
such that the coefficients a, b, ¢, are real,
and b* — 4ac < 0.

a) Prove that the roots of this quadratic
equation must be conjugates.

b) Use this fact to show that the non-real
roots of any polynomial equation with
real coefficients must be conjugates, in
pairs.

. Find cubic equations in the form

az’ + bz* + ¢z + d = 0 with the following
roots.

a) 4i,2+i,and 1 - 3i

b) 0,p +4qi, andp — qi.

. Prove that a cubic equation with real
coefficients always has at least one real
root.

. a) Verify thatw = —% + % is a cube root

of 1.
b) Locate w in the complex plane.

. Solve the equation (3 — 5/)z + 1 + 2i = 0 by
writing z = x + iy, x, y € R, and solving a
system of equations in x and y.

. Repeat question 8 for the equation
(@a+bi)z+c+di=0,a,b,c,d, €R.Does this
equation always have a unique root?

10.

11.

12.

13.

14.

15.

16.

17.

18.
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By solving z* = i, find the two square roots
of i. Locate these roots in the complex
plane.

Given that the square roots of i are €L +-L

V2 V2
1

and ——— — —, use the quadratic formula to
V2 V2

solve the equation 2> — 3z — iz + 2 = 0.

Express the roots in the form a + bi, a, b € R.

a) Bysolving 2’ + 1 = 0, find the three
cube roots of —1.
b) Locate these roots in the complex plane.

Discuss the validity of the following
statements.

a) Z2+w*=0=z=0andw=0.
b) Z2-w=0=z=w.

a) Use the factor theorem to show that
(3z - 2) and (2z + 1) are factors of the
polynomial
p(z) = 6z* - 252% + 32z2* + 3z - 10.

b) Hence solve p(z) = 0.

Itis given that 2 + i and -2 + i are two of

the roots of the equation z* — 6z + 25 = 0.

a) Use this information to find all the
roots of the equation.

b) Show that the representations of these
roots in a complex plane are the vertices
of a rectangle.

Show that the equation
Z* —rz —iz + ir = 0, r € R, has exactly one
real root.

r
——1 -, W= —1 % where r and s are real,
+1 + 2i

and itis given thatz+w=1.
a) Calculate the values of r and s.
b) Calculate|z — w|.

=

Given z=a + bi and w = ¢ + di, where a, b,
¢, and d are real, prove that

|z+w|=|z-—w|=5isreal.
w
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10.5 Complex Numbers and
Trigonometry

Until now, you have used z = x + yi to represent the complex number z.
This is called the Cartesian form of z.
z can also be expressed by using its modulus |z| = r and its argument 6.

I
I Z=X+1iy N
.
2|~
// y 1z | /'/‘&/9 R
4 0 : e
o| X R .. y
Z=X+1iy

Recall that the number z can be represented by the point with coordinates
(x,y) in the complex plane.

The definition of angles in standard position tells you that x = r cos § and
y = r sin 6, no matter what the position of z in the complex plane.

(See page 541.)

Thus z = x + yi = r cos 0 + ir sin 0 = r(cos 0 + i sin 6).

This is known as the polar form, or modulus-argument form, of a
complex number.

Cartesian form: z = x + yi

polar form: z=r(cos 0 + i sin 0),

X .
wherer =|z|=Vx*+y* cos ==, and sin 0 = Y
r r

Note: The polar form of representation is not unique. For example,
2(cos T tisin E) = 2(cos 1Bz + i sin M), or
6 6 6 6
2(cos 30° + i sin 30°) = 2(cos 390° + i sin 390°).

If the complex number 7 is represented in polar form by its modulus r and
its argument 6, then any other argument of z, that is, any angle 6 + 2k or
&° + 360k° (with k € Z) could be substituted for 6.

In the exercises, you will have an opportunity to prove the equality
principle for complex numbers expressed in polar form. That is, you will
prove that

r(cos 6 + i sin ) = p(cos ¢ + i sin )
implies
r=pand 0=+ 2kz (or 6° = ¢ + 360k°), k € Z.

Recall that the principal argument 6 is such that -7 < 0 < 7, or
-180° < 6° < 180°.
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State the principal arguments of the following complex numbers.
a) z= 3(cos 13771 +isin 1—;—7{)

b) w = 5(cos[-200°] + i sin[-200°])

a) Since % is an argument of z, then I—;E + 2km, k € Z, are its other

arguments.

Since the principal argument 6 is such that -7 < 0 < 7,
you must select k = —2.

ThusArgz:%—z(zn)=w=§

b) The arguments of w are —200° + 360k’, k € Z.
For the principal argument, you must select k = 1.

Therefore Arg w = —200° + (1)360° = 160° W

For the examples that follow, you may wish to refer to the tables of values
of the trigonometric ratios of special angles, and the table of radian and
degree equivalences, on page 543.

Find the Cartesian form of the following numbers.

a) z=5(cos 125° + i sin 125°) b) w=4<cos§+isin g)
z I I w
5 125° 4 T
3
T T T 'Ol 1’ T T |[_R L} T T 'OI 1' Ll T TIR

a) z=5(-0.5735...) + 5i(0.8191...) = —2.9 + 4.1i,
correct to 1 decimal place.

b) w= 4(% + %) =2+2iV3, using exact values. Alternatively,

w = 4(0.5 + [0.8660...]i)) = 2 + 3.5],
correct to 1 decimal place. H
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Examp|e 3 Find the polar form of the following numbers.

a) z=3-3i b) w=-12-5;
I I
@) R
T T T 'O lel T II.R 1 T 1] T T T T
] ol o

3-3j /

42 _5i

Solution a) lz|=\/32+32=3\/5;sin0=—i=—Landc050=i=
32 2

5
-

Thus, 6 = —g or —45°,

Hence z = 3\/5(COS[—45°] + 1 sin[-45°])
or 7 = 4.24(cos[-45°] + i sin[-45°)).

Note: Any angle coterminal with —45° would also be correct.
For example, —45° + 360° = 315° could have been used.

b) [w|=V122+5%= 13;sind)=——5* andcosd)=—1—2
J13 13
Thus, ¢ = —157°, correct to the nearest degree.
Hence z = 13(cos[-157°] + i sin[-157°]) W

Conjugates

The reflection in the real axis of
a complex number of modulus r, argument 6, is
a complex number of modulus r, argument 0.

I z
,
0
ol ~- 9 R
Z

Thus if z = r(cos 0 + i sin 0), then z = r(cos[-0] + i sin[-0)])

or z=r(cos @ —isin 0),
since for any angle 6, cos (-6) = cos 0 and sin (-6) = —sin 0 (see page 541).
This form is also used routinely for complex numbers with negative
arguments.

That is, the complex number z of modulus r and argument —6, where 6 > 0,
can be written

z=r(cos[-0] +isin[-0]) OR z=r(cos 8 —isin 6)
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Multiplication and Division in Polar Form

The most useful aspect of the polar form is the stunning result obtained
when complex numbers are multiplied or divided. You will observe this
presently.

Let z = p(cos 6 + i sin f) and w = g(cos ¢ + i sin P).
Then zw = pq(cos 0 + i sin f)(cos ¢ + i sin @)
= pq(cos 8 cos ¢ + i cos 0 sin ¢ + i sin O cos ¢ — sin 0 sin )
= pq([cos 0 cos ¢ — sin O sin ¢p] + i[sin O cos ¢ + sin ¢ cos 6])
so  zw = pq(cos[f + @] + i sin[0 + P])
from the formulas for the cosine and sine of compound angles on page 542.
The product obtained is a complex number in polar form, whose
modulus is pq, and whose argument is 0 + ¢.

0+ O w

10 R o) R

Hence, when two complex numbers are multiplied, the modulus of their
product is the product of their moduli, and the argument of their product is the
sum of their arguments.

Similarly, you will have an opportunity to prove in the exercises that
Z = P(cos[0 - ] +i sin[0 — ¢])
w o q
The quotient obtained is a complex number in polar form, whose
modulus is £, and whose argument is 0 — ¢.
q
Thus, when two complex numbers are divided, the modulus of their quotient

is the quotient of their moduli, and the argument of their quotient is the difference
of their arguments.

Given z = 12(cos 160° + i sin 160°) and w = 3(cos 35° + i sin 35°),

find zw and < in Cartesian form, correct to 1 decimal place.
w

zw = (12)(3)(cos[160° + 35°] + i sin[160° + 35°])
= 36(cos 195° + i sin 195°)
=36([-0.9659...] +i[-0.2588...]) = —34.8 — 9.3i
Z — 12 (<] [ . . (<] o
== ?(cos[160 —35°] +isin[160° — 35°])
w
= 4(cos 125° + i sin 125°)
= 4([-0.5735...] +i[0.8191...)=-2.3+3.3i W
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Example 5

Solution

Example 6

Solution

Find the exact values of zw and z
w

ifz= 4<COS on +1isin 2@) and w = 2(cos z +isin E)
6 6 3 3

w = (4)(2)(cos[5—6” * 3] *isin [% ! g])

= 8<cos i + 7 sin E)
6 6
_ 8(*£ . _l_z)
2 2
=-4V3 - 4i

=2(0+ 1i)
=2i M

The next example shows how rules 1 and 2 can be used advantageously in
different situations.

Given the complex number z = 3 — 37 from Example 3a), calculate the
exact values of
a) the modulus and argument of z*

b) the modulus and argument of 1
b4

z=3-3i= 3\/E(cos[—45°] + i sin [-45°]) from Example 3a).
That is, |z| = 3vV2 and arg z = —45°

a) Usingrulel,
the modulus of z* is (3\/5)(3\/3) = (3\/5)2 =18

the argument of 7% is [-45°] + [-45°] = —90°

b) The complex number 1 has modulus 1, argument 0.
Thus, using rule 2,

the modulus of —is ——

3~/_

the argument of Liso- (-45% = 45°. A
z
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1. Plot each of the following numbers in the
complex plane and find their Cartesian
forms. Use 3 significant digit accuracy.

a = 4(cos 50° + i sin 50°)
b = 4(cos 50° — i sin 50°)
¢ = 2(cos 145° + i sin 145°)
2. Plot each of the following numbers in the

complex plane and find their Cartesian
forms. Use exact values.

d= 8(cos T +isin E)
3 3

( 3n . . 37:)
e=|COS — —1S81n —
4 4

f= —(cosz+isin E)
2 2

3. State the modulus and an argument of z in
the following cases.
a) z=3i b) z=4 ¢) z=-17 d) z=-i

4. State the modulus and an argument of z
using the numbers of question 3.

5. State the principal argument of the
following numbers.
a) cos 115°+isin 115°
b) cos 425° +isin 425°

( am .. 471.’)
c¢) 6| cos — +isin —
3 3
d) Z(COS Hr isin M)
6 6
6. Plot each of the following numbers in the

complex plane and find their polar forms.
Use degrees.

s=4+3i v=-2
t=-1+2i z=-15-8i
u=>5i w=4-9]

7. Find the exact polar form of z in the
following cases. Use radians.

a) z=-1+i c) z=2V3-6i
b) z=V3+i d) z=-3-V3i

8. Given any complex number z, state the
possible values of the argument of z + z.

10.

11.

12.

13.

14.

15.

16.
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Find r and a value of ¢ in the following

cases.

a) r(cos 30° + i sin 30°) = 5(cos 0 + i sin 0)
b) 6 cos 6 + 6i sin 0 = r(cos 328° + i sin 328°)

n .. T .
c) cos§—151ng=rcos(9+rsm0

Given z = p(cos 6 + i sin 6) and
w = g(cos ¢ + i sin ¢b), prove that

Z =P(cos[f - ¢] + i sin[6 — P))
w o q

[Him: Recall that Z. %]
W oww

Given z = 10(cos 71° + i sin 71°) and
w = 5(cos 34° + i sin 34°), express the
following in polar form.
b) £ ) ¥
w z

a) zw

Givenz=4 - 5iandw= -2 + 3i,
a) express z and w in polar form (use
degrees).

w
b) Hence express zw, %, and ¥
w z

in polar form.

Calculate the exact modulus and an exact
argument of each of the numbers

Z=—1+\/§iandw=2\/§+2i.

Use the results of question 13 to express the
following in polar form.

a) 7 b) w? c) w d) ¥
z

a) State the modulus and argument of i.

b) Describe geometrically what happens to
the vector representation of a complex
number that is multiplied by i.

a) If z=cos 0 +isin 0, state an argument
of 7%

b) Hence show that cos 260 = cos*§ — sin*0
and that sin 20 = 2 sin 6 cos 0.
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THEOREM

Example 1

Solution

10.6 De Moivre’s Theorem

The investigations of the last section lead to the most important theorem
concerning complex numbers. This theorem was published by Abraham
De Moivre (1667-1754) in 1730, well before the advent of the complex
plane.

By the multiplication principle, recall that

[r(cos O + i sin 0))* = r*(cos 20 + i sin 26).

Similarly,

[r(cos 0 + i sin B)][r*(cos 20 + i sin 26)] = r’(cos 30 + i sin 36).

De Moivre’s theorem extends this principle as follows.
[r(cos O + i sin 6)]" = r(cos nf + i sin nf)
This can be proved by induction for n € N as follows.

Step 1: Show the statement is true for n = 1.
Forn =1, L.S. = [r(cos 8 + i sin )], R.S. = r'(cos 16 + i sin 16).
Since L.S. = R.S., the statement is true for n = 1.

Step 2: Assume the statement is true for some n = k € N. That is, assume
[r(cos 6 + i sin 0)]* = *(cos kO + i sin kb) is true.

Step 3: Prove the statement is true for n = k + 1. That is, prove
[r(cos 0 + i sin O)]*"' = **'(cos[k + 1]0 + i sin[k + 1]6).

L.S. = [r(cos 0 + i sin 0)]*[r(cos 6 + i sin 6)]
= [*(cos kO + i sin kB)][r(cos O + i sinf)] fram step 2
= (")(r)(cos[kO + 0] + i sin[k6 + 0]) by multiplication property
= r**!(cos[k + 1]0 + i sin[k + 1]6) = R.S.

Thus, by the principle of mathematical induction,
[r(cos O + i sin 0)]" = r"(cos nf + i sin n0) is true for all n € N.

Calculate in Cartesian form
a) (cos 50° +1sin 50°)?8 b) (1+i)*

a) Note that the modulus of (cos 50° + i sin 50°) is 1.
(cos 50° + i sin 50°)® = [1(cos 50° + i sin 50°)]®
13(cos[8 x 50°] + i sin[8 x 50°])  de Moivre
1(cos 400° + i sin 400°)
=0.77 + 0.64i
b) [1+i=V1*+12=V2 andarg (1 +i) = 45°
Thus (1 + i)** = [V2(cos 45° + i sin 45°)]**
= (V2)*(cos 1080° + i sin 1080°) de Moivre
=22 (1 + 07)
=4096 N
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Negative Exponents

You will now use the division principle and De Moivre’s theorem to find
the polar form of z™", where z = r(cos 6 + i sin 0) and n € N.

,n=1 _ 1(cos 0 +isin 0) since 1 has modulus 1
7" [r(cos 0 + i sin §)]" and argument 0

_ _1(cos 0 + i sin 0)
r(cos nf + i sin n 6)

by De Moivre’s theorem

1 ..
= F(cos[o —nf] +isin [0 — n0)] by division property

so 7" =r"(cos[-nb] +isin [-n0])
This last statement is the expression of De Moivre’s theorem for a negative
integer. ’

Thus, De Moivre’s theorem is true for any n € Z.

Example 2 Calculate in Cartesian form (-V3 + i)~

Solution |—\/§ +i|=Vv3+1=2 andarg (—\/3 +1i)=150°
Thus (-V3 + i)™ = [2(cos 150° + i sin 150°)]"°
= 27%[cos (—1350°) + i sin (—1350°)]
1 .
= m(o - ll)
i
512

De Moivre’s theorem can also be used in conjunction with the binomial
theorem to establish certain trigonometrical identities. This is one of the
applications of complex numbers to other areas of mathematics.

Example 3 Find expressions for cos 36 and sin 36 in terms of cos ¢ and sin 6.

Solution cos 3 @ +isin 3 6= (cos 0 + i sin 0)’ by De Moivre's theorem
= cos® 0 + 3i cos? 0 sin 0 + 37* cos 6 sin® 0 + i sin® 6
by the binomial theorem
= (cos® 6 — 3 cos 0 sin? 0) + i(3cos® O sin 0 — sin’ 6)
Thus, by equating real and imaginary parts,

cos 3 0 =cos’ 0 — 3 cos 0 sin* 6
and sin30=3cos’fsinf-sin’0. M
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NOTATION

SUMMARY

De Moivre’s Theorem for Rational Exponents

De Moivre’s theorem is true not only for all positive and negative integer
exponents, but also for all rational exponents (with a reservation), as the
following indicates.

Assume that ¢ is such that
(cos@+isinf)i=cosp+isingp, @
wherep € Zand g e N.

Then raising each side of D to the exponent g gives
(cos 0 + i sin 0) = (cos @ + i sin p)*
S0 cos pf + i sin pf = cos q¢ + i sin qo.

Equating real and imaginary parts shows that this is satisfied by
p0=q¢+2kn,thatis,¢=M,keZ
q

Ifk=0,¢ =20
The statement (D now gives

(cos 6 + i sin 6): = cos 20 + i sin 26
q q

Thus, De Moivre’s theorem appears to be true for a rational exponent.
The reservation is that, if n is not an integer, then there is more than one value
possible for ", namely

7= r"(cos po—2kn sin M), kez.
q q
This will be clarified by Example 1 in section 10.7.

The Norwegian mathematician Niels Henrik Abel (1802-1829) showed
that De Moivre’s theorem can be extended to include all real, and even all
complex exponents.

In some texts, the short form ‘“cis 6" is used as an abbreviation for
“cos 0 +isin 0.

De Moivre’s theorem:
[r(cos 0 + i sin 0)]" = r*(cos nf + i sinn 6), n € Q.

If n is not an integer, then (cos 6 + i sin 6)" is not unique.
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1. Express the following in Cartesian form
(use 3 significant digit accuracy).
a) (cos 130° +isin 130°)"
b) [3(cos 20° — i sin 20)]°
c) [4(cos 257° + i sin 257°)]

2. Express the following in Cartesian form
(use exact values).

a) (1-1i)*
b) (1+iV3)2

9
c) (cos T 4 isin E)
3 3

8
d) (cos EL. isin 5—”)
6 6

3. Express the following in Cartesian form
(use 3 significant digit accuracy).
a) (cos 130° +isin 130°)7"°
b) [3(cos 20° — i sin 20°)] ¢
¢) [4(cos 257° + i sin 257°)]"

4. Express the following in Cartesian form
(use exact values).

a) 1-9)*
b) (1+iV3)™

-9
c) (cos T tisin E)
3 3

-8
d) (COS 2% _sin E)
6 6

5. Calculate the following in Cartesian form.
a) (1+)PW3 -0
b) (-1 +i)*

(1+i)°

6. Simplify the following expressions.
5

(cos T tisin E)
7 7

a) 5

(cos g —isin g)

100 100
b) (cosE+ isin E) (cosz+isin E)
6 6 3 3

7.

10.

11.

12.
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Find expressions for cos 46 and sin 460
in terms of cos 6 and sin 6.

. Givenz=cos 0 +isin 0,

a) use De Moivre’s theorem to prove the

following.
l=cos6—isint9,

z

2> = cos 30 + i sin 30,

[ =

3=cos30—isin30

(8]

3
b) show that (z + l) = 8 cos® 6
z

3
c) by expanding (z + l) , prove that
z

2 cos 36 + 6 cos 0 = 8 cos’0
d) hence find cos 36 in terms of powers of
cos 6.

. Givenz=cos 0 +isin 0,

3
a) show that (z - l) = —8i sin’0
z

b) hence find sin 30 in terms of powers of
sin 6.

Given z = cos 0 + i sin 0,

a) expand and simplify (z + l)4

b) hence prove that’ :
cos'f = é(cos 40 + 4 cos 260 + 3)

¢) hence find cos 40 in terms of powers of
cos 6.

If z = —1, verify that 75 may take more than
one value in C as follows.

w= % + ?i is one of the values of 2,

u= % - ? is one of the values of 25,

v = —1 is one of the values of 3.

Ifz= L + L, verify that z: may take mor
NS y z y take more
than one value in C as follows.
p=cos 9 +1isin9°

is one of the values of 73,

q = cos 153° + i sin 153°

is another value of 2.
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Example 1

Solution

10.7 Quest for Roots in C

You know that 1’ = 1.
Hence, 1 is a solution of the equation z>=10orz> - 1 = 0.

According to your experience of mathematics thus far, it may seem that 1
is the only root.

However, recall from the fundamental theorem of algebra (section 10.4)
that this equation has three roots in C. The roots cannot all be 1, since that
would imply that the equation z> — 1 = 0 could be rewritten in factored
formas (z — 1)’ = 0.

(You know that 2’ — 1 # (z - 1)%))

The search for all the roots of this equation will be investigated in the
following example.

Use De Moivre’s theorem to determine all the cube roots of 1 in C.

The cube roots of 1 are the roots of the equationz> — 1 =0, or 2’ = 1.
You can solve this equation by writing each side in polar form.
Now|1| =1, and arg 1 =0, thus 1 = 1(cos 0 + 7 sin 0).

Let z = r(cos 0 + i sin 6).

Thus you must solve =1
= [r(cos 6 + i sin B)]’ = 1(cos 0 + i sin 0)
= r’(cos 36 + i sin 36) = 1(cos 0 + i sin 0)

Recall from section 10.5 that if two complex numbers are equal, then their
moduli are equal and their arguments differ by a multiple of 27.
Thus” =1and 36 = 0 + 2kn, k€ Z,

= r=1(sincerisreal) and 6= Zan, where k is any integer.

’

That s, z = 1<cos Z—I;E + 7 sin Zan) =c052an+isin 2kn

where k is any integer.

You will now see that this expression for z represents different complex
numbers, depending on the value chosen for k.

Let these numbers be represented by w;, then, by substituting successively
the values 0, 1, 2, 3,..., you obtain

wo=cos0+isin0=1+0i=1

W, = COS 2?72 + 7 sin % S + ?i, a value different from w,
w; = COS 43—” + 7 sin % = —% - gi, a value different from w, or w,

cos2m+isin2n=1+0i=1=w,

S
I
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Continuing the process yields the values w,, w,, wo, wy,. . .etc.

1,¥3, 1 V3, g

Thus the three cube roots of 1 are 1, —— + ,
2 2 2 2

In the exercises, you will have an opportunity to verify that each of these
numbers, when cubed, yields 1.

_1  ¥3, I
> + 21 11
T O 1Y l.R
_1 V8,
2 2

e Observe from the figure that the roots have a rotational symmetry about

- 2 . . .
the origin, of angle ?7: That is, each root, if rotated counterclockwise
through —235 about the origin, has for image another root.

2
e Also observe that w,*> = (cos 2—37[ + i sin 2—37[) = C0S — an + 1 sin %75 =w,.

e Compare also with the solutions formed earlier, using the quadratic
formula (Example 2, section 10.4). )

Method to Find the nth Roots of Unity

The above method can be applied to solving the equation z" — 1 = 0, or
7" = 1, where n is any natural number. According to the fundamental
theorem of algebra, this equation will have n roots in C. These roots are
called the nth roots of 1 or nth roots of unity.

Let z = r(cos 0 + i sin 0), then
=1

= [r(cos 6 + i sin 6)]" = 1(cos 0 + i sin 0)
= r"(cos nf + i sin nf) = 1(cos 0 + i sin 0)

Thusr"=1and nf =0+ 2kn, ke Z,

= r=1(sincerisreal) and 0= an, where k is any integer.
n
Thatis, z=w, = l(cos 2kn +1sin an) = C0Ss — 2kn +isin an
n n n

where k is any integer.
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By substituting successively the values 0, 1, 2,...,n — 1 of k in
wy = (cos 2kr + 7 sin Ek_> you find
n n

wWo=cos0+isin0=1+0i=1

2n . . 2m .
w, = cos — + i sin =, a value different from w,
n n

4t . . 4m .
w, = cos — + i sin —, a value different from w, or w,
n n

.........

w,, = cos 2=DT 1 i in 2 = D7, value different from all previous
n n

2nm | . . 2nm ..
W, =C0S —— +18in —— = ¢0s 27 + i sin 27 = w,,.
n n

Successive values of k will again yield solutions equal to
w,, W,,...,in turn.

Thus the nth roots of unity are given by the n numbers w,, w,, w,,. .., w,_;.

Once again, observe that w,> = w,.
Furthermore, w,* = w;, w,* = w,, etc.

Rational Powers of z

You are familiar with a result in R such as ““323 = 2”. In C, however, the
expression 325 may take five different values. The number 2, which is real
and positive, is called the principal root. In order to distinguish the
principal root from the others when working in C, you can use the

notation ¥/ 32 for the principal root. That is,
325 may take five different values, including 2, but

V32 = 2 (a positive real number).

Note: If zis not a positive real number, then there is no principal root of
z/, where n € N. The ambiguity can occur only if z is a positive real
number.

The method of searching for roots can now be extended to any rational
power of z, that is, z, p € Z, q € N. This is illustrated in the following
example.



Example 2

Solution
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Find all the values of z = [16(1 + i\/g)]%, and sketch them in the complex
plane.

The numbers required are the solutions of the equation
2 =[16(1 + iV3)?
Let z = r(cos 0 + i sin 6), and letu = 16(1 + i\/g).

Now |u|=16V1?+ V3" =16V4 =32, and arg u = g or 60°.

Thus 2> = [32(cos 60° + i sin 60°)]*

= r’(cos 56 + i sin 56) = 322 (cos[2 x 60°] + i sin[2 X 60°])

Thus 7’ =32%and 50 = 120° + 360k’ ke Z

= r= 322 = 2% =4 (since r is real; it is the principal fifth root of 32%)
and 0= %(120" + 360k°) = 24° + 72k°, where k is any integer. ‘

That is, z = w, = 4[cos(24° + 72k°) + i sin(24° + 72k°)]
Now substitute the values 0, 1, 2, 3, and 4 of k in w;,.

Wo = 4(cos 24° + i sin 24°) = 4(0.913.. .+ 0.406. ..i) = 3.65 + 1.63i

w, = 4(cos 96° + i sin 96°) = 4(=0.104. .. + 0.994. ..i) = —0.42 + 3.98i
w, = 4(cos 168° + i sin 168°) = 4(-0.978... + 0.207...i) = —3.91 + 0.83i
ws = 4(cos 240° + i sin 240°) = 4(-0.5 + 0.866...7) = -2 — 3.46i

w, = 4(cos 312° + i sin 312°) = 4(+0.669... — 0.743...i) = 2.68 — 2.97i

w, |1
w
0
WZ

T T T L) T T T T

R
W3 . W4

[ ]

Notice again the symmetry of the roots. However, in this case, w,* + w,.
You will investigate this further in the exercises.
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10.7 Exercises

In the following, leave numerical answers
correct to 3 significant digits, where you cannot
find exact values.

1. By finding w,’, w,* and w,’, verify that each

of the following numbers is a cube root of 1.

1, V3. 13,

wo=1, w, 2‘+21, w, > 5
2. Find the following roots of unity in

Cartesian form and represent them in a

complex plane.

a) the fourth roots of unity

b) the fifth roots of unity

c) the tenth roots of unity

3. Find the following roots in Cartesian form
and represent them in a complex plane.
a) the square roots of i
b) the cube roots of i
c) the square roots of —i
d) the cube roots of

27(cos 72° +1i sin 72°)
e) the fourth roots of
81(cos 72° +1i sin 72°)
f) the sixth roots of
64(cos 102° — i sin 102°)

4. Two of the roots of the equation 22-32=0

are 2(cos 2 + 1 sin H) and
5 5
2(cos ilsﬂ + i sin 4?7[) State the other roots.

5. a) Solve the equationz’ — 1 =0.
b) Use these solutions to express z” — 1 in
factored form.
c) Expressz’ — 1in the factored form
(z — 1)p(2)q(2), where p(z) and q(z) are
quadratic expressions with real
coefficients.

6. Find the real factors of
a) 2+1 b) 7 -1 c) -1

7.

10.

11.

a) Show that V3 — i is a fourth root of
-8(1 + iV3).

b) Hence solve the equation
2+ 8+8iV3=0.

a) Ifwisanon-real seventh root of unity,
show that the other roots are w?, w’, w",
w’, w®, and 1.

b) Prove that
l+w+w+w +w'+w +uw=0

¢) Do similar properties hold for all other
nth roots of unity?

. In section 10.7, Example 2, it was shown

that the five values of [16(1 + iv3)]} could
be represented by

w, = 4[cos (24° + 72k°) +i sin (24° + 72k%)],
k€{0,1,2,3,4}.

Wiy s
a) Show that —** is a constant.
Wi
b) Use your answer 1o a) to explain the
symmetry of the representatives in the

complex plane.

a) Expressz’ +1=0in factored form,
using factors with real coefficients.
b) Hence show that

coszt—+cos3—7[+co‘szz—=l
7 7 7 2
Solve the equation z¢ — 22’ + 4= 0.
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Solution
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10.8 Graphing and Complex Numbers

In this section, you will be describing the set of points representing a
complex number 7 that is subject to certain conditions. Such a set of points
is called the locus of z in the complex plane. This topic will give you the
opportunity to work with complex numbers in a variety of ways.

Y

) Describe the locus of the points z = x + iy in the complex plane, given
that|z|= 5.
b) Find an equation in x and y that represents this locus.

0

) The modulus of a complex number is its length, that is, its distance
from the origin.
If |z| = 5, then z must lie on a circle of centre O and radius 5.

I P

/5 T~

~_

b) |z|=5= |x+iy|=5
= Vx*+y*=5

= x*+y*=25 N
Distance Between Two Points in the Complex Plane

Recall that complex numbers can be represented by vectors. Let the
complex numbers w and z be represented in the complex plane by the
points A and B respectively.

I

|z - wl

Then the distance AB =|AB|=|0B — 0A|=|z — w|.
Thus, the modulus of (z — w) represents the distance between the points
representing z and w in the complex plane.
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Example 2

Solution

Example 3

a) Describe the locus represented by the equation |z — 2 — i| = 3.
b) If z=x + iy, find an equation for this locus in terms of x and y.

a) |z-2-il=|z- 2 +1i)]|
Thus, this expression gives the distance between the points
representing z and (2 + 7). The locus is therefore a circle
with centre (2 + 7) and radius 3.
b) Sincez=x+1y,
|z -2 —i|]= 3 becomes
Ix+iy—-2—-i|=3
[(x-2)+i(y—1)|=3
Vix -2+ (y - 1)2=3
x-2+@-1) =9 N

The next example illustrates the link between complex numbers and
vectors. Recall that the vector equation of a line is 7= ;0 + kr_nk,
where ? is the position vector of any point on the line,

;0 is the position vector of a given point on the line,
and misa direction vector of the line.

a) Determine a complex number equation for the line passing through
the points A and B representing 3 — i and 4 + 5i respectively.
b) Deduce parametric equations for the line AB.




Solution

Example 4

Solution

10.8 Graphing and Complex Numbers

a) Letz represent any point P on the llne AB.

Since AP and AB are collinear, AP = kAB keR

or z- (3 -1 =k[(4+5])—-(3-1i)]

= z=(3 —1i)+ k(1 + 60)

This is the required equation.

Let z = x + iy, and rewrite (D as follows.
x+iy=3+k+i(-1+6k)

Equating real and imaginary parts gives

x=3+k

y=-1+6k

These are parametric equations for the line AB. W

@

b)

The next example shows that straight lines, or parts thereof, can be
described in a totally different way with complex numbers.

a) Describe the locus of z if arg(z — 2i) = 45°
b) Find an equation in terms of x and y for this locus, given that
Z=x+1iy.

a)
Then the complex number z — 2i is represented by the vector AP.

Let A be the point representing 2i, and P be the point representing z.

451

arg(z — 2i) = 45° means that the vector AP must make an angle of 45°

with the positive x-axis.

I ray
_ P )
21A
T T 1 T IO— 1| T T T "R

Thus, P is on the part-line, or ray, shown in the diagram.

b) This ray has slope 1, and it passes through (0,2). Recall that the
equation of a line of slope m passing through the point (xo,yo) is

Y = Yo =m(x = Xo).

Thus the equation of theray isy — 2 = 1(x — 0), or y = x + 2, with the

condition thatx>0. H

Note: The point Q, which is on the line, does not satisfy x > 0. Indeed, the

angle between AQ and the positive x-axis is 135°, not 45°. Thus
points such as Q do not satisfy the original complex equation.
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Solution

Example 6

Solution

An ellipse has a major axis of length 8 and foci at the points A and B,
representing i and 4 + i respectively. Find a complex equation for this
ellipse.

A property of an ellipse is that the sum of the distances from the foci to
any point on the ellipse is equal to the length of the major axis.

Let P be any point on the ellipse, represented by the number z.

Thus |AP|+ |BP|= 8,

or |z —i|+|z — (4 + i)| = 8 is the required equation. W

Find an equation in x and y for the locus described by
2= (1 +i)*=72"— (1 - i)>, where z = x + iy.

Substituting z = x + iy and 7 = x — iy gives
(x+iy)y - (1 +i)=(x—-iy) - (1 —i) or
(x+iy)? = (x =iy = (1 +i) - (1 - i)?
x+iy+x—iy)x+iy—x+iy)=Q+i+1-d)(1+i-1+4i) factoring
as difference
of squares
(20)(2dy) = (2)(2i)
xy=1

This represents a rectangular hyperbola centred at the origin,
with the real axis and the imaginary axis as asymptotes.
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In the following, let z = x + iy wherever
appropriate.

. Sketch the locus of the point P representing
the complex number z in the following
cases.

a) |z|=4 e) argz=§
b) lz-1]|=4 f) arg(z—l)=5—6n
c) lz-il=4 g) lz+1|+|z-1]=4

d) |z-5-2i|=1 h) |z|+|z-4-i]=6

. Find a complex number equation for the

following.

a) acircle centre O, radius 6

b) acircle centre —1 + 3i, radius 5

c) acircle centre u, radius a,
withueC,a€eR

. Find equations in x and y of the loci
described by the following.

a) |z+4+3i|=2

b) |z-i|=3lz+1|

. A point moves so that its distance from the
origin is twice its distance from 3 — i. Show
that the locus is a circle, and find its centre
and its radius.

. Determine a complex number equation for
the straight line through the points A and B
represented respectively by -2 + 5 and

-2 -1

. Describe the locus represented by

Re(z - l) =0.

z
. Describe the locus represented by
arg(z — 4 — 2i) = 120°.

. Describe the locus represented by
Im(z%) = 0.

10.

11.

12.

13.
14.

15.

16.

17.
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. Describe the locus represented by

Im(Z—l+E)=O.
z

Find a complex number equation for the
perpendicular bisector of the line segment AB
where A and B are represented respectively
by the following complex numbers.

a) 2,-6 b) 2+1i,3-2i

Given that|z — w|=|z + w| show that
|arg z — arg w|= 90°.

Find an equation in x and y for the

following.

a) z-3 =1
z—6

b) <Z+4l -
z-2

z _r
o o 33)"

d) arg (z—_l—r) _T

Z+2+1i 2
Describe the locus of z if Im(z%) = 2.

Describe the locus represented by the
following.

a) |z|<5

b) |[z-5+3i|<3

c) Re(z®)>2

d) 2<|z-2|<3

e) |z—1—-i|l+|z+2-4il<10

a) Describe the locus represented by
|z— 1]=Re(z) + 1.

b) Find an equation in x and y for this
locus.

Describe the locus represented by each of
the following.

a) |z-2-3i|=4

b) Re(z)=2and —g <argz< %

For each locus in question 16, find the
greatest value of |z|.
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In Search of Graphical Representation of
Non-real Solutions of Equations

Solutions to quadratic equations in R can be seen graphically as shown in
the examples A and B that follow.

A. xX*-5x+6=0 B. x>-6x+13=0
= @(x-3)(x-2)=0 has no real solutions.
= x=3o0rx=2. The quadratic formula yields

x=3+2iorx=3 - 2i.

Graphically, these solutions can The parabolay = x* — 6x + 13 Q)
be viewed as the points where does not intersect the x-axis.
the parabolay =x*> - 5x+ 6 @ Is there any geometric
intersects with the line y = 0, significance in this context for
that is, the x-axis. 3+ 2iand 3 - 2/?

6 y Y

. 1 .
T T IO‘ T 2r\_/|3 T T T 1 % H T T lo_ 11 T T T T T T X

Pursuing the question asked in B, proceed as follows. Allow the x-values
in the parabola @) to extend into C, that is, let x take the form a + bi, with
a,beR.

You now have a complex plane, the x-plane, taking the place of the old
x-axis. (Note that the old x-axis is contained in this complex plane.)

Unfortunately, y will also now take on non-real values, and a
four-dimensional situation is set up.

However, it is still possible to view a part of this, as follows.
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You already know that the solutions to y = 0 are x = 3 + 2i. Hence, the real
part of each solution is 3. Allow x to take the form 3 + #i, with f € R.

Then y = (3 + ti)> — 6(3 + ti) + 13
=9+ 6ti—*—18—6ti +13
or y=4-£

y - axis (real)

o)t real axis of x -plane

: ®

DRI GATE O A AN 7E

Now t is the variable along the imaginary axis of the x-plane.

The equation () thus represents a parabola whose plane is perpendicular
to the plane of the original parabola ®.

Also, this parabola punctures the x-plane at the points 3 + 2i and 3 — 2..

Thus, you can see that the non-real intersections of a parabola with the
x-axis are ‘‘somewhere in front of, or behind, the paper”!

A Canadian mathematician, Richard Dewsbury, is presently researching
the geometrical aspect of extensions to C of equations in R.
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10.9 Exponential Form of a Complex Number

A geometric series with first term 4, and common ratio r, has an

NP , a .
‘infinite sum’ § = 1/ provided |r| < 1.
—-r

Consider the infinite seriesS =2 + 1 + % + :11 + % +....

This is a geometric series witha = 2, r = %

Thus 2

No finite sum of this series has a value 4. However, the sum of a finite part
of this series will get as close to 4 as you want, provided that you add a
sufficient number of terms.

In chapter 9, you saw that the binomial expansion becomes an infinite
series if the exponent is not a natural number, that is,

(1+x)"=1+nx+m2; Dy, ntn- 13)!(n—2)x3+””

If x| < 1, the series approaches the value of (1 + x)" as closely as you like,
by taking a sufficient number of terms. The series is said to converge.

If|x| = 1, the series does not approximate (1 + x)". In fact, the series may
change value considerably for each extra term added. In that case, the
series is said to diverge.

The theory of infinite series developed most significantly after the
invention of calculus. Around 1700, the mathematicians Brook Taylor
(1685-1731) and Colin Maclaurin (1698-1746) developed formulas to find
series expansions, or polynomial approximations, to many functions in
mathematics.

Three of these series, valid for all x € R, follow.

2 3 4
c=l+x+ 44X
21 3! 4l
2 4
cosx=1-% 4%
2! 4!
3 5
sinx=x-+%X _ .
3t 5!

For the trigonometrical functions, x is in ‘natural measure’, that is radians,
not degrees.

The Swiss mathematician Leonhard Euler (1707-1783) broke from
tradition by attempting to use these expansions for x € C, in 1748.
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Using z = x + iy, he wrote
¢ =" = ¢e¥ = re", wherer = e € R. ®
U R () 7 R ) M 4 O 7
2! 3! 4! 5! 6!
2 71,3 4 2,5 6
1+iy_y__£X_+L+l_-y~
21 3t 4! 5! 6!

2 4 6 3 5
=1—y—+x——y—+...+i[y—y +7 —]

20 41 6L 31 51
— X
But these are the series for cos y and for sin y,
so¢' =cosy+isiny
FORMULA S | @
or, using @O,
= re" = r(cos v +1sinvy),
FORMULA ¢ ¢ (cos y +1siny) @

wherez=x+iyandr=¢', x,y€R.

Thus ¢**” is a complex number whose modulus is ¢* and whose argument
in radians is y, that is,

SV

| = ¢

X

and arg(e''") =y

| €

PROPERTIES
The identities @) and G) are known as Euler’s formulas. They show that
any complex number can be written in exponential form. The formula Q
is the special case where the modulus is 1.

One extraordinary consequence of these formulas is the following
identity, obtained by substituting y = 7 in @.

é"=cosm+isinmt=-1+0,or

jpEnTiTY O !
This wonderful relation links 7, e, and i, three of the most important
numbers that evolved in the history of mathematics. This is another
example of the simplification, or rather ‘unification’, that may result after
extended research into new areas.

Recall that

e 71 is the length of half the circumference of a unit circle
(that is, a circle of radius 1). [ =3.141 592 654]

¢ ¢ is the base of natural logarithms
(the area under the curve y = 1 is a natural logarithm) [e=2.718 281 828]
X
* i is a square root of —1.

Note: Just as the polar form of a complex number is not unique, so the
exponential form is also not unique.
That is, since any argument 0 can always be replaced by another
argument 6 + 2k7, k € Z, then ¢ = ¢/
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Example 1

Solution

Example 2

Solution

Example 3

Solution

Write the complex number z = 5 + 2i in exponential form. (Leave numbers
in your answer correct to 2 decimal places.)

z=re”, wherer=|z|land y = arg z.
Now |z]= V5% + 22 =29 = 5.39,

and tan(arg z) = % = 0.4. Since 7 is in the first quadrant, arg z = 0.38.

Hence z = 5.39¢%%% W

Write the complex number w = ~3+i in exponential form.
(Use exact values.)

lwl=VV32+12=2.
tan (arg w) = —\/L_ and w is in the second quadrant, so arg w = %
3

Hencew = 2¢% M

De Moivre’s Theorem in Exponential Form

For clarity, consider De Moivre’s theorem for a complex number of
modulus 1.
(cos 0 +isin6)"=cosn 6 +isinnb.

One immediate result of Euler’s formulas is the expression of De Moivre’s
theorem as follows.

((,1”)/! . CIH/’

Thus De Moivre’s theorem can be seen as the extension of a normal
exponent rule of R to C!

However, recall that if # is not an integer, then z = (¢*)" is not unique. In
this case, z is called a multiple-valued function. One of these values is
¢"’, the complex number of modulus 1, with argument n0.

Given z = ¢%, find the following in Cartesian form.

a) 22 b) o z* d z

- i : . n_ 1 i .

a) Z2=(f)=e¥=ei=cos = +isin-=—+-—=0.71+0.71i
4 4 2 2

b) 2’ = (¢5)’ = &% = cos 3?7{ +isin —3-8£ =0.38 + 0.92i

c) B=(f)P=eV=¢"=-1
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FORMULA
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d) Since % € Z, 22 is not unique.

You must proceed as you did when using De Moivre’s theorem to find
roots.

If u = 7%, then u is a solution of the equation u* = z.

Let u = re'®, then r?e*® = ¢

Thus r2=1and20=g+2k7c,kez
= r =1 (since r is real)

and 0 = 1—7t6 + kn, where k is any integer.

That is, u = w, = leitekn
Now substitute successively the values 0 and 1 for k in w;.
in

Wo = €% = cos =~ + i sin -~ = 0.98 + 0.20i
1 16

wy =% = cos L 4 isin 7% = _0.98 — 0.20i
16 16

These are the two values of 2. W

In Search of Other Results using the
Exponential Form

The link that Euler made between complex numbers and the exponential
series gave birth to the theory of complex variables, an extensive branch of
mathematics that you will have an opportunity to touch upon from the
following.

1. Definition of Sine and Cosine using Exponential Forms
é’=cosO+isinf Q@
and e?=cosf—-isind @
Adding @ and Q) yields
é'+e®=2cosf or cosl= 2((" +e")

Subtracting D — Q) yields

, . , - ,
9 _ e =2isinf or sin(-= Z'(c’ )
i

[4

Thus cos 6 and sin 6, which are real, can be defined in terms of non-real
exponentials.
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DEFINITIONS

2. The Link with Hyperbolic Functions

The functions cos 6 and sin 8 are called circular functions. One link is
that the circle of equation x* + y* = 1 can be represented parametrically by
the system of equations {x = cos 0

y =sin 0

The two functions defined as follows, are pronounced ““cosh”” and “shine”.

cosh 6 = %(e" + e and sinh 6 = %(e” -ef
are called hyperbolic functions.

This name is used because the hyperbola of equation x* — y* = 1 can be
represented parametrically by the system of equations
{x = cosh 6
y =sinh 0

The definitions of cosh 6 and sinh 6 are deemed to hold also when 0 is
non-real.

In the exercises you will have an opportunity to verify the following
identities.

coshiz=cosz and sinhiz=isinz

3. The Meaning of 7"

Givenz =x +iyand w = a + ib, where x, y, a, b € R, you will have an
opportunity to demonstrate in 10.9 Exercises that one value of the complex
power of a complex number z* is

Zw — eax—b arg z ei(bx-a arg 7)

4. Complex Numbers and Calculus

If the formulas for differentiation are applied to complex numbers, it can

be shown that ;1% €)= diH (cos 0 + i sin 6).

You will have an opportunity to do this in 10.9 Exercises.

Itis hoped that, from this very sketchy introduction to the theory of
complex variables, you will be spurred on to study further this area of
mathematics in depth in the years to come.
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1.

If z = re”, find the following in exponential
form.
a7 B - A

. Write the following in exponential form

(leave numbers correct to 2 decimal places).
a) z=2+i b) w=-1-3i

. Write the following in exponential form,

using exact values.

a) u=5-5iV3 b) v=-3+3i
. Given z = 2¢%, simplify the following
a) 7 c) 7! e)
b) ZS d) Z—l f) ZZ.S
. If z=x+ iy and w = a + ib, prove that
e’ =e,

A student claims to have calculated the
value of 7 as follows.

e#"=1lande’ =1,

thus 2it =0o0ri=0.

What is wrong with this demonstration?

. Express ¢’ x ¢, where 0, ¢ € R, in terms of

sines and cosines of § and ¢ in two
different ways, and use your result to prove
that

cos(0 + @) = cos 6 cos ¢ — sin 0 sin ¢.

. Use the definitions cos 0 = —;—(e“’ +¢% and

sin 6 = El—,(e"" — ¢ to prove the following
i
identities.
a) sin’ 0= > sin 0 - L sin 36
4 4
4 1 1 3
b) cos* 6 == cos 40 + - cos 20 + =
8 2 8

c) cos’f+sin?f=1

10.

11.

12.

13.

14.

15.

16.

17.
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. Using the definitions of cos 6 and sin 0

given in question 8, verify that
a) sin(-6)=-sinf b) cos(-0) =cos 0

Use the definitions of cos ¢ and sin 6 given
in question 8 to solve the following
equations.

a) sinf=0 b) cos0=0

If z is any complex number, show that z:
always has two values, w, and w,, such that
Wy + w, = 0.

Given z = 6¢5, prove the following.

a) iz=-3V3+3i
b) || = e3>

Using the definitions of cosh z and sinh z
given on page 460, prove the following
identities.

a) cosh iz=cosz b) sinhiz=isinz

Given z=x + iy and w = a + ib, where x, y,

a, b € R, show that one value of z" is
enx—b arg z ei(bx—a arg 7)

If z = ¢*, then w = In z, called the natural
logarithm of z. If z = re”, then
w=Inz=Inr+i(y+ 2kn), k€ Z.

Use these definitions-to show that

the values of In(1 - 7) are given by

ln(l—i)=~;—ln2+ﬂzz—8k),kez

Consider a complex-valued function that
can be written in the two forms

f(0) =’ @ or f(f) = cos 0 + i sin Q.
Using the normal rules of differentiation,
find f'(0) using each of the forms @ and @
and show that these derivatives are equal.

Use the ideas on pages 454-455, and your
knowledge of the exponential form of a
complex number, to graph z = ¢, x € R.
(Use a complex z-plane and a real x-axis.)
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M A KI NG
The Visual Display of Data

René Descartes” (1596-1650) invention of coordinate geometry was the
first link established between algebra and geometry. The link is visual,
since it gives us a ‘picture’ of algebraic relations. Today, ‘graphing’ is the
general term used to indicate that any information is displayed visually,
rather than by words alone.

Graphing has made extraordinary advances since the time of Descartes.
The recent advent of computers is leading to another great increase in the
availability of visual displays of information.

Unfortunately, visual displays are not always good representations of
what they try to portray. When used for advertising purposes, only some
aspects of the data may be emphasized, while information that is not
helpful to the advertiser is either not displayed, or cleverly disguised.

Possibly one of the most eloquent graphics ever drawn is the ‘figurative
map” drawn in 1869 by the French engineer Charles Joseph Minard
(1781-1870) to describe Napoleon’s Russian campaign of 1812.

Minard started with a map of the region extending from the Niemen river
(the Russian-Polish border at the time) to Moscow. He then indicated not
only the route taken by Napoleon’s Grande Armée, but also superimposed
the size of the army as it progressed towards Moscow. (The size of the
army is indicated by the width of the shaded band.) The Russian armies
sacked, burned and deserted most cities before Napoleon could reach
them, thus cutting off supplies needed by the French. This had a
devastating effect on the Grande Armée. Of the 422 000 men who started
the campaign at the Niemen river in June 1812, only 100 000 made it to
Moscow in September.



CONNECGCTIONS

The retreat, which started on October 19, also had to contend with an
unusually cold winter. Minard shows the retreating army with the darker
band, and adds to his graphic a time scale (from October 24 to

December 7), and a temperature scale indicating degrees below freezing.
Note the immense losses suffered at the Berezina river, swelled by a
sudden thaw. The Russians had destroyed the bridge. The Grande Armée
made it back to Poland with about 10 000 men.
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Observe that six variables are represented on this single diagram: the
geographical location of the army (two dimensions), its size, its direction,
a time-scale, and a temperature scale for the retreat from Moscow. Few
graphics contain so much clearly displayed information.

Notes 1 The ““lieue commune” is about 4444 metres.
2 The Réaumur temperature scale is such that water freezes at O°R,
boils at 80°R. Thus, to convert from Réaumur degrees to

Celsius degrees, multiply by 1—8()69 or 1.25.

3 The abbreviations 8¢, 9° and X refer to October, November
and December respectively.
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Summary

First Definitions and Properties

e i*=-1. iis called an imaginary number.
®z=a+ bi, wherea € R and b €R, is called a complex number.
® g is the real part of z, or a = Re(2).
b is the imaginary part of z, or b = Im(2).
If b= 0, zisreal. If b #+ 0, z is non-real.
¢ The set of all complex numbers is denoted by C.
*NCZCQCRCC
® The complex plane is determined by a real axis and an imaginary axis,
crossing at 0.
® Complex numbers have all the properties of vectors of V,.
¢ There is no order relation in C.

Modulus and Argument—Conjugates

¢ If z = x + yi is represented by the point P, or the vector OP, in the complex
plane:
the modulus of z,|z| = |OP| = Vx* + y*
the argument of z is the angle that OP makes with the positive real axis,
S X
that is, sin(arg z) = |y_| and cos(arg 7) = E
z z
® The complex conjugates z = x + yi and zZ = x — yi are reflections of each other
in the real axis.
*|z — w|represents the distance between the points representing z and w in
the complex plane.

Properties of (

E. Equality a+bi=c+diifandonlyifa=candb=4d
S. Sum (@+bi)+ (c+di)=(a+c)+ (b+d)i

P. Product (a + bi)(c + di) = (ac — bd) + (ad + bc)i
Given any numbers z, w and u of C,

1. Closure Zz + w and zw belong to C

2. Commutativity z+w=w+zandzw=wz

3. Associativity (z+w)+u=2z+ (w+u)and (zw)u + z(wu)
4. Distributivity w+u)y=zw+zu

5. Neutral elements z+0=0+z=zand (z)(1)=(1)(2) =z

6. Inverse elements z + (-2) = (-z) + z=0 and

z(l) = (l)z =1, provided thatz # 0
z z
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Properties involving Conjugates
Consider two complex numbers z, w, and their conjugates Lw

1. z+z—2Re(z)

2. z -z =2{Im(2)

3. zz=|zf

4. Z+w)y=z+w

5. @w) =zw

6. (Z)=12

7. Division: = = 2% - 2%
ww (Wl

Polar Form

e z=a+bi=r(cos 0 +isin 0)

Cartesian form polar form
e r(cos 0 + i sin 6) = p(cos ¢ + i sin ¢) implies
r=pand 6=+ 2kn (or 6 = ¢° + 360k°), k € Z.
e 7z =r(cos 6 + i sin 0) = z = r[cos(-0) + i sin(-0)]
or z = r(cos 0 — i sin 6)

Multiplication and Division in Polar Form

o [p(cos 0 + i sin 6)][g(cos ¢ + i sin P)] = pq(cos[d + @] + i sin[0 + ¢])
The modulus of the product is the product of the moduli.
The argument of the product is the sum of the arguments.

JPlcosO+isinb) _p ..
E(cos[0 — ¢] + i sin[f —
q(cos ¢ + isin @) q( sl0 - 91 in[6 - ¢
The modulus of the quotient is the quotient of the moduli.

The argument of the quotient is the difference of the arguments.

De Moivre’s Theorem

e [r(cos 0 + i sin 6)]" = r"(cos nf + i sin nb), n € Q.
If n is not an integer, then (cos 0 + i sin 6)" is not unique.

e Given z, w € C, and n € N, the n values of z satisfying z" = w are called the
nth roots of w.

The Fundamental Theorem of Algebra

e A polynomial equation of degree n always has n complex roots.

The Factor Theorem

o If p(z;) = 0, then (z — z) is a factor of p(z).

Exponential Form

o ¢’ =reY =r(cos y +isiny),
wherez=x+iyandr=¢,x,y €R. (yinradians)
o |e*| = ¢*, and arg(e”™”) = y
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Inventory

Complete each of the following statements.

1.

2.

® N o w oA

10.
11.
12.

13.

14.

15.

16.
17.
18.

19.
20.

21.

22.

. Givenz=a + bi, Re(z) =

. Complex conjugates are

2

r=_____ .

The numbers i, 4i, iV 2 are called

- Using the real numbers 4, b and the number 7, a complex number can

be written

. The sets of numbers R and C are related such thatR______C.

The two axes of the complex plane are called

A complex number can be real, imaginary, or

If the complex numbers a + bi and ¢ + di are equal then and .

,Im(z) = ___, the complex conjugate

z= , the modulus |z| =
the argument arg 7 is such that tan(

Y= .

of each other in the of the

complex plane.

The conjugate of the conjugate of z is equal to

numbers are added like vectors of V,.

A complex number z whose modulus is r and whose argument is 6 can
be represented in polar formasz=___

If two complex numbers are equal, then their moduli are and

their arguments differby ____.

When two complex numbers are multiplied, the modulus of the
product is the of the moduli.

When two complex numbers are divided, the argument of the quotient
is the of the arguments.

De Moivre’s theorem: [r(cos 6 + i sin 0)]" = r"(___).

The fifth roots of unity are the numbers 7 satisfying the equation

A polynomial equation of degree n has
which may be equal.

complex roots, some of

Each equation in C incorporates equations in R.

The distance between the points representing z and w in the complex
plane is

If z = x + iy, then the complex number ¢? has modulus and

argument




Review Exercises

1. Simplify the following.

a) (7+2)+(3-2i)
b) (7 +2)(3 - 2i)

c) (11 —i)?
d) (1+iy
e) i’
f) i*
g) —

~i

h) (2 +1i) — (4 - 5i)

i) 4(-1+i)—-3(Q1+i)

j) (1 +6i)* — (1 — 6i)
k) ii — 1) — (2 +1i)(4+ 30)

. Express in the form a + ib, where a € R and
b eR.

1-3i 1
a e e
) i )3—41'
b) 13 f) ——
1+ 3i 2+1
8 + 51 1 1
c) —=— ——+
) T 8 i iTe—ai
d) > h) —— -
4 - 2i 9-2)" 9-2

. Simplify the following expressions.
a) (a+ bi)> — (a — bi)’

b) —— -1
a—bi a+bi
c) a+bi+ -
a + bi

. Find two numbers whose sum is 10 and
whose product is 29.

. Find the roots of the following equations.
a) 22-12z+37=0

b) Z2+4z+20=0

c¢) #2=3z-5

. Find the roots of the equation

2> — (4 + i)z + 4i = 0 by factoring in C.

. Show that a quadratic equation whose
roots are z = & and z = f§ can be written
Z?-(a+Pz+af=0.

8.
9.

10.

11.

12.

13.

14.
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Simplify (2 + i)>(5 — 12i)*2 — i)’(5 + 12i)%.

Find the number k such that

I—Z_k_"=s.

1+1

letz=2+1,
w=3-4i,
p=-5i,
qg=-6—1,
u=4.

a) Plot the points representing numbers
Z,w, p, 4, u in a complex plane.

b) Find the conjugates z, w, p, 4, and u,
and plot them in the same complex
plane.

c) Find the moduli|z|, |wl, |p|.|q] and |ul.

d) Find the arguments arg z, arg w, arg p,
arg q, arg u.

a) State the complex conjugate 7 of the
number z = a + bi.

b) Prove that the sum of a complex
number and its conjugate is always
real.

c) Prove that the product of a complex
number and its conjugate is always
real.

a) What is the argument of the number —1?

b) Describe the geometric effect of —1 as a
multiplier in the complex plane. Does
your description apply to real numbers?

Given two complex numbers z and w, use a
vector analogy to illustrate the following
inequalities geometrically.

a) |z + w|<|z|+|w|(the triangle inequality)
b) |z - w|<|z|+|w|

) lz-wl=lz|-|wl|

Given numbers z and w, use a vector

analogy to find an interpretation in the
complex plane of

1 1

a) —z+-w
2 2

b) 7+ 2w
m+n m+n
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15.

16.

17.

18.

19.

20.

21.

22.

23.

a) If z=a+ biand w = ¢ + di, prove that
|z - wl=V(@-o+ (b~ d))

b) Use a vector analogy to illustrate
geometrically that the distance between
the points representing z and w in the
complex plane is |z — w|.

Find quadratic equations in the form
az* + bz + ¢ = 0 with the following roots.
a) —iand5 —i b) a+biandc —di

a) Prove that a polynomial equation of
degree n with real coefficients always
has at least one real root if # is odd.

b) How many real roots are there if #n is
even?

By solving z* + 4i = 0, find the two square
roots of —4i. Locate these roots in the
complex plane.

G1venz——+
V2 J‘

a) calculate z*
b) plot zand z* in a complex plane

1
c) discuss the statement: fi=— 4 —i,

\/_ ey

The difference of two squares can be
factored, but the sum of two squares
cannot be factored. Discuss.

It is given that 1 + 3i is a root of the

equation 22> — 92 + 30z — 50 = 0.

a) Use this information to find all the
roots of the equation.

b) Show that the representations of these
roots in a complex plane are the vertices
of an isosceles triangle.

a) Verify that w = cos %— + i sin %
is a cube root of 1.

b) Calculate w? and show that w? is also a
cube root of 1.

Consider the numbers z = r(cos 6 + i sin )
and w = p(cos ¢ + i sin ¢), where 6 and ¢
are measured in radians. Prove thatif z=w,
thenr=pand 6 = ¢ + 2kn, where k € 7.

24.

25.

26.

27.
28.

29.

30.

31.

Consider the equation in z

Z—uz+v=0,

where u and v are known to be non-real.
Determine whether or not it is possible for
this equation to have a real root.

a) Ifz=cos 45° + i sin 45°, calculate z2.

b) Calculate (-2)%

c) Use your results to a) and b) to state the
two square roots of 7 in Cartesian form.

d) Calculate z*.

a) Verify the identity
9 cos® O — sin* § — 8 = cos? 6 — 9 sin? 0.
b) Use this identity to solve the equation
22— (3 cos O +isinf)z+2=0.

Given z = r(cos 0 + i sin 6), verify that zz = r*.

Find the modulus and an argument of
z = x + iy in the following cases.

a) x=0,y>0

b) x<0,y=0

Given z = 3(cos 67° + i sin 67°) and

w = 2(cos 123° — i sin 123°), express the
following in polar form.

a) z

b) w

c) w

d) zw

NN

e)

N N

f)

Given z = 10 +iand w = 4 — 7i, express the
following in polar form.

a) z

b) w

<)

d)

NIE T e g

e)

a) Calculate the exact modulus and an
exact argument of each of the numbers
z=-1+iv3andw=-1-1.

b) Hence state the values of z> and w*.



32.

33.

34.

35.

36.

37.

38.

39.

Use the results of question 31 to express the

following in polar form.

a) zw b) £ ) ¥
w z

a) If z=cos 6 + i sin 0, state an argument
of 2>

b) Hence find expressions for cos 36 and
sin 36 in terms of cos § and sin 0.

Calculate in Cartesian form
a) (cos 30° +i sin 30°)"
b) (cos 20° —isin 20°)]°
c) (1+)"

d) (-1 -iV3)?

5
e) (cosE+isinE)
6 6
( n ..77z)"
f) |cos— —isin—
12 12

cos 30 + i sin 360
(cos @ + i sin 6)*

Simplify

Find the modulus and argument of
cos @ +isinf
cos 6 —isin 0

a) Compare the expressions for
(cos 6 + i sin 6)’ given by De Moivre’s
theorem and the binomial expansion to
prove that
cos 50 = 16 cos’ 6 — 20 cos’ 0 + 5 cos 0.
b) By considering the equation cos 56 = 0,

prove that cos({%) cos(éﬁ) = l\/g,

10 4

a) Verify that each of the following
numbers is a sixth root of unity.

a=1+£i,ﬁ=—l+£i
2 2 2 2

b) State the six roots of the equation
Z#-1=0.

Find the fifth roots of —1 in Cartesian form
and represent them in a complex plane.

40.

41.

42.

43.

44.

45.
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a) Find a complex number equation for a
circle of centre 3 + 4i and radius 5.
b) Show that this circle passes through 0.

Find equations in x and y of the loci
described by the following, where
zZ=x+iy.

a) |z-1+3i|l=1

b) |2z +i|=5|z —i]

Describe the locus of a point that moves in
the complex plane in such a way that its
distance from —1 + 2i is half its distance
from the origin.

Write the following in exponential form,
using exact values.

a) u=-2- 2iV3

b) v=5-5i

Use the definitions cos 6 = %(e“’ +¢% and

sin 6 = Elf(eie — ¢ to prove that
i

cos’0 = 1,1 cos 26.
2 2 .

i) Solve the equation
22> - 372 + 2z + 2 = 0 given that
z=1+1iis asolution

ii) The complex numbers w and z are
related by the equation

w=2" 61’
z+ 8

and the points W and Z in the Argand

diagram correspond to w and z

respectively.

a) Given that the real part of w is
zero, show that Z lies on a circle,
and find the centre and radius of
this circle.

b) Given that the imaginary part of w
is zero, show that Z lieson a
straight line, and give the equation
of this line.

(88 H)
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46.

47.

i) By first putting z* = w, or otherwise,
find the values of z for which
*+222+25=0,z€C,
giving your answers in the form
Z=x+1y,x,y€R.

ii) Itis given that
z=2r(cos 0 + i sin ),
w=z+§,reR*;w,zeC;—n<0<m
a) Ifw=u+iv,u veR,

2 2
show that (EL—I) + (H) =1.
5r 3r
b) Find the four values of 6 where
lw|=2r,
giving your answers correct to two
decimal places.

(88 S)

Let

2 . . 271

w = cos—— + i sin——.,

5 5

a) Show that 1, w, w?, w? and w* are
the 5 roots of the equation
’=1,z€C.

b) By factorizing (z> — 1), or otherwise,
prove that
l+w+w’+w+w'=0.

c¢) Show, by multiplying out and using
parts a) and b), that
1 -w(1 -wH(1 - w’)(1 —w') =5.

d) i) Use the given expression for w to

prove that
1-wy(1-w)=4 sinzg.

ii) Work out a similar expression for
(1 -wH(1 —w?).

iii) Deduce, from parts c), d)(i) and
d)(ii), that
sin” siny—z B l\/;.

5 5 4
(88S)

48. a)

b)

c)

d)

e)

Find the complex roots of the equation

?-z+1=0

in the form p + iq, p — iq, where p, q € R.

Express the two roots obtained in part

a) in the form r(cos 6 + i sin ) and

r(cos 0 — i sin 6), where r and 0 are to

be determined, r e R*, 0 < § < 7.

Show that

E+D)E@E-z+1)=E+1).

i) Use the results already obtained to
write down the modulus and
argument of each of the three roots
of the equation
Z+1=0.

ii) Hence plot these roots on a
carefully labelled Argand diagram.

iii) Prove that the three plotted points
lie at the vertices of an equilateral
triangle.

By expressing

2?-3272+43z=(z-1>+1,

or otherwise, prove that the roots of the

equation

2(Z-3z+3)=0,

when plotted on an Argand diagram,

also lie at the vertices of an equilateral

triangle.

(86 S)

49. i) a) Find, in the form a + bi, all the

solutions of the equation
2+ 67 =20.

b) The points in the Argand diagram,
representing the three solutions
found in part a) are the vertices of
a triangle. Find the angles of this
triangle.

c¢) Show that two of the solutions

found in part a) have modulus v 10
and find their arguments.

ii) Given that 0° < 0 < 360° solve the

equation
sin 30 + sin 6 = cos 0

iii) Given that 0° < 6 < 360° solve, correct

to the nearest degree, the equation
3cosf+4sinf+2=0.

(87 H)



50. The complex number z is given by
z=x+1iy,x,y €R.

51.

a)
b)

d)

e)

Find z* in terms of x and y.

Given that 7> = 9 + 40i,

i. find the possible values of x and y,
and

ii. hence solve, for z, the equation
=9 + 40i.

On a clearly labelled Argand diagram

plot the points P and Q which represent

the solutions obtained in part b),

placing P in the first quadrant. Plot also

the point R representing z*.

Find OP and 0Q, leaving your answers

in surd form.

Determine, to the nearest degree, the

value of the angle that (OP) makes with

the positive direction of the real axis.

f) Determine, to the nearest degree, the
value of the angle POR.
(85S)
i) Solve the simultaneous equations
7+ 2w= 7}
iz+w=1
and show the solutions on an Argand
diagram.
ii) Given thatz, = ri(cos 0, + i sin 6,) and

7, = ry(cos 0, + i sin 6,), wherer, # 0,
prove that

Q = ﬁ {COS(01 - 02) + i Sin(@l - 02)}.
2 r,

Ifz, =1 +iandz2=\[§—ifindthe
modulus and argument of

1
2 and -~
22 2>

(83 H)
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52. i) a) Solve the equation 2> = 43 - 4i,

53.

giving your answers in
modulus-argument form.

b) Theequationz’ -z +3z+5=0
has z = —1 as one of its roots. Find
the other two roots, giving your
answers in the form z = a + bi.

The complex number 7 satisfies each of

the inequalities

a. —%n <argz< o,

b. |z-1|<2,

c |z-3I<|z-1}

Show, on a clearly labelled Argand
diagram, the region containing the set
of points satisfying the three
inequalities simultaneously.

(84 H)

i)

Show that the set of complex numbers
which satisfy the equation
lz+1]=2z - 1|

lie on a circle in the Argand diagram.
Find the centre and radius of this
circle.

Use the fact that

cos 50 + i sin 50 = (cos 6 + i sin 6) to
prove that

cos 50 = 16 cos® 6 — 20 cos’ 6 + 5 cos 0.
Hence, without using a calculator,
prove that

cos 18°=i 10 + 2V5

and find a similar expression for
cos 54°.

(86 H)



