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CHAPTER SEVEN

Matrices and Linear
Transformations

Many of the introductions to television programs and movies include
visual displays of transformations such as rotations and dilatations. Some
well-known examples of this are the introductions to ““The National”” and
“The Journal”” on CBC television, or the text that appears to move into
outer space in the introduction and credits of the ‘“Star Wars’’ movies.

Transformations are a part of our life in a modern society. Indeed,
transformations are involved in any form of representation—be it
drawing or painting, sculpture, playing music, etc.
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Transformations have an increasingly wide application in design
technology. Computer programs are now available to architects as an aid
in the design of elaborate structures. Engineers use similar programs to
help them develop new projects.

el

N

In this chapter, you will be introduced to a new mathematical object called
a matrix (plural matrices) that can be used as an operator to effect various
transformations.

Matrices provide a very compact way of expressing transformations.

Recall that many vector equations can be applied to 2-space, 3-space, and
even to spaces of higher dimensions. Matrix equations also have this same
universality.

This chapter will provide you with an extensive study of transformations
of 2-space, but the principles that you learn will be readily applicable to
transformations of 3-space.
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DEFINITION

DEFINITION

Example 1

Solution

1.1 Matrices

In this section, you will be taking an elementary look at matrices, their
properties, and some of their algebra. The main purpose of this chapter is
the study of matrices as operators that transform vectors. That study will
begin in the next section.

A matrix is a rectangular array of numbers.
5

Forexample,A=|:2 ! _1],B=

,C= [ 0 _4] are matrices.
5 6 0 - 7

1

The numbers composing the matrix are called elements. (They are also
known as entries or components.)

The Dimension of a Matrix

A matrix can be described by its rows or its columns of elements.
For example, in A4,

the Istrowis 2 1 -1

the 2ndrowis 5 6 0

the 1st column is ;; the 2nd column is ;; the 3rd column is _(l)

Since the matrix A has 2 rows and 3 columns,

A is known as a 2 X 3 matrix (read ‘2 by 3 matrix”’).

Alternatively, A is said to have dimension 2 x 3 (or order 2 x 3, or
shape 2 x 3).

A matrix that has m rows and »n columns is known as an m X # matrix.

What are the dimensions of the matrices B and C above?

The matrix B above is a 3 X 1 matrix.
The matrix C aboveis a 2 X 2 matrix. W
Subscript Notation

Given any matrix A, it is often useful to specify its elements in the
following way.

The element in the ith row, jth column is represented by a;.
You can also abbreviate A to A = [a;].

Thus, if A is a 2 X 2 matrix, it can be written as

A=[ay] = [all alz]

a; 4a
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Solution
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Equality

Two matrices A = [a;] and B = [b;] are equal if and only if all their
corresponding elements are respectively equal.

That is, a; = b; for all values of i and j.

(Thus only matrices that have the same dimensions can be equal.)

Given M = [ ? _i ], N= [1)1( ;y], and M = N, find the values of x, y,
-z

and z.

The elements in the 1st row, 1st column, are 3 and x.

Thus x = 3.
The elements in the 1st row, 2nd column, are -2 and 2y.
Thusy = —-1.

The elements in the 2nd row, 1st column, are —z and 11.
Thusz=-11. W

Square Matrices
A square matrix of order p is a matrix of dimension p X p.

The properties and operations discussed in the rest of this section will be
devoted entirely to 2 X 2 matrices, that is, square matrices of order 2. This
is to prepare you for the ‘matrices as operators’ that you will be using in
the rest of the chapter. Whenever the term ‘“matrix”’ is used, it will mean
‘2 X 2 matrix”’.

The Algebra of 2 X 2 Matrices

Addition and Subtraction

Given M = [a Z] and N = [W x], the sum M + N is defined as follows:
c y z
a+w b+x

men=|
c+y d+z

] Corresponding elements are added.

The difference is defined as follows:

M_N=[a—w b-x

] Corresponding elements are subtracted.
c-y d-z

The Zero Matrix
The 2 X 2 zero matrix has each element equal to zero. It will be represented
by 0,,,.
0 0
Thus 0,,, = [O 0]
The zero matrix is called the neutral element for the addition of
2 X 2 matrices because, for any matrix M,
M+ 0y,,=M and 0., +M=M.

The zero matrix is also known as the null matrix.
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Commutativity of Matrix Addition
The addition of matrices is commutative.
That is, for any matrices Mand N, M+ N=N+ M.

Proof: Given M = [a b] and N = [W x:|,
¢

d y z
M+N=[a+w b+x]
c+y d+z
and
N+M=[W+a x+b]
y+c¢ z+d

Since the addition of numbers is commutative,
a+tw=w+a,b+x=x+b,c+y=y+c,andd+z=z+d.
Hence

M+ N=N+ M.

Associativity of Matrix Addition

The addition of matrices is associative. That is, given any matrices L, M
and N,

(L+M)+N=L+ (M+N).

Thus, brackets are not required when adding matrices. The expression
L+ M + N can be used to mean (L + M) + N.

You will have an opportunity to prove this property in the exercises.

The Negative of a Matrix

Given the matrix A = [a;], then the matrix [-a;] = —-A.
~A is called the negative of A.

—A is also called the additive inverse of A, because
A + (—A) = 05, = (-A) + A.

Multiplication of a Matrix by a Scalar

Since matrix addition is associative, it seems natural to write
M+M+M=3M.

This operation is accepted, and is called

multiplication of a matrix by a scalar.

Given a matrix M = [a Z] and a real number k,
c

then kM = [ka kb]
kc kd
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Example 3 GivenM=[:; ;]andN=[(2) _i],calculate
a) -1M b) 4N c) 2M+3N
AR ] ] o M

PROPERTIES

PROPERTIES

Notice that the matrix —1M = —M.
R H R N il

c) 2M+3N=2[_4 3]+3[2 -1
-2 0 0o 1

NER AR HE

Note: A 2 X 2 matrix is in fact an ordered quadruple of numbers.
Thus, it can be considered a ‘““four-dimensional vector”. The
properties listed above go a long way towards showing that 2 X 2
matrices, together with the operations of matrix addition, and of
multiplication of a matrix by a scalar, form a vector space. You will
have an opportunity to prove this in the exercises.

Properties of 2 X 2 Matrices
2 x 2 Matrices form a vector space V,,,, that is, the following properties
hold.

Matrix Addition

Al. V,, is closed under addition: M, N € V,,, implies M + N € V,,,

A2. Addition is associative: L+ (M + N) = (L+ M) + N

A3. There is a 0, € V,,; such that for all M € Vy,,, M + 05, = M

Ad4. If M € V,,,, then there exists —M € V,,, such that M + (—=M) = 0,,,
A5. Addition is commutative: M+ N=N+ M

(These properties mean that V,,, is a commutative group with respect to
addition.)

Multiplication of a Matrix by a Scalar

M. If M € V,,,, k € R, then kM € V,,,
M2. (kp)M = k(pM), k, p € R

M3. k(M + N) = kM + kN

M4. (k + p)M = kM + pM

MS5. There exists 1 € Rsuch that IM =M
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7.1 Exercises

1. Give the dimensions of the following

matrices.

_ -1
a_| 2 6 8 1] B i .
-1 0 0 3 6

~ 4 1
7
C=

5

)
31 0 1
2. A=ajl=| -2 4 5 2
-1 0 8 -6

a) State the values of a,,, a4, a3, a3;.

b) Use the a; notation to describe the
positions of the zero elements in this
matrix.

3. Calculate the values of the variables in the
following.

o5 o)l a]

b) |3 4y]=[ 9 —8]
L5 w w-X z

4. Calculate the values of the variables in the .

following.

o3 2l Sl )

wly SI-0S-s 2

o) z[a 1]_3[9 b =[7 4
L8 =7 c 51 L8 dl
4y [*-7 4]+[0 x]=[l 7]
L 2 x x 0 3 x
_ i .
5. GivenA=[ > 0],B= 2 3 ,
) 3 0 | -1 -1
7 9 .
C= 6] calculate the following.
a) :B d) A+B+C g) 2B+ 2C
b) 34 e) %A—ZC h) 3(24)
c) 34-B f) 2(B+C) i) 64

6. Using the matrices A, B, C given in question
5, calculate the matrix X in the following
cases.

a) 2X=A
b) X —3B=0,,

c) B-X=A
d) 5X+C=3X-A

7. Show that no real values of x and y exist
such that

[3x x+y]=[ 6 7]
2y x-y 10 4
8. Using as examples any of the matrices
given in question 5, illustrate the
following.
a) the commutative property of matrix
addition

b) the associative property of matrix
addition

For the following questions, in which you will
be asked to prove various properties of 2 x 2
matrices belonging to a vector space, use the
matrices

(AN P

9. Prove property Al: if M and N are both
2 X 2 matrices, then M + N is a 2 X 2 matrix.

10. Prove property A2: matrix addition is
associative, that is,
L+ M+ N)=(L+M)+N.

11. Prove property M1:if ke R, and Misa 2 x 2
matrix, then kM is a 2 X 2 matrix.

12. Prove property M2: if k, p € R, then
(kp)M = k(pM). (This was illustrated in
parts h) and i) of question 5.)

13. Prove property M3: k(M + N) = kM + kN.

(This was illustrated in parts f) and g) of
question 5.)

14. Prove property M4: (k + p)M = kM + pM.

Your solutions to questions 9-14, together with
the proofs supplied in the text of section 7.1,
show that V,,, is a vector space.
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7.2 Matrices and Linear Transformations

In this section you will be looking at transformations of vectors in V,
using 2 X 2 matrices as operators. It will be necessary to use a different
notation when expressing vectors in component form.

R ¢ . LS
The notation v = [ ] will replace the notation v = (x,y).
y
The former notation is called a column vector or a 2 X 1 matrix.

A transformation of a vector v is a function or mapping that changes v

into another vector v’.

For example,

F:v — v wherev = [x] and v’ = [3)(
y -y

It can be equally well described in the following ways.

BB o GG o L] e

The vector v’ is known as the image of v under F.

] is a transformation.

You can also say that v is mapped onto v’ by F.

Linear Transformations
A linear transformation T of a vector space is a transformation that has
both of the following properties.

1. T+ v) = T(u) + T(v)
2. T(kv) = k[T(v)]
where u, v are vectors and k is a real number.

Check if the transformation F as defined above, namely F: [x] - [ BX], is

y -y

a linear transformation.
Let;;= [X:l and;= [W ,then;+;= [x+ W]

y z y+z
F() = [BX] F@) = [3W] i +7) = [3(x + w)] _ [3x - 3W]

-y ~z -y +2) y-z
Now F(u) + F(v) = [3" + [3‘”] - [3" * 3‘”] = F(u + )

-y -z -y -z

Thus the first property holds.

F(kv) = F(k[‘:]) - F[’Zt;] _ [3_122]

K[F(%)] = k[”’] - [3_"1:2] — F(kv)

Thus the second property also holds.
Hence, F is a linear transformation. MW
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Check if the following are linear transformations.
Example 2 g
a) G: [x]_»[x+ 2] b) H: [x]_)[x+ Zy]
y 5x y 3x -y
Solution Leth = [x] and b = l:w]’ then s + v = [x + w]
y z

y+z
o ain-[17] o[

5w
G(;+;)=[(x+w)+2]=[x+w+2]
5(x + w) 5x + 5w
vaG&y+GGyﬁ?+2]+[W+2]=[X+W+4]¢G@+3)
5x 5w 5x + 5w
Thus the first property does not hold. The transformation G is not
linear.
b) HGl) = [x + 2y] H(Y) = [w + 22]
3x -y 3w -z

H(;+;)=[(x+w)+2(y+z)]=[x+2y+w+2z:|
3x+w)-(y+2) 3x-y+3w-z
X+2y+w+ 2z
3x-y+3w-z2
Thus the first property holds.

-} )

Mo wt2z|_|kw+2kz| -
kHM] = k[3w - z] - [3kw - kz] = Hikv)

Thus the second property also holds.
Hence, H is a linear transformation. Wl

m@+m@=[ ]=H&+%

A general linear transformation in V, has the following form.
T [x] N [ax + by] _ [x’] o)

y cx +dy y
where g, b, ¢ and d are real numbers.

You will have an opportunity in the exercises to prove that T thus defined
is indeed a linear transformation.



DEFINITION

7.2 Matrices and Linear Transformations 297

Matrix Notation for Transformations
[t is customary to use matrix notation to indicate the relationship between

[x] and I:ax + by].
y cx +dy

[a b][x] _ [ax + by]

¢ dlLy cx +dy

This definition of a matrix multiplying a column vector can be
remembered in the following way.

[a b:l[x] _ [ax + by] and [a b][x] _ [ax + byil

c dllLy cx +dy c dllLy cx +dy

This is called a ““row-column’’ multiplication process. It is the basis of
multiplication of matrices in general, as you shall see in the forthcoming
sections.

You can also think of the result of this multiplication in the following
way.

dot product of the first row with [X}
y

dot product of the second row with [x]

y
Also, note that the product (2 X 2 matrix) X (2 X 1 matrix) gives a
(2 X 1 matrix).
Thus the transformation (D can be written in matrix form, as follows,

L=l L[] @
y ¢ dllyl Ly
or even more compactly like this

—

v —> Mv =, ®

where;=[x ,7=[x,],andM=[a b].
y y ¢ d

Here, the matrix M is an operator called the transformation matrix of T.

Note: The above discussion implies that a 2 X 2 matrix will always express
a linear transformation of V,.
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Example 3

Solution

Find the images of each of the following vectors under the transformation

._1:|
1
- [4] - [—2‘ - 1]
u= V= 1=
3 5 0

Sketch (as position vectors) u, v, i and their images u’, v', i’.

7=M;=[2 -l [4]=
0 1113

matrix M = [2
0

[(2)@) + (-1)(3)] _ [5]
L(0)(4) + (1)(3) 3

I R
?:M?:[Z -1 1]=[(2)(1)+(—1)(0)]=[2]
0 (0)(1) + (1)(0) 0

I

| E— ]

0 11L
y—
v 1% i
A S
B 1 —_— N
. B U u'
/(
< ;
~ 4 ’///
\\\\_ ’//
T T T T T T T IO ;u S S L N B | X
lANe

Note: The transformation affects the entire plane. The vectors u, v, and i
are position vectors of just some of the points that are transformed.

Indeed, under a transformation described by matrix M, every vector maps

onto a vector Mv.

Suppose v is the position vector OP of the point P,

and Mv is the position vector of the point P’.

Then you can say that
P maps onto point P’ under the transformation defined by the matrix M, or

M ’
P—>P.
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The Image of a Line

One of the most important properties of a linear transformation is that it
transforms a straight line into another straight line, as the following
example will show.

Given a linear transformation whose matrix is T, find the image under T
of the straight line L whose vector equation is r = ro + knm.

Recall that 7is the position vector of any point of L.

Let 7 be the position vector of any point of the image of L.
Then = T(;)

= T(ro + km)

= T(ro) + T(km) linear transformation, property 1
= ﬁro) +i[T(m)] linear transformation, property 2
=r, +km’,

where r,’ and m’ are the images of r, and m respectively.
Thus the image of L has vector equation r’ = r," + km’.

This is the equation of a straight line. W
Thus, straight lines are transformed into straight lines by linear transformations.

The following example uses the above property to show how a diagram
can portray the effect of a linear transformation.
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Example 5

Solution

Consider the unit square S whose vertices are 0(0,0), A(1,0), B(1,1), C(0,1).
Describe the image of S under the transformation defined by matrix

m-fo S

Use the following notation.

points 0ABC images 0" A’ B’ C’
position vectorsa ; Z : images?a_; 57 ?
M3='3 o"o‘='0+0'='o]=5,~=6
|0 -31L0J LO+0J LO
M;='3 o“1'='3+0'='3]=~,=ﬁ
L0 -31L0J LO+O04 LO
mb=l3 olr]-[3+0]_[ 3]=~,=0—B7
0 -31L11 LO-31 L-3
meo[3 offo]_[o+o]_] o]=;_%:
| 0 -3JL11] LOo-31 L-3

Thus the point O remains at O,
the point A(1,0) has image A'(3,0),
the point B(1,1) has image B'(3,-3),
and the point C(0,1) has image C’(0,-3).
Since straight lines are mapped onto straight lines, you know that 0A’,

A’B’, B'C’ and C’0 are straight lines.
Thus, the transformation is as shown in this diagram.

Oloo <
>

O
%)

The unit square seems to have been enlarged and reflected in the x-axis.
Recall that the transformation affects the entire plane, not just the unit

square.



1.2 Exercises

1. Check if the following are linear
transformations.

F:[x] — 3x] R: * —> 2]
vyl Lay Lyl 7 Lx
B ] )
G:["]_, "*y] s{*] > "]
vl -yl Lyl L2y
H:[x] N x+\l] [ *] o 3y]
y L Y Ly ] [ —x

2. State the matrix of each of the linear
transformations found in question 1.

_

3. Prove that the transformation T:v - Mv
defined by the matrix M = [a Z] isa
c
linear transformation.

4. Calculate the following products.
AP AL
6 -4]l4 2 0JL 1
5. Calculate the values of the variables in the
following.

SN W
b) 2 3[x]_ '7]
1 -1yl [

<) [ 2x y]-ﬂ _ —x]

|-y x1L31 Ly
a [~ 3 [x]_ —9]
Ly zJLol L 3

6. Show that there are no real values of x and

y such that [; J;]{;] = [_(1)]

7. Find the images of the following vectors
under the transformation matrix

Y

o] R L

PN N

Sketch as position vectors u, v, w and their

_ e

imagesu’, v/, w'.

8.

9.

10.

11.

12.

7.2 Matrices and Linear Transformations 301

o3 3 51
0 6 -7 1 4
find

a) Mv b) Nv c) M(Nv)
Draw conclusions.

d) N(Mv)
For the following, use the matrix M = [2 z]

6 is the zero vector [g]

i and j are the standard basis vectors, that

is, ?= [1] and7= [0]
0 1
Calculate the following.

a) M0 b) Mi
Draw conclusions.

) Mj

The straight line L has vector equation
r=ry,+ km, where

=LAl ]

r= , T = ,m=
y 1 -1

a) Find the vector equation of the image of
L under the transformation of matrix

A [ 3 1]
-2 1
b) Graph L and its image on the same set
of axes.

a) Find the coordinates of two points A
and B on the line L whose Cartesian
equationisy = 2x + 1.

b) Find the image A’ of A, and the image
B’ of B, under the transformation of
matrix M = [_3 5].

2 0

c¢) Find the Cartesian equation of the line
L’ that passes through A" and B’.

d) What is the image of L under M?

a) Consider the points 0(0,0), A(3,1) and
B(1,4). If OABC is a parallelogram,
calculate the coordinates of the point C.
Sketch OABC on a grid.

b) Find the image O'A’B’C’ of the
parallelogram OABC under the

transformation of matrix M = [_(2) ;]

c¢) Sketch O’A’B’C’ on the same grid.
Describe the nature of 0'A'B’C’.
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1.3 The Effect of a Linear Transformation

Since any linear transformation T of V, can always be represented by its
matrix, M, the expression ‘‘the transformation M”’ can clearly replace the
expression ““the transformation whose matrix is M”’.

As you have seen, linear transformations are defined for vector spaces.
You can observe their effect on points in R? as follows. By considering the
vectors of V, as position vectors of points in R?, you can examine the effect
of a linear transformation of their tips.

Thus, you can speak of linear transformations ‘of a plane’.

Some questions of the last exercises illustrated properties of matrices as
transformations. These properties will be demonstrated here.

Image of 0 by a Linear Trans[ormation

Consider the general linear transformation M = [a b]

c d
w2 2L ()-
Thus the image of 0is always 0.

Images of Parallel Lines by a Linear Transformation

Consider the two parallel lines L, and L, whose vector equations are
L;: r=a+km
L,: s=b+qgm

where L, contains a point A whose position vector is a,
L, contains a point B whose position vector is b,

rand s are position vectors of a general pointon L, and L,
respectively, and k, g are scalars.

(Notice that the lines both have the same direction vector m. The lines are
thus parallel.)

As you saw in Example 4 of the previous section (page 299), the images of
L, and L, under a linear transformation T will be
L: r'=a +km’

L,": s'=b"+qm’.
Thus the image lines will have the same direction m’, that is, they will be

parallel.

These conditions, together with the examples and exercises seen so far in
this chapter, lead to the following generalization.
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A general linear transformation of a plane may pull, push, turn, stretch, or
compress the plane, in any directions, with the two following provisos.

1. The origin does not move.
2. Parallelism is preserved.

One thing that a linear transformation cannot perform is a translation.
Indeed, a translation of the plane would violate the first proviso.

Reading and Writing a Matrix
Consider the effect of a general transformation M = [a Z:I on the
c

standard basis vectors _1"= [(1)] and 7= [‘l):l

A N R

Thus, the first column of a matrix M is the image of 7under M and the
second column of a matrix M is the image of j under M.
This beautiful property allows you to do two very useful things.

1. WRITING A MATRIX
Given a transformation, you can state its matrix as follows.

Write the first column as the image of i,

and the second column as the image of j.

2. READING A MATRIX
Given a matrix, you can determine the linear transformation it
represents as follows.

Its first column is the image of i,
and its second column is the image of j.

The following examples show how this knowledge can be applied.

State the matrix M, of the transformation that reflects the plane in the
y-axis.

y
If all vectors are reflected in the y-axis then
i= [(1)] - [—(1)]; this is the first column of M,. N
- To 0 Joogd
j= [ ] - [ ]; this is the second column of M,. —
et oL X

Thus the matrix M, = [—(1) (1)]
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Example 2

Solution

SUMMARY

Describe the transformation whose matrix is D = [(2) (2)]

Read the columns of D.

The image of?is the first column, I:;] Thus [(1)] - [é]

The image offis the second column, [(2)] Thus [(1)] - [(2)]

Thus, both 7iand fare doubled in magnitude, or ‘enlarged
by a factor of 2’.

Hence, the transformation D can be described as an enlargement or a
dilatation of factor 2. W

(See a diagram of the effect of “/D,”, in the second of the following
illustrations.)

To summarize this section, you will observe the effects of some common
linear transformation matrices, as illustrated on the figure OABCD, which
is the unit square OABC with BC produced to D so that BC = CD. (The use of
a non-symmetric figure such as OABCD gives a clearer idea of the
transformation in some cases.)

The image figure can be obtained in each case by calculating the image of
each of the points O, A, B, C, and D. You will have an opportunity to verify
these illustrations in the exercises.

Matrix Effect Transformation
I [(1) 0] Y| o g identity
1
D'D— ¢h
00| AA X
p.=|2 O . Y B dilatation,
7 lo 2 Y of factor 2
o A X
M. = -1 0 y reflection
1 o0 1 B lc'Dp in y-axis
A O X
0 1 y ) reflection
Mas = [1 0] Ap inline y = x
o1 o x




Q

0 >1
Rop =
o= ]

Px=[1 0]
0 0

When a linear transformation acts on a plane,

7.3 The Effect of a Linear Transformation 305

13
S

0 =

1. the origin does not move,
2. parallelism is preserved.

counterclockwise
rotation about O,
through 90°

one-way stretch||x-axis,
of factor 4

dilatation
of factor —1,
or reflection in O

projection
onto x-axis

null
transformation

shear||x-axis,
of factor 2

general linear
transformation

The matrix M of a linear transformation is such that its first column is the

image of i under M, and its second column is the image of j under M.
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7.3 Exercises 6.

In the following,
O shall refer to the origin (0,0).

1. Justify the diagrams of pages 304-305, at
the end of section 7.3, that show the effect
of each of the following transformations.
I, D,, M,,

Mys, Roo, Sxar
D-ll le 02)(2»
H,;, and G.

2. Describe in words the effect of the 7
following transformations, shown on
pages 304-305.

the identity transformation I = [(l) (1)]

the null transformation 0,,, = [0 0

3. Write the matrix that corresponds to the 9
given transformation by finding the image
of i and the image of j.

a) adilatation of factor 3

b) reflection in the x-axis

c) counterclockwise rotation about O
through 270°

d) counterclockwise rotation about O
through 180°

e) projection onto the y-axis

f) reflection in the liney = —x

4. By finding the images of the points O,
P(1,0), Q(1,1), R(0,1) sketch the effect of
each of the transformations of question 3
on the unit square.

5. Compare your answer to question 3d) with

-1
0

7.3 as a “dilatation of factor —1” or a

“reflection in 0.

Draw conclusions.

the matrix D_, = [

0 0] 8.

. The transformation matrix S = [(1) 2] is

(1)], listed in section 10.

By reading the columns of the following
matrices, describe the associated
transformation in each case.

a0 © F=[1 o]
L0 1] 4 1
g_[05 0 ] G=[1 0]
L0 05 1 0
c-[1 3 H=[ 0 —3]
0 1] -3 0
p_|~2 o] =[1 o]
L 0 -2 0 1
E_[4 0 J=[—1 0]
[0 1] 0 0

. By finding the images of the points O,

P(1,0), Q(1,1), R(0,1) sketch the effect of
each of the transformations of question 6
on the unit square.

What is the image of the point O under the

transformation matrix M = [W X]?
y z

1
known as a horizontal shear of factor 2.
Some of the properties of a shear will
appear as answers to the following
questions.
a) Find the images of (1,0) and (a,0),
where a € R.
b) Describe how any point of the x-axis is
transformed.
c¢) Find the images of (0,1) and (a,1),
where a € R.
d) Describe how any point on the line
y = 1 is transformed.
e) Find the image of the point (0,b), where
beR.
f) Describe how any point on the y-axis is
transformed.

Show the effect of R = [cos 30" -sin 30 ]

sin 30°  cos 30°
on the unit square.

Describe the transformation

associated with the matrix R.



11.

12.

13.

Write the matrix of the following

transformations.

a) astretch parallel to the x-axis
of factor 5

b) adilatation of factor i

c) atwo-way stretch,
of factor 2 parallel to the x-axis, and
of factor 3 parallel to the y-axis
d) aperpendicular projection
onto the liney = x
e) ashear parallel to the x-axis
of factor -1
f) ashear parallel to the y-axis of factor 5
g) areflection in the y-axis followed by a
dilatation of factor 4

Sketch the effects of each of the
transformations of question 11 on the unit
square.

Write the matrix of a counterclockwise
rotation about the origin, through 45°.

y
g
' C , B
- Ay L ——ase
o] A X

14. a) Verify that the following four points

determine the vertices of a trapezoid.
A(-1,2), B(9,0), C(5,4), D(0,5)

D
Cc

B

b) Transform this trapezoid with the
matrix M = [2 _3]
2 5
c¢) Show that the images of the parallel
sides of the trapezoid remain parallel
under the transformation.

15.

16.

17.

18.
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Consider the straight lines L, and L, with
the following vector equations.

i3]
si-(32]

a) Explain why the lines L, and L, are
parallel, and graph them on the same
set of axes.

b) Find the vector equations of the images
of L, and L, under the transformation

i

c) Show that these images are also
parallel.

Given the matrix S = [’(; 0], where k is a

k

positive scalar.

a) Find the image under S of the unit
square.

b) Calculate the image under S of a general

o
vectorv=[ ]
y

c¢) Describe the image under S of the entire
plane.

Repeat question 16 using the matrix
. [2 3]
6 9

In question 5 you determined that the
following transformations in 2-space are
equivalent.

A. adilatation of factor —1

B. areflection in O

Consider also another transformation

C. arotation through 180° about O

Is this transformation equivalent to A and
to B?

Discuss whether or not these
transformations are also equivalent in
3-space.
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Solution

PROPERTY

7.4 Rotations and Reflections

In this section you will learn about two important linear transformations,
namely rotations, that you will be using in chapter 8, and reflections. You -
will also make further observations on linear transformations in general.
These should help you to solve transformation problems with more
assurance.

Find the matrix Ry of the transformation that rotates the plane
counterclockwise about the origin O, through an angle of 6.

If all vectors are rotated counterclockwxse about O, through 6, then this
will also be true | for i and ]

Let 1 = OA and ] ﬁ

Let the i image of of i be OP that is, let OA — OP. Under a rotation, lengths are
invariant, so |0P| =] 1| =1.

Thus OP = [OC] _ [cos 0]
Ccp sin 8

s'i'h"é

9rc
Io) ‘cose

A X D ) 1
Similarly, let the image of 7be b—é, that is, let ﬁ - 56
Then the angle be between OQ and i is (90° + 6).

Note also thathQl |]| =1.

Thus 00 = [OD] _ [cos (90° + 0)] _

[ sin [90° -~ (90° + 0)1]
DQ sin (90° + 6)

| cos [90° — (90° + 6)]
_[sin (—0)] '
| cos (—0)
[ —sin 0]
| cos O
(The formulas on page 541 have been used.)

Thus, T—» [C?S 0] and 7—» [
sin 6

—sin 0]
cos 0]
—sin 0]

cos 0

cos 0

Hence the matrix Ry = [ .
sin 0

This is known as a positive rotation through 6. (A counterclockwise
rotation is a positive rotation.) W
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Find the matrix My of the transformation that reflects the plane in the line
L, where L passes through the origin and makes an angle ¢ with the
positive x-axis.

If all vectors are reflected in L, then this will also be true for i and j.

To obtain the image of any point D under a reflection in L, construct the
perpendicular DG from D to the line L. Extend this perpendicular on the
other side of L S0 | that DG = GE. E is then the i he image of D.

Let the image of i be OR that is, let 0A > OR. Under a reflection, lengths

are invariant, so |0R| =| 1| = 1. Also, the right triangle OAH, where H is the
foot of the perpendicular from A to the line L, is congruent to the triangle
ORH. Hence, the angle between L and OR is the same as the angle between
0A and L, namely ¢.

Thus, the angle between OR and iis 2¢.
Hence, —O—i = [cos Z(b]

sin 2¢
y E y

H\ %G L B ¥ L
o —~H %p i R
(e :

(o] — A X ®) 90 -¢ X
f N

I s

Similarly, let the image of j be OS, that is, let OB — OS.
Then the angle between L and OS is equal to the angle between OB and L,
namely 90° — ¢.
Hence, the angle between OS and i is —([90 — @] — ¢) =
Thus 08 = [c?s 20 - 90:)] cos [—(90: - 2¢>)]]
sin (2¢ - 90°) 1 Lsin [-(90° - 2¢))]
_[ cos[90° - 2¢]]
L —sin [90° - 2¢)]

24 - 90°).

_[ sin Zd)]
| —cos 2¢
(The formulas on page 541 have been used.)
Thus, i [cos 2¢] andf» [ sin 2¢]
sin 2¢ : —cos 2¢
Hence the matrix My = [C?S 26 sin 2(15]
sin 2¢p —cos 2¢

Notice that the slope of the L is tanc.
Thus, L has a Cartesian equation y = (tand)x. W
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cos 2¢  sin 2¢
sin 2¢6 —cos 2¢
cos 0 —sin 6

sinf cos 0
careful not to confuse them. A reflection matrix, like My, is a
symmetric matrix. Its elements are symmetric about the leading
diagonal.

That is, it is of the form [: Z]

Note: The matrix My = [ ] is very similar to the rotation

matrix of Example 1, that is, Ry = [ ] You must be

leading diagonal
The observations that follow should help you to make this distinction.

The Size and Orientation of a Transformed Figure

Consider the effect of the general linear transformation M = [a Z] on the
¢

unit square OPQR.

Recall that under M, parallelism is preserved and O does not move. Thus
the image of the square OPQR will be a parallelogram OP’Q’R’, where P’ is
the image of P, Q' is the image of Q, and R’ is the image of R.

or

R Q' Q'
R R
P R’
ol P olor
O’P'Q’'R’ has same O'P'Q’'R’ has opposite
orientation as OPQR orientation to OPQR

Reading the columns of M gives oP = [a]’ OR = [Z]
c

Recall that the area of a parallelogram whose adjacent sides represent the

vectors # and v is|uXxv|.

However, the cross product is not defined in V,. In order to calculate the
area of the parallelogram OP’Q’'R’, you must imagine that it lies in the
xy-plane of a 3-space coordinate system.

Then the vector OP’ = (a,c,0), and the vector OR’ = (b,d,0).

Thus the area of OP'Q’'R’ is

|OP" X OR’| =|(a,c,0) X (b,d,0)| = |ad — bc|

Since the area of the unit square is 1, the area of the transformed figure is
changed by a scale factor |ad — bc|.

The quantity (ad — bc) is known as the determinant of [“ z :I,
c

that is, the determinant of M, or det(M), or |[M|.
Det(M) can also be denoted by “ Z‘
c
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Notice that the original unit square OPQR is read counterclockwise. Also, from

the diagram, the slope of OP’ is £, and the slope of OR’ is g
a

If OP’ and OR’ are in the first quadrant, and g > £, then OP'Q'R’ will be
a
read counterclockwise.

Figure OPQR and figure O'P'Q'R’ have the same orientation.

Observe thatg >S=ad>bc =>ad-bc>0= det(M) > 0.
a

Similarly, you can see that if det(M) < 0, OP’Q'R’ will be read clockwise.
Figure OPQR and figure O'P’Q’R’ have opposite orientation.

This can be extended to all four quadrants.

Calculate the area and describe the orientation of the image of the unit
square under each of the following transformations (taken from the
examples of the last section).

D2=|:2 0] Mv:[*l 0] sz[l 0]
0 2 ’ 0 1 0 0

Note that the area of the unit square is 1.
You can find the area scale factors by calculating the determinants.
det(D;) = (2)(2) — (0)(0) = 4

The image is enlarged 4 times.
Since 4 > 0, the image retains the original orientation.

(D, is a dilatation of factor 2.)

det(M,) = (-=1)(1) - (0)(0) = —1.
The area of the image is unchanged.
Since —1 < 0, the image has the opposite orientation.

(M, is a reflection in the y-axis.)

det(P,) = (1)(0) - (0)(0) = 0.

The image has zero area. Orientation is not defined for a figure of zero
area.

(P, is a projection onto the x-axis.) W
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SUMMARY

Calculate the area scale factor and describe the orientation of the
transformations described by the following.

cos § —sin 9]

a) the rotation matrix Ry = [ .
sinf  cos 6

b) the reflection matrix My = I:Cf)s 2 sin 2¢]
sin 2¢p —cos 2¢

To simplify the determinants in this question, use the Pythagorean
trigonometric identity of page 542.

a) det(Ry) = cos’d — (—sin’f) = cos’d + sin’6 = 1. Note that 1 > 0.
Thus a rotation does not alter the area or orientation of any figure.

b) det(My) = —cos’2¢ — sin’2¢ = —(cos*2¢h + sin’2¢) = —1. Note that —1 < 0.
Thus a reflection leaves the area invariant, but reverses the
orientation of a figure. W

These results can be summarized as follows.

a

IfM=[
c

z], then its determinant, det(M) = ad — bc.

If a figure of area S is transformed by matrix M, the area of the image
figure is |det(M)|S.

|det(M)| is called the area scale factor of matrix M.

If det(M) > 0, the image retains the original orientation;
if det(M) < 0, the image acquires the opposite orientation.



1.4 Exercises

In the following, all rotations are about the
origin O, counterclockwise through the
indicated angle, unless specified otherwise.

1. Write the matrix of the rotation through the
given angle in each case, giving entries
correct to 2 decimal places.

a) 40° c) 90° e) 200°
b) 80° d) 110° f) 342°

2. Write the matrix of the reflection in the line
y = (tan @)x for the following values of ¢,
giving entries correct to 2 decimal places.
a) 20° b) 45° c) 100°

3. a) Describe the similarities and
differences in your answers to la) and
2a).

b) By calculating the determinant of each
of these two matrices, show how you
can distinguish between a rotation and
a reflection.

4. Repeat question 3 by comparing your
answers to le) and 2c).

5. Write the matrix of the rotation through the
given angle in each case, giving exact
answers. (Use the trigonometric tables on
page 543.)

a) 45° b) 60° c) 120°

6. Write the matrix of the reflection in the line
y = (tan ¢)x for the following values of ¢,
giving exact answers. (Use the
trigonometric tables on page 543.)

a) 22.5° b) 60° c) 150°

7. Given that Ry represents a counterclockwise
rotation about O of §°, compare R;y, and
R_¢. Explain.

8.

10.

11.

12.
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Given that M, represents a reflection in the
line y = (tan ¢°)x, compare M;, and M;,,.
Explain.

. Calculate the determinant of each of the

following matrices. Hence describe the area
scale factor and the orientation of the
associated transformations.

the identity transformation I = [(1) (1)]

the null transformation 0,,, = [g g]

The following are the matrices whose

effect you described in questions 6 and 7 of
7.3 Exercises. Calculate the determinant in
each case, to describe the area scale factor
and orientation of each transformation.

2[00 F=[1 o]
Lo 1] 4 1
g_|05 © ] G=[1 o]
Lo 05 1 0
c-[1 3 H=[ 0 —3]

[0 1] -3 0
p-[~2 0] 1=[1 o]
L 0 -2 0 1
= 9 2
E_[4 0 J=[—l o]
[0 1] 00

Find k if the determinant of [f z] equals

a) 5 b) -1 c) 0

The transformation matrix S = [(1) I;],

where k is any real number, is a horizontal
shear of factor k.

Calculate det(S). Hence, describe the area
scale factor and the orientation of a figure
transformed by a shear.



314 Chapter Seven

13.

14.

15.

16.

-k 1
k¥ -k
the area of a figure transformed by matrix M?

Given M = [ ], find det(M). What is

Sketch on a grid the right triangle whose
vertices are O, P(3,0), Q(0,2).

a) Calculate the area of the triangle OPQ.
b) Transform O, P, Q into their images 0’,
P’, Q' by the matrix M = [_;1 ;]

¢) Calculate the area of 0'P'Q’.

d) Compare the orientation of OPQ and
0'PQ.

Use the information of question 14 for the

following.

By calculating the dot product OP-0Q,

prove that the angle POQ is 90°.

Calculate the angle P'O’Q’ by finding

the dot product 0'P’-0'Q’.

c) Areright angles preserved under linear
transformations?

a)

b)

a) Show that the clockwise rotation through

a about O is represented by the matrix
o [ cosa sin a]
-sina cos «

b) Verify that det(C) = 1.

17.

18.

In the right triangle shown, tan 6 = 3.

4

]
4

Give all your answers to the following in

fractional form.

a) Calculate sin 6 and cos 6.

b) Write the matrix of the rotation through
angle 0.

c¢) Write the matrix of the reflection in the

liney = (tan %9)x.

Describe the following transformations.

(4 3 143
k=5 51|; 2 2
3 4 31
| 5 5 Ty 2
4 3 512
M=| 5 5 _| 13 13
3 4 12 5
| 5 5 13 13
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1.5 Inverse Transformations

So far you have learned how to carry out various linear transformations by
using their matrices.

Is it possible to find a transformation that returns the plane to its original

A M —
status after it has been transformed? That is, if v—> v/, can a
_l N

transformation M~' be found such thatv' = v? Does a transformation
always have an inverse? If an inverse exists, what does its matrix look
like?

In this section, these questions will be investigated.

First observe the following examples.

Given A = [i _i ], try to find a matrix D to reverse the effect of A.

x
y

’

Consider the vector v = [
y

] and its image under A, v’ = [x ]
Then Av =v'.

Now if D exists, it will transform v’ back to v,

—_

thus Dv' = vorv=Dv'.

Thus, if you can find [X] in terms of [x, ],

y y
and express your result as a product D[X, ],
y

you will have the answer.

NowA;=7$[3 —1][H]
1 11Ly y

_ {3x —y=x @
x+y=y Q@
Eliminating y: @ + @ gives 4x=x"+y sox = ix’ + Zy'
e e . . 1.,, 1, ’ 1.,,3.,
Substituting into Q) gives —x' + =y’ +y=y ory=——x"+>y
4 4 4 4
11 11
Thus [x] =1 4 4 I:X, ] Hence thematrixD=| 4 4 |
y 13 by 13
4 4 4 4

D is called the inverse of A and is written A™".
Notice that det(4) = (3)(1) — (-1)(1) = 4, and that the inverse can also be

written A = l[ ! 1]; det(Aa™) = L
41 -1 3 4
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FORMULA

Observing this form of A™' demonstrates the following facts, that you will
prove later.

1. The numbers along the leading diagonal [3 1] of A
are exchanged in A™'.

2. The numbers along the second diagonal [ i -1 ] of A
are multiplied by (-1) in A™".

L Also, det(a™) = —1

3. The scalar coefficient of A" is e
det(A) det(A)

Given the matrix B = [i ;I:I, try to find a matrix B™' that reverses the
effect of B.

Proceeding as in Example 1, try to obtain [x] in terms of I:x,]

i e Wb
Bv=v = =",
1 21Ly y
_ {Zx +4y = x @
x+2y=y" Q@
Eliminating y: @ — 2 x Q) gives Ox = x" — 2y’.
But x” and y’ might be any numbers so that, in general, x’ # 2y’. Hence no
value exists for x. Thus no matrix B exists. Il

In this case, matrix B is called non-invertible, or singular.
Its transformation is also called singular.

Note: The determinant of B is (2)(2) — (4)(1) = 0, that is det(B) = 0.

The matrix M = [a

Z] has an inverse M~' if and only if det(M) # 0;
¢

then the inverse of M is M~ = — [ d —b]
det(M) —C a

If det(M) = 0 the matrix M (and its transformation) are known as singular;
no inverse exists.

You will have an opportunity to derive the general formula for M™! in the
exercises.
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Find the inverse, if it exists, of each of the matrices

1
35 1,
a) A= [ ] )
b) B=
4 6 ) I )
a) det(A) = (3)(6) — (5)(4) = -2 # 0.
Thus A has an inverse A™.
1[ 6 -5 -3 2
By the formula, A™' = _.[ ] - 2
-21-4 3 2 3
2

b) det(B) = (%)(6) —(-1)(=3) = 0.

Thus, B is a singular matrix. No inverse for B exists. W

Geometric Significance of Singular Transformations
The previous discussion leads to the fact that a matrix M is singular, that
is, non-invertible, if its determinant is zero.

Since the area scale factor of a linear transformation of matrix M is |det(M)|,
the area of any figure transformed by a singular matrix is zero.

Look back at the examples of common transformations in section 7.3
(pages 304-305). The following transformations have zero determinants.
P, (projection onto the x-axis)

05; (null transformation)

You can see from the diagrams that both these transformations ‘squash’
the plane onto a single line or a single point. V, is said to ‘lose some
dimension’ by a singular transformation. When V, loses some dimension
by a transformation, that transformation cannot be reversed.

M= [a Z] has an inverse M~ if and only if det(M) # 0;
¢

then the inverse of Mis M~ = __l_[ d —b]
del(M) —C a

If det(M) = 0 the matrix M (and its transformation) are known as singular;
no inverse exists.

The area of any plane figure transformed by a singular 2 X 2 matrix is zero.
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1.5 Exercises

1. Which of the following are singular?

S SoeT
a-[0 0 | © 3]
[0 1] -3 0
g_[05 0 ] =1 o]
L0 05 [0 1
c=[1 3 y=|cos30" —sin 300]
L0 1] | sin 30 cos 30
D= _(2) (2’] 4 3
- A k=] 2 3
=% 0 _3 4
Lo 1] | 5 5
o[l 0 1| 4 3]
(4 1] -3 4
G=[1 0
1 0l

2. Find the inverse of each of the invertible
matrices of question 1.

3. By finding the images of the points 0,
P(1,0), Q(1,1), R(0,1), sketch the effect on
the unit square of each of the inverses of
the transformations of question 1 (when
they exist).

4. Calculate the area scale factor and describe
the orientation for each of the inverses of

the transformations of question 1 (when
they exist).

5. a) Which of the matrices in question 1
describe rotations?

b) Conjecture a formula for the inverse of

the rotation matrix

R [cos 0 —sin 0]
" lsin0 cos 6

6. a) Write the matrix R of a rotation,
counterclockwise about 0, of ¢,
b) FindR™.

¢) Explain your answer to b) in terms of a

rotation about O of —¢°. (That s, a
clockwise rotation of 6°.)

7. Find the value of k if the matrix

M= [5 _2] is singular.
k -1

10.

11.

12.

14.

15.

. Find the inverse of S = [:) 2]

. Find the inverse of the identity matrix

I= [(1) (l)] Explain your answer.

1
(the horizontal shear of factor 2).
Describe this new transformation.

Consider the matrix M = [Z 1(3)]

a) Find the inverse matrix M.
b) Find the image v/ of the vector v = [_;]
under M.
c) Verify that M™'v' = v.
Repeat question 10 with matrix
M [6 —1]
5 2
By following the procedure of Example 1

in the text, page 315, prove that the inverse
of the matrix

M=[a b]isM_l= 1 [d —b]
c d detM)L—< a

What happens if det(M) = 0?

. M is an invertible matrix. Calculate

det(M) x det(M™).

Use M = [a z], where det(M) # 0, to prove
¢
the following statement.

PN

If v is any vector, then Mv =0 = v = 0.
(This proves that only the zero vector is
transformed by an invertible matrix into
the zero vector.)

The matrix S = [ 3 _1] maps the entire
12 -4

plane onto a single straight line.
a) What is the image under S of a general

vector ; = [X]?
y
b) What is the Cartesian equation of the

image line?
c) Does S have an inverse? Explain.
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7.6 Composition of Transformations
and Multiplication of Matrices

To ‘compose’ two transformations means to make one of the
transformations follow the other. You then have a ‘‘composite
transformation”. The same term is used for functions. In this first
example, you will observe the effect of the composition of two
transformations. Later you will see how this composition is linked to the
multiplication of matrices.

Consider the two transformations whose matrices are
P=[—1 o] and Q=[o —1]
0 1 1 0
and the general vector V= [X
a) Describe each transformatlon
b) Calculate Pv = vl, then Q(Pv) = vz

¢) Calculate Qv =v’, then P(Qv) _—
d) Describe the transformations that take v to v,, and vto v"’.

[

a) Read the columns of P: i — [_(1)],
Thus 1 goes to —z, and j does not move.

Both i iand j are reflected in the y-axis.

P therefore represents a reflection in the y-axis.

Read the columns of Q: _z:—> [(1)], 7-» I:_(l)]
Thus 7goes to 7, and fgoes to —1i.

Both i and j are rotated counterclockwise through 90°.

Q therefore represents a counterclockwise rotation about O through
90°. (This will be abbreviated to “rotation of 90°.)

b) P$=[‘1 0]—x]=[‘xw=$
o ulylTLylm
ary =ewy=|? | 7¥|- _y] v

y L —X

o [t -2

P(Qv) = P(V') =

o[ -»] _y] _
1 X L x
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[
i
§
i
i
¢
i
§
i
[l
i

R,
v?

d) Observe the figure.
In b), vis reflected in the ¥ axis to vl

v, is then rotated by 90° to v,.
Thus, Vis reflected in the y-a axis THEN rotated by 90° to vz

In ), Vvis rotated by 90° to v'.
v is then reflected in the y-axis to v
Thus, v is rotated by 90° THEN reﬂected in the y-axis to v, m

Note 1 Doing P first, then Q, gives a different result from doing Q first

then P. N
2 Writing Q(Pv) means that P acts first, then Q

This example shows that the composition of transformations is
non-commutative. (Beware! ““Non-commutative”” does not mean ‘“‘never

commutative”. There are examples of transformations that do commute, as

you shall see later.)
If you now compute a ‘matrix product’ QP by the same dot product

row-column’ process you used to multiply a 2 X 2 matrix and a 2 X 1 matrix,

you have
(row 1):(col 1) (row 1)+ (col 2)
[ | |
QP=[0 —1][—1 0]= ©)(-1) + (=1)(0)  (0)(0) + (~1)(1)
L 0lL o1 (M) +(0)(0)  (1)(0) + (0)(1)
(row ZT)-(C()I 2)

_(row 2)-(col 1)

-0 _1]=R
-1 0

You obtain a 2 X 2 matrix R that will transform v directly to v,, as follows

w-eo-[ 3 -[2]-
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Note: The calculations Q(P;) and (QP); lead to the same result.
That is, Q(Pv) = (QP)v

This is one of the manifestations of the associativity of matrix
multiplication, which will be discussed later in this section.

Similarly, PQ can be computed.
PQ = [—1 0][0 —1] _ [o 1] s
0 114L1 0 1 0
S will transform ;directly to 177, as follows.
si-eoi=[1 o [[}]-[2]-
1 OdLy b
Recall that ;2 * 7’: that is, the image by QP was different from the image

by PQ.
Hence it is not surprising that the matrix QP # matrix PQ.

The Multiplication of 2 x 2 Matrices

Given a matrix P = [a Z] and a matrix Q = [W x], then the product PQ
c y z
is defined as follows.
po=|9 b][w x]
¢ dlly =z

(row 1 of P)-(column 1 of Q)  (row 2 of P)-(column I of Q)

l !
_ aw + by ax + bz
cw +dy cx+dz

n 1
(row 1 of P)«(column 2 of Q) (row 2 of P)-(column 2 of Q)

The matrix PQ represents a transformation that is the result of doing
Q first, then P.

Matrix multiplication is non-commutative.
However, there are cases of matrices that commute.

1 0]. . . .
For example, recall that I = [0 1] is the identity matrix.

The transformation I leaves the plane unchanged.

Thus, if A is any matrix, then Al = IA = A.

Hence, I commutes with any matrix.

Also, since any invertible matrix M has an inverse M™' that undoes the
effect of M,

MM'=M'M=1

Hence, a matrix commutes with its inverse.

You will have an opportunity to verify these properties in the exercises.
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0 2
a) Describe the transformations whose matrices are M and D.
b) Calculate the product MD, and describe its transformation.
c) Calculate the product DM, and describe its transformation.
d) State whether or not the transformations M and D commute.

Examp’le 2 Consider the matrices M = l:(: (1)] and D = [2 0]

Solution a) For M:i—j and j— 1.
Thus M is a reflection in the line y = x.
For D: ?—»27 and 7—»2}:.
Thus D is a dilatation of factor 2.
b) MD = [o 1][2 o] _ [o 2]
1 0llo 2 2 0
The plane is dilated first, then reflected.
c) DM= [z o][o 1] _ [o 2]
0 21L1 O 2 0
The plane is reflected first, then dilated.
y y

MDV

d) The order in which the transformations M and D are performed does
not alter the final image. These transformations, as well as their
matrices, do commute. Wl

The Associativity of Matrix Multiplication

The associative property for matrix multiplication holds. That is,
given any 2 X 2 matrices A, B, and C,

(AB)C = A(BC).

You will be asked to prove this property in the exercises.
Multiplication of Matrices of Different Dimension

Recall that for any 2 X 2 matrices P and Q, and any column vector
(thatis, a 2 X 1 matrix) v,

PROPERTY  Q(Pv)=(QP)v.

This seems to indicate that matrix multiplication is associative even in
cases when the matrices are not all of equal dimension.
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Indeed, it is valid to ‘multiply’ any two matrices for which the dot product
‘row-column’ process is possible. This will be true whenever the number
of elements in the rows of the first matrix is equal to the number of
elements in the columns of the second matrix. This leads to the following
general results, which will not be proven.

The product AB of two matrices is defined only if A and B have dimension
as follows.

A has dimension m X n, B has dimension n X p.

Then the product AB has dimension m X p.

Whenever the product of matrices is defined, the associative property
holds.

The Determinant of a Composite Transformation

The determinant of a product of matrices is equal to the product of the
determinants, that is, given matrices P and Q,
det(PQ) = det(P) x det(Q)

In the exercises, you will have an opportunity to prove this property. An
important consequence of this property is demonstrated in the following
example.

Calculate the area scale factor of AB where

A=[2 1]andB=[_4 3]
-4 -2 5 1

Note that det(4) = (2)(-2) — (1)(-4) = 0.
Hence, det(A) X det(B) = 0, or det(AB) = 0.
The transformation AB is singular.

Thus the area scale factor is zero. W

Example 3 shows that
a singular transformation composed with any other transformation gives
a singular transformation.

Given a matrix P = [a Z] and a matrix Q = [W x]’ then the product PQ
c y z
is defined as follows.
PQ = [a b][w x] _ [aw +by ax+ bz]
c dlly z cw+dy cx+dz
The matrix PQ represents a transformation that is the result of doing

Q first, then P.
(This composition of transformations is non-commutative.)

In general, QP # PQ (Matrix multiplication is non-commutative.)
(PQ)R = P(QR) (Matrix multiplication is associative.)
det(PQ) = det(P) x det(Q)
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1.6 Exercises

1. Given

L=[1 2]’M=[4 —1]’N=[ 6 5]’
3 4 5 7 -2 0
calculate

LM, ML, LN, NL, MN, NM.

The following matrices are to be used in
answering questions 2-10.

a0 o
:0 1
p_|05 © ]
0 05
C= 1 3
:0 1:
g_[4 0
[0 1]
c=[1 ©
1 0]
=[5 1)
0 1
e [Cos 30° —sin 3o°]
sin 30°  cos 30°
K=[cos 60° —sin 60“]
sin 60°  cos 60°

2. List which of the transformations defined
by the above matrices fit the following.
a) singular
b) identity
c) dilatation
d) shear
e) rotation
f) areascale factor=1

3. a) Calculate the products IB, IC, IK.
b) Explain your results.

4. a) Calculate the products CE and EC.

b) Show the effect of CE and of EC on the
unit square, and describe each of these
composite transformations.

c) Calculate the area scale factor of CE and
of EC.

10.

11.

12.

13.

. a) Calculate the products BJ and JB.

b) Describe each composite
transformation. What is special about
these?

. a) Calculate the product JK and KJ.

b) Describe each composite
transformation. What is special about
these?

. a) Calculate the products AK and GK.

b) Calculate the area scale factor in each
case. What is special about these
composite transformations?

. Given a matrix M, the notation

M =MxXMXMX..... XM,
~ ntimes

a) Calculate I* and A%

b) Explain your results.

. a) Calculate B> and E%.

b) Show the effect of B> and E* on the unit
square, and describe each composite
transformation.

a) Write J using exact values (see page
543). Calculate J?, J?, J°.
b) Explain your results.

1=[1 O]is called
0 1

the 2 x 2 identity matrix, or unit matrix.

- -

a) Show that for any vector v, Iv = v.
b) Show that, for any 2 X 2 matrix A4,
Al = IA = A.

Consider the matrix M = [i :]

a) Find the inverse matrix M.
b) Calculate MM~ and M™'M.
c¢) Draw conclusions.

Given M = [a Z] and its inverse
c

Jy— [ d _b], where ad — bc + 0,
ad — bc| —¢ a
show that MM'and M'M = 1.

(I is the identity matrix [(1) (1)])



14.

15.

16.

17.

18.

19.

20.
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Consider the matrices A = [;’

gL [ 2 1]
17L-5 6
By calculating AB and BA,
show that A and B are inverse matrices.

_l]and
2

1 0o 2
Repeat question 14 forA=| 2 -1 3
4 1 8
-11 2 2
andB=| 4 0 1
6 -1 -1
Given three matrices

S e A i
c d r s y z
a) Calculate the following products.
KL LM (KL)M K(LM)
b) Hence show that matrix multiplication

is associative.

a) Using the matrices of question 16,
calculate the following.
det(K); det(L); det(KL).

b) Hence show that
det(KL) = det(K) x det(L)

Using the matrix K of question 16, where
det(K) + 0,

a) calculate K™,

b) show thatKK'=Tand K'K =1I.

¢) Do the matrices K and K~' commute?

A transformation has matrix M = [(1) (1)]

a) Show the effect of M on the unit square,
and describe M.

b) According to your description, what
would happen if M operated twice?
three times? four times?

c) Confirm your answer to b) by
calculating M?, M?, and M*.

Repeat question 19 with the matrix

B

21.

22.

23.

24.

The matrix T = [C?S 20 sin 20]
sin 20 —cos 260
represents a reflection in the line

y = (tan O)x.

a) What would be the effect of applying T
twice?

b) Confirm your answer to a) by
finding T2

The matrix R = [C?s 0 -sin 0]

sinf cos @

represents a counterclockwise rotation of

angle 6 about 0. .

a) What would be the effect of applying R
twice?

b) By calculating R?, obtain expressions
for cos 260 and sin 26 in terms of cos
and sin 0.

Given the matrices

[ 3 4
P= 5> 5 |and
4 3
_ 3 4 .
Q= 5 5
4 3

a) Describe each transformation, and
hence describe the composite
transformation PQ.

b) Confirm your answer by calculating the
product PQ.

c¢) What is the inverse of matrix P? of
matrix Q?

A=[2 5]andB=[1 —1]
1 3 1 1

a) Calculate AB and BA.
b) Calculate the inverse matrices A™
and B
c) Calculate A™'B".
d) Calculate (A™'B™")(AB) and (A™'B")(BA).
e) What is the inverse of (A'B™")?
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M A KI NG
Similarity and Folding

The golden ratio, or golden section, is a well-known ratio that occurs in more
than one branch of mathematics. It has also been used traditionally in
architecture as the ‘perfect rectangle’.

A w D
L
B C

A rectangle ABCD is said to be ‘golden’ if its sides form the golden ratio,
that is, if

AB _ __AD
AD AB-AD
or L , where the length AB = L, and the width AD = W.
W L-W

Thus, L(L — W) = W?or L* — LW — W?* =0,

L =%;=1.618...

which leads by the quadratic formula to W

A less well known shape is the following, called the folding section.
Consider a sheet of paper of length L and width W.

If the sheet is folded once, its new dimensions will be L and W.

If the half-sheet is to have the same shape as the original, then

L:T"gorl‘zzzwzor-li:\/i:1.414...
L w

2




CONNECTIONS a1

Notice that when the sheet is folded again and again, the same shape is
always retained. This idea was adopted to create the ‘A’ series of
international paper sheet formats, as follows.

The base sheet size, called A0, has area 1 m? or 10 000 cm?.
Thus (W)(WV2) = 10 000

. W = 10 000
V2
= w =M£84.089... cm

2
This leads to the following ‘An’ sizes in cm, where n represents the
number of folds.

A0 84.089 x 118.921
Al 59.46 x 84.089

A2 42.04 X 59.46

A3 29.7 X 42.0

A4 21.0 x 29.7

A5 14.8 x 21.0

A6 10.5 x 14.8

A7 74 x 10.5
etc. ..

This series of formats has been adopted by most countries.

The most frequently used paper size is A4. Note that any subsequent size
can be obtained merely by folding.

Thus, if envelopes are manufactured in sizes marginally larger than these,
any paper size can be put into any envelope merely by folding it the
required number of times.
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PROPERTY

Example 1

Solution

1.7 Properties of Matrix Multiplication
and Matrix Equations

At this point, a multiplicative algebra of matrices has been established
alongside the additive algebra described in section 7.1.

The set S of invertible 2 X 2 matrices together with the operation of
matrix multiplication is said to form a non-commutative group.

The following properties hold.

M1. S is closed under multiplication: M, N€e S = MN € S

M2. Multiplication is associative: L(MN) = (LM)N

M3. There exists I € S such that forallM € S, IM = MI = M

M4. If M € S, then there exists M € S such that MM = M"'M =1

There remains only one property to be proven to allow you to solve matrix
equations in a manner similar to that which you use to solve ordinary
algebraic equations in R.

The Distributivity of Matrix Multiplication over Matrix Addition

Given any 2 X 2 matrices L, M and N, then
LM+ N)=LM+ LN
and (M + N)L = ML + NL
You will have an opportunity to prove this property in the exercises.

Notice that the order of the letters is crucial. Since matrix multiplication is
not commutative, it is not valid to replace, say, LM by ML.

You must continually be aware of the non-commutativity of matrix
multiplication when working with matrices. With this proviso, you can
solve matrix equations. In the first example, you will find the inverse of a
composite transformation.

Given matrices A and B, find the inverse of the product AB.

Let the image of v under AB be v
To find (AB)™!, you must L express vin terms of v’ v,

Now (AB)v =v

thus A l)(AB)V =(A” ')v

therefore A lA)(B)v A7l property M2
or (1)(B)$=A-17 property M4
or Bv=A"v property M3
thus (B)(BY) = (B) AW

therefore (B"B)(;) = (B'IA“);; property M2
SO Iv =(B'A” 1)v property M4

and finally V= (B'A” l)v
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Hence, the inverse of (AB) is (B'A7"). W

Using Matrix Equations to Solve Linear Systems
If M is an invertible matrix, Mv=u

M(Mv) = M'u

(M M)y = M'u

Iv=M"'u
v=M"'u

Hence, solving Mv = uyields v = M 'u.

Thus, if M= [a b],;= [x], andu = [p]’
c_d y q

[a b][x] = [p] or {ax+ by=p which yields [x] = ;[ d —b][p] or
¢ dlLy q x+dy=q vyl detM)L- allg

x=d—L——‘l_b andy:—Lc +aq, or x=p—d‘bqandy=u —pe
ad — bc ad — bc ad — bc ad — bc

These results are known as Cramer’s rule for the solution of a system of
two first-degree equations in two unknowns.

Solve the system 2x — 3y =7
4x-y=1

Substituting directly into the formulas,

= DED = (3)A) _ @)1 - (7)(4)
@)1 - (-3)@ @)1 - (-3)@

However, if M is not invertible, then Cramer’s rule cannot be used. Recall

that the plane will lose some dimension under the effect of a singular

transformation. The plane will be ‘squashed’ into at most a single line,

say L. Since the origin O never moves under a linear transformation,
L will contain O.

=-26 N

-0.4, y=

Thus, if M is singular, there will be two possibilities when Mv = u.

y — y —~ y y e
v o u — [ u
e v
(0] X L o' X' O X / o x'
image of \magé of
plane plane

OR no point of L has u” as position
vector. In that case, no solutions for

EITHER u is the position vector of a
point of L. In that case, solutions

for v/ must exist. v are possible.
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Example 3

Solution

Given M = [; ‘21], find the vectors v that satisfy the equation Mv = u if

=~ 13 =~ 13

a) u= b) u=

i) e[
Notice that det(M) = (1)(4) — (2)(2) = 0, so M is singular. The effect of M
on a general vector V= [x] is

y

R Y P s d e o e Y

2 4]y 2x + 4y 2(x + 2y) 2a 2
Thus the entire plane is squashed onto a line L, through the origin,

of direction vector[;]. |y S D e e Y1 /L

[ “g

1 X — X

14
(%}

a) Since no a exists such that a[;:l - [3], the point whose position vector

is [3] is not on L. Thus the transformation M; = [(3) is impossible. No

vector v can be found.

b) Since a[;] = [Z] for a = 3, the point whose position vector is [Z] is on

L. Thus, solutions exist for v given Mv = [Z] Sincea = x + 2y and
a = 3, then x + 2y = 3. Hence all the position vectors of points of the

line D with equation x + 2y = 3 are mapped onto [(35]

y y' /

A vector equation of the line D can be found by introducing a parameter k,

as follows. Let x = k. Then, from x + 2y = 3, y=——k2i—3—
Thus;=[x]= k |0tk |_|O +k| 1
y —k+3 3_k _1
2 2 2

Or, with the notation of chapter 5, (;,;) =

P )

— W

0,3) +k 1,—1) which
2 2

, with direction vector (1,—%).

N W
v

represents the line through the point (0,
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1.7 Exercises

1.L=[2 3],M=[ > —4]
1 2 -1 1

I is the identity matrix.

a) Calculate L' and M.

b) Calculate LM, L"'M' and M"'L™".

¢) Whatis the inverse of LM?

d) Verify that (LM)(M'L™") = I and
(IMY(L'M") # 1.

N

-1 0 2
Show that B'A™! = A™'B™! in this case.
Explain.

2. Given A = [l
0

3. Solve the following systems by writing
each system as a matrix equation.

a) 5x-6y=-1

-3x+4y= 2
b) 2x—- 7y= 4
4x - 14y = -6
c) 2x—- Ty=4
4x — 14y =8
d) x+2y=5
3x+6y=38
e) x+4y= 7
2x -8y =-14
f) 2x+3y= 6
5x— y=-1

4. Solve the systems of question 3 by using
Cramer’s rule, where possible.

5. Given M = !
-3 .
that satisfy the equation Mv = u in the

following cases.
- 3
c) u=
i)

i
i [}

(3]

6. Show that the matrix M = [i ;] maps all

—2], find the vectors v

the points of the line 2x + y — 2 = 0 to the
point P(2,4).

7.

10.

11.

12.

13.

Given three matrices

I L A L b

c d r s y z

a) Calculate
L+ M, KL, KM, K(L + M),

LK, MK, (L + M)K.

b) Hence show that matrix multiplication
is distributive over matrix addition.
That is, show that K(L + M) = KL + KM
and (L + M)K = LK + MK.

. a) Calculatetheproduct[i 0][0 0]

olLl 4

b) If A and B are two matrices such that
AB = 0,,,, is it necessarily true that
A = 0,,, or B = 0,,,? Explain.

Three non-zero matrices P, Q and R are such
that PQ = RQ. Is it necessarily true that

P = R? Discuss this in the two cases

a) Qisinvertible b) Qis singular.

Show that, for any 2 X 2 matrices A and B,
(A+B)*=A’+ AB + BA + B~

Is it possible to simplify the expression on
the right side?

The matrix T is said to be a square root of
the matrix 4, if T* = A.
Find two different square roots of

. [4 0]
0 4
Matrix A is such that A — A* = I, where I is
the unit matrix.
a) Prove that A is invertible.
b) Prove thatA’ = -I.
¢) If Xis amatrix such thatAX=1+A4,

find the real numbers p and g such that
X =pl + qA.

a) IfP=|:2 1]andQ=[a b ]
4 5 4b 3b+a

a, b € R, prove that PQ = QP.
b) Itis also known that for non-zero_

vectors u and v, Pu = u and Pv = 6v
Fmd the matrix Q such that PQ = QP,

Qu = —u, and Qv = 4v
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14. a) State the matrix R that rotates the plane

15.

16.

17.

counterclockwise through an angle 6,
and the matrix M that reflects the plane
in the liney = x.

b) Solve for 6 the equation RM = MR,
0°< 60 <360°

An orthogonal matrix is one whose
columns represent perpendicular unit
vectors. Show that the following are
orthogonal.

[0 1
a) |, o]
12
2 1
| V5 s

c) the matrix of counterclockwise rotation
through an angle 6

d) the matrix of reflection in the line
y = (tan a)x.

cos @ -sin @
sinf cos @

= [cos 2o s Za]’ show that the

Given R = [ ] and

sin 2a  —cos 2«
following are orthogonal matrices.
(See question 15.)

a) R

b) M?

c) RM

(Use the formulas on page 542.)

S= [“
h
symmetric matrix.

. 2 -3
a) Verify that
) Y [—3 5]

is a symmetric matrix.

b) Calculate S?, and show that it is
symmetric also.

¢) Calculate S*, and show that it is
symmetric also.

:] is known as a

2 1 4 -2 8 -19
18. A=|3 5 1 |andD=| 1 —4 10
1 2 0 1 -3 7
a) Show that DA = AD = I, where
1 0 O
I=lo 1 o0
0 0 1

(I is the 3 X 3 identity matrix. Thus, you
have shown here that A and D are
inverse 3 X 3 matrices.)

b) By writing the following system of
equations as a matrix equation
Av = b, solve the system for x, y and z.
2x+ y+4z= 2

3x+5y+ z= 1
x+ 2y =-5

. To find the invariant lines of a

transformation M, you look for vectors v

whose images under M are collinear with v.

That is, you look for real numbers k and
NON-zZero vectors v that satisfy My = kv

a) GivenM=[1 2],v=[ ],showthat
3 2 y

M; = k; will have non-zero solutions
forxandyifandonlyifk=4o0rk=-1.

(4 and -1 are known as the characteristic
values of the matrix M.)

b) If k = 4, show that v= [;] satisfies the
equation Mv=ku and if k = -1, show
that v = [_i ] satisfies the equation
Mv = ku.

(These are known as characteristic
vectors of the matrix M.)

c) Hence find the Cartesian equations of
two lines through O that are invariant
under the matrix M.
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In Search of Invariant Lines and
Characteristic Vectors

Invariant Lines
The algebraic properties of matrices will also allow you to discover
whether or not a transformation has any invariant lines.

Recall that when a matrix transforms a plane, the origin does not move.
For some transformations, there may be entire lines that do not move.
Such a line, called an invariant line, must therefore contain the origin.
A line L through the origin is completely determined by any direction
vector kv, where v # 0 is any vector parallel to this line.

-

Now a line through (0,0) with direction vector v is invariant under a
transformation M if v maps into some vector parallel to itself.
In that case, Mv = kv for some k € R.

An example should help you to understand the general case.

Example 1 Find the invariant lines of the transformation M = I:i ;]

-

Solution If a line of direction vector v = [X] is invariant, the image of v is parallel
y

-

to v. Hence Mv = kv for some k € R.

MR
1 2]Ly] y
2x+y]_ 'kx]
x+ 2y B | ky
{(2 -kx+y=0
x+ (2 - k)y = 9
[2 Ik 2 1 k][;_ = _g] O] in matrix form
or C;=6.

An invertible matrix sends only 0 to 0. Thus, matrix C must be singular.
That is, det(C) = 0.
det(C) = 2 - k)2 -k) - ()(1) =0
4-4k+k*-1=0

kK—-4k+3=0
(k-1)(k-3)=0
k=3ork=1.

Thus, the direction vectors v of invariant lines are obtained for k = 3 or
k =1 (the numbers 3 and 1 are called the characteristic values of M).
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When k = 3 [2_3 ! ][x] [O]
1 2 -3 1Ly 0
I MEH
1 -14Ly 0
{—x +y=0
x—y=0
and both these equations lead to y = x.
Thus one invariant line has equation y = x.

Whenk = 1 [2_1 ! ][x] - [0]
1 2-14Lyd = LO
HHEH
1 1lLy 0
{x +y=0
x+y=0
and these equations are equivalent to y = —x.
Thus the other invariant line has equationy = —~x.

Inmrmnl Lines in the General Case— Characteristic Vectors
v will be a direction vector of a line that is invariant under the
transformanon M if vis mapped into a vector parallel to v.
Hence Mv = kv for some k € R
Thus Mv = k(Iv) since Iv= v

My - (kl)v =

M-kjy=0 @

Since (M — kI) sends a non-zero vector to 0, this matrix must be singular.
Thus, det(M — kI) = 0.

R IR PR K b B i e A
Thus det(M — kI) = (a—k)d—k) —bc=0

Equation (3, a quadratic equation in k, is called the
characteristic equation of matrix M.

The values of k that are the roots of equation () are the
characteristic values of matrix M.

If the characteristic values are real, the direction vectors of the invariant
lines can be obtained by substituting the characteristic values into
equation Q). These vectors, defining invariant lines for M, are the
characteristic vectors of matrix M.

If the characteristic values are not real, then the transformation has no
invariant lines.

Note: Characteristic values and characteristic vectors are sometimes
known as eigenvalues and eigenvectors (from the German
““eigen”” meaning ‘‘proper’).
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Example 2  gind the invariant lines of the transformation R = [3 _4]

Solution

4 3

The characteristic equation of the matrix R is (@ — k)(d — k) — bc = 0, where
a=3,b=-4,c=4,d=3.
Therefore (3 — k)(3 — k) — (-4)(4) =0

9-6k+k*+16=0

— 6k +25=0.

The discriminant for this quadratic equation is (-6)* — 4(1)(25) = —64 < 0.
Hence, the roots of this equation are not real. Thus, the transformation R
has no invariant lines. W

Thus, R represents a rotation through 6, where tan ¢ =

2
Note: R could be written 5 [i
5

wiw b

sin 0 _
cos O
together with a dilatation of factor 5. Since every line in the plane is
rotated by 6 (approximately 53°), no line can be invariant.

vilw |V|M>

W [~

Activities

1. a) Find the characteristic values of M = [; ‘;]

b) Find the characteristic vectors of M (if they exist).
¢) Find the equations of the invariant lines of transformation M (if
they exist).

2. Repeat question 1 for the following: M = [? _‘11] and M = B —i]

3. a) Show that matrix M = [; i] has the characteristic equation

k*-3k-4=0.

b) Show that the matrix M satisfies its own characteristic equation,
that is, show that M*> — 3M — 41 = 0,,,.
(This is known as the Cayley-Hamilton theorem.)

4, S= [Z :] is known as a symmetric matrix.

a) Prove that the characteristic values of a symmetric matrix are
always real.
b) Find a condition on 4, b, h so that the characteristic values of S are
equal.
5. A symmetric matrix S (see activity 4) for which a # b always has two
distinct real characteristic vilues p and g, associated with

characteristic vectors ue and vas follows.

Su = pu and Sv= q;
a) Show that (Su) V= (Sv) u
b) Hence show that (pu) v= (q;) ‘U

c) Hence show that the characteristic vectors of a symmetric matrix
must be orthogonal.
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Summary

® A matrix with m rows and »n columns is said to have dimension m x n.

® The element in the ith row, jth column is represented by a;;.

® Two matrices are equal if and only if all their corresponding elements are
respectively equal.

® Two matrices that have the same dimensions are added by adding their
corresponding elements.

(In the following, all matrices are 2 X 2 unless specified otherwise.)

® Matrices form a vector space V,,,, that is, the following properties hold.
Matrix Addition

Al. V,,,is closed under addition: M, N € V,,, implies M + N € V,,,

A2. Addition is associative: L+ (M + N) = (L + M) + N

A3. Thereis a 0,,, € V,,, such that forall M € V,,,, M + 0, = M

A4. If M € V,,,, then there exists —M € V,,, such that M + (—M) = 0,,,
A5. Addition is commutative: M+ N=N+ M

(These properties mean that V,,, is a commutative group with respect to
addition.)

Multiplication of a Matrix by a Scalar

MI1. If M € V,,,, k € R, then kM € V,,,

M2. (kp)M = k(pM), k, p € R

M3. k(M + N) = kM + kN

M4. (k + p)M = kM + pM

M5. There exists 1 € R such that IM = M

Linear Transformations
® A linear transformation T of a vector space V, is such that

1. T(u+v) = T() + T()

2. T(kv) = K[T(V)]
® A general linear transformation of V, has the following form.

L ] Bigbevdle

orv—> Mv=1v,

where v = [x], Vv = [x’]’ and M = [a b]
y y c d

® When a linear transformation acts on a plane,
1. the origin does not move,
2. parallelism is preserved.
® The matrix M of a linear transformation is such that its first column is

}whereu,ve\/2 and k € R

the image of i by M and its second column is the image of j by M.
® The matrix of a counterclockwise rotation about O through an angle 8 is
[cos 0 -sin 0]
Ry=| ",
sinf cos 0
® For various types of linear transformations, see the summary of section
7.3, pages 304-305.
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Determinants
o If M= [a Z], then its determinant, det(M) = ad — bc.
c

e If a figure of area S is transformed by matrix M, the area of the image
figure is|det(M)| S.

e If det(M) > 0, the image retains the orientation of the original figure;
if det(M) < 0, the image acquires the opposite orientation.

Inverse Matrices

M= [a Z] is invertible if and only if det(M) # 0; then the inverse of M is
¢

M= detl(M)[—(: _z]

e If det(M) = O the matrix M (and its transformation) are known as
singular; no inverse exists.
e V, ‘loses some dimension’ by a singular transformation.

Multiplication of Matrices

e Given a matrix P = [a Z] and a matrix Q = [W x]’ then the product PQ
c y z

is defined as follows.
PO = [a b][w x] _ [aw +by ax+ bz]
¢ dily z caw+dy cx+dz

e The matrix PQ represents a transformation that is the result of doing
Q first, then P.

¢ In general, QP # PQ. (Matrix multiplication is non-commutative.)

® (PQ)R = P(QR). (Matrix multiplication is associative.)

e Matrix multiplication is distributive over addition:
L(M+N)=LM+LNand(M+N)L=ML+NL

e The inverse of (AB) is (B"'A™").

e A singular transformation composed with any other transformation
gives a singular transformation.

General Matrix Products

e The product AB of two matrices is defined only if A and B have
dimension as follows.
A has dimension m X n, B has dimension n X p.
The product AB then has dimension m X p.

e Whenever the product of matrices is defined, the product has the
associative property.

Cramer’s rule
ax+by=p
cx+dy=4q

x=-’1d—_—bq and y=u (ad — bc + 0)
ad — bc ad — bc

e Cramer’s rule for the solution of {
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Inventory

1. In the matrix A = [(2) i Z], the element a,; is

2. A matrix that has p rows and g columns has dimension

3. Asquare matrixofordernrhas___ rowsand ______ columns.
4. [1 a]=[l 6]=>a= b= c=
b 2 3 ¢
5. If T is a linear transformation of V,, then T(u + ;) =__ and
Tkv)y=___ .

6. Under a linear transformation, the origin moves to
7. —_ is always preserved under a linear transformation.
8. The first column of the matrix M of a linear transformation is the

image of by
The second column is the

9. 0is an angle such that cos § = 0.6 and sin 6 = 0.8. The matrix of the
counterclockwise rotation about O through the angle 6 is

10. The matrix product AB represents a transformation that is the result of
doing __ first, then

11. The composition of transformations is in general non-

12. If A has dimension p X ¢, and B has dimension r X s, then the matrix
product AB is defined if and only if = In that case,
the dimension of AB is

13

The inverse of the matrix M = [a Z] exists if and only if
c

ThenM'=___ .
14. A matrix M represents a singular transformation if
15. A singular transformation cannot be

16. A singular transformation composed with any other transformation
gives a

17. The area scale factor of matrix M is

18. A figure is transformed into a figure of the same orientation if
; and into a figure of the opposite orientation if



Review Exercises

1. Given

A=[1 3]’B=[ 6 0],c=[ 5 —1]
2 0 -2 -3 -4 7
calculate the following.

a) -14 d) A+B+C g) -B+6C
b) 3B e) A-4C h) -4(24)

c) 5SA-B f) %(B+C) i) -84

. Using the matrices A, B, C given in
question 1, calculate the matrix X in the
following cases.
a) 3X=B

b) X -24=0,,

c) C+X=A
d) X+2B=5X-4A

. Calculate the values of the variables in the
following.

e
a) =
1 ylL4 -8
W[5 2 BI-6)
y xIL3 y
. Find the images of the following vectors

under M = I:;

Ni—- o —

NN

Sketch as position vectors #, v, w and their
images u’, v/, w'.

. Write the matrix that corresponds to the
given transformation in each case.

a) adilatation of factor i

b) reflection in the y-axis
¢) rotation through —90°
d) projection onto the x-axis
e) reflection in the liney = x

. By finding the images of the points O,
P(1,0), Q(1,1), R(0,1) sketch the effect of
each of the transformations of question 5
on the unit square.

10.

11.

12.
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. The straight line L has vector equation

r=ro+ kr?, where
" [X]A [_4]_\ [1]
r= ’r0= ,m=

y 3 1

a) Find the vector equation of the image of
L under the transformation of matrix

" [ 2 5]
-1 0
b) Graph L and its image on the same set
of axes.

By reading the columns of the following
matrices, describe the associated
transformation in each case.

a_[0 0 p-[-5 o]
Lo o] Lo -5

s=|! 1] |1l 1]
Lo -3 1 1

c-[0 2 po[cos65 -sin 650]
2 o] | sin 65°  cos 65

. By finding the images of the points O,

P(1,0), Q(1,1), R(0,1) sketch the effect of
each of the transformations of question 8
on the unit square.

Use the matrices of question 8 to answer

the following.

a) For each transformation, describe the
orientation and the area of a
transformed figure.

b) Which matrices are singular?

c¢) Find the inverse of each of the
invertible matrices.

Use the matrices of question 8 to calculate
the following.
a) AB
b) CD

c) DE
d) E?

Write the matrix of the rotation
counterclockwise about the origin through
the given angle. In each case, give entries
correct to 2 decimal places.

a) 50° b) 125° c) 180°
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13.

14.

15.

16.

17.

18.

19.

20.

Write the matrix of the reflection in the line
y = (tan ¢)x for the following values of ¢,
giving entries correct to 2 decimal places.
a) 70° b) 132° c) 90°

Given that R, represents a counterclockwise
rotation (about the origin) of §°, compare
R and R_ ;5. Explain.

Show that the counterclockwise rotation

(about the origin) of (180° — ) is

represented by the matrix

[—cos o -sina
sina —cos«

Consider the straight lines L, and L, with
the following vector equations.

RN

a) Explain why the lines L, and L, are
perpendicular, and graph them on the
same set of axes.

b) Find the vector equations of the images
of L, and L, under the transformation

]

c) Are the images also perpendicular?

Describe the following transformations,
where0<x<1,0<y<1,andx*+y*=1.

y x y —x
a) Write the matrix M, of the reflection in
the line y = (tan 0)x.

b) Find M, ™.
¢) Describe the transformation My™.

Given M = [i _g], describe the
vectors ; such that M; = 6

a) Find the inverse of each of the
following matrices.

a=[V o) 2= 1
1 O 0 1
_ [cos 80° sin 80°]
sin 80° —cos 80°

b) Explain your answers by describing the
transformations involved.

21.

22.

23.

24.

25.

26.

Let M' be the inverse of a matrix M.

a) Whatis the effect of applying M then
M?

b) Whatis M M'?

A= [2 _1] and B = [4 0]
1 -2 7 3
a) Calculate AB and BA.
b) Calculate det(4), det(B), det(AB) and
det(AB).
c) Verify that det(AB) = det(4)det(B).

Given the 2 X 2 matrices A and B, discuss
the statement AB = 0,,, = BA = 0,,,.

Consider amatrix M, and a non—zero vector
u DISCUSS whether or not a vector v such

that Mv u can always be found in the
following cases.

a) M s invertible.
b) M is singular.

Consider the matrix M = [a b], where

¢ —-a
none of the elements a, b, or ¢ are zero.
It is required to find a non-zero matrix X

such that MX + XM = 0,,,.

Find the general solution in terms of a
parameter t.

Prove that the set S of invertible 2 x 2
matrices forms a non-commutative group
by verifying each of the following
properties.

MI. § is closed under multiplication:
M,NeS= MNEe€S

M2. Multiplication is associative:
L(MN) = (LM)N

M3. There exists I € S such that forall M € S,
IM=MI=M

M4, If M € S, then there exists M € S
such that MM™' = MM =1



27.

28.

The matrix M and the vectors v and w are

29.
given by
M= [2 p],;= [1] and;\;= [q],where
4 2 7 5
P, q €R.
a) Given that the matrix N is the inverse of M,

i) write down N, and

ii) state the value ofp 1f Nis smgular
b) Prove that M(v - w) M(v) M(w)
c) Given M(v - w) = v + w, calculate the
values of p and gq.
Given det (M?) = 64, calculate the values
of p.
(86 SMS)

d)

N

u, vand w are three vectors in a

two-dimensional rectangular Carte51an 31

coordinate system with origin 0. i iand _] are
unit vectors in the direction of the
coordinate axes. A, B and C are three points
such that

OA=u=2i-j
OB=v=1i+3j
- 9

a) Show A, B and C on a diagram.

b) Find the values of A and u such that
w=Au+ /zv

c) Prove that BA and BC are

perpendicular.

Find the coordinates of D so that ABCD

is a rectangle and determine the

d)

magnitudes of the vectors BA and BC.
The rectangle ABCD is transformed to
the quadrilateral A’B’C’D’ under the

e)

transformation with matrix [ i _;]

i) Calculate the coordinates of the
points A’, B', C" and D’.

ii) ProvethatA’B'C'D’ isa

parallelogram.
iii) Calculate the value of o, & € R, such
that
BB’ = aBC'.

30.
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Given that P" denotes the transpose of the
matrix P,* which one of the following
statements concerning 2 X 2 matrices and
their determinants may be false?

A. det2P=4detP

B. det(PQ) = det P det Q

C. det(P+Q)=detP +detQ

D. det P"=det P

E. (PQ)" = Q"P".

(83 H)

*see page 362

A linear transformation L is such that

Do) e 3}

(85 H)

Oxy is a 2-dimensional rectangular
Cartesian coordinate system. Points of the
system P(x,y) are mapped onto points
P’(x",y’) by a linear transformation T
represented by the (2 X 2) matrix M, in such
a way that the coordinates obey the relation

HEH

N [1.4 —0.2]
08 0.6
Find the images under T of the points
0, A, B, C whose coordinates are (0,0),
(1,2), (3,1) and (2,-1) respectively.
Draw a sketch on squared paper
showing the figure OABC and its image
O'A’'B'C'.
c) Prove that all points on the line with
equation

where

y=2x
are invariant under T.
Describe fully the geometrical effect of
the linear transformation T.
Determine the images of the points A
and C under the linear transformation
T
(88 S)

d)

e)



