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CHAPTER NINE

Mathematical
Induction

There is a story told of a prince who had been disobedient. The prince was
taken to a large room with a lock on the door. Inside that room was a
second room and a key that opened the lock on the door of the second
room. Inside this second room was a third room and a key that opened the
lock on the door of the third room. Inside the third room was a fourth
room and a key that opened the lock on the door of the fourth room. These
rooms continued forever, with each room containing the key to open the
lock on the door of the next room. His punishment was to open lock after
lock and open door after door forever. Would the prince be able to
continue in this way if he lived forever?
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Another story is told of a queen who enjoyed playing with dominoes. She
would place one domino on its end, then place a second on its end beside
it, then a third beside the second and so on. Each domino was positioned
so that it would knock over the next domino if it fell. The queen would
push over the first domino which would push over the second which
would push over the third, which would push over the fourth, and so on,
until all the dominoes were knocked over. She continually added more
and more dominoes in order to see them fall over. Then the queen
wondered if she could continue to add dominoes forever so that her push
on the first would cause all of the others to fall over. The queen offered a
prize of 100 gold pieces to whomever could answer this question.

A third story is told of a cow who wanted to reach the moon using a very
long ladder. She observed that she could get on the first rung of the ladder.
She also realized that once she was on any rung she knew how to climb to
the next rung. She wondered if this was enough to ensure that she could
climb the ladder to the moon, and perhaps beyond the moon forever.

The topic of mathematical induction which you will study in this
chapter will help you to solve the problems introduced in these stories.
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9.1 Making Conjectures

Proof is a very important part of mathematics. But, in the order of time,
proof is generally the final event in a mathematical discovery.
Mathematicians spend much of their energy trying to discover new
mathematical truths. They make guesses or conjectures about what seems
to be true then try to prove or disprove their conjectures. Some of these
proofs or disproofs come immediately after the conjecture. Other
conjectures are shown to be true or false a long time after their discovery.
Some conjectures are still awaiting proof or disproof. Some examples of
such conjectures are presented in the following paragraphs.

I'he Four Colour Problem

What is the minimum number of colours needed to colour the map of
countries on a surface so that no two countries with the same boundary
will be coloured with the same colour?

The following diagrams show some maps that have been coloured with
five colours. Each of the five colours is indicated with a different number.
Can you colour either map using fewer than five colours?

The Four Colour Problem goes back to October 23, 1852 when Francis
Gutherie posed it to his teacher, De Morgan, who wrote to W.R. Hamilton.
[reference: Stein: The Man-Made Universe, page 220] In 1890, P.J. Heawood
proved that five colours were sufficient to colour any map. Most
mathematicians conjectured that four colours were enough. Indeed, no
one was able to draw a map that needed more than four colours.
Nevertheless, it was not until 1976 that Kenneth Appel and Wolfgang
Haken of the United States proved, using a computer, that four colours are
sufficient.
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The Koenigsberg Bridge Problem

In 1735 the Swiss mathematician Leonhard Euler described this problem
as follows.

In the town of Koenigsberg there is an island called Kneiphof, with two
branches of the river Pregel flowing around it. There are seven bridges
crossing the two branches. The question is whether a person can walk in
such a way that he will cross these bridges once but not more than once.

Here is a diagram of the seven bridges of Koenigsberg. Can a person plan a
walk that will take the person across each bridge exactly once?

The problem had been around a long time before Euler. The townspeople
used to spend their Sunday afternoons on such a walk, wondering if they
could cross all of the bridges without repeating any bridges. They never
succeeded in doing so. Euler showed in the same year that such a walk
was impossible.

Fermat’s Last Theorem

You know that the Pythagorean theorem states that for any right triangle
with hypotenuse ¢ and other two sides 4, and b, that a* + b=

Mathematicians wondered if a similar fact were true for any other power.
For example, they tried to discover natural numbers a, b, and ¢ such that

a® + b* = . The French mathematician Pierre de Fermat (1601-1665) wrote
about this problem in the margin of a book he was reading. He said that
he had discovered a truly wonderful proof that the equation a" + b" = ¢"
does not have a solution in integer values of a4, b and ¢ for n = 3. He wrote
that the margin of the book he was reading was too small to contain the
proof. Since that tilne mathematicians have tried to rediscover Fermat’s
proof. But no one has been able to prove or disprove Fermat’s statement!

Note how the simplicity of the statement of these problems gives no clue as
to their difficulty.

In this section you will be given the opportunity to make your own
conjectures about various mathematical ideas. You will not prove your
guesses in this section. You will learn how to prove some of them in the
next section 9.2.
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Examme 1 Conjecture a formula for the sum of the first n odd numbers, that is, for the
sumS,=1+3+5+7+...+ (2n-1).

Solution  To help find a pattern you should list and examine the values of S, 8.8,

Ss.
Si=1=1
S$;=1+3=4

S;=1+3+5+7=16

Observe that S, = 12

Sz=22
S;=32
S4=42

One conjecture or guess would be S, = n?

The conjecture should now be checked for other values of n.

Letn = 6.

S¢=1+3+5+7+9+16=36=6"

as it should be, according to the conjecture. W

Note: It is important for you to realize that the fact that a formula checks

for particular values of n does not mean that the formula is true for
all values of n.

For theseries1+2+3+4+5+...

S1= l,Sz=3,S3=6,S4= 10.

The formula §, = ﬂﬂ;—ll + (n - 1)(n - 2)(n — 3)
produces the following values

Sl= 1,S2=3,S3=6,S4= 16-

The formula checks for n = 1, 2, and 3 but not for n = 4.



Example 2

Solution

Example 3

Solution

9.1 Making Conjectures

Guess a formula for the sum S, of the series
! + ! + ! + ! + ...+ S
1x2 2x3 3x4 4Xx5 n(n+ 1)

To try to guess this sum you might list the partial sums as follows.

5oL 1
1x2 2
S2= 1 + 1 =l+l=é=2
1x2 2x3 2 6 6 3
S3= 1 + 1 + 1 =%+i=i=é
1x2 2%x3 3x4 3 12 12 4
gL 4 1, 1 1 _3,1 _16_4
1x2 2x3 3x4 4Xx5 4 20 20 5
These values for S, suggest the formula S, = 1
n
Checking the conjecture for n = 5, S, should equal 5 i ] or %
ss=1+1+1+1+1=4—+i=2—5=§,
1x2 2x3 3X4 4%Xx5 5x6 5 30 3 6

as required. W

Make a conjecture about the values of n € N, for which 2" < n!, where

n! = n(n-1)(n-2)(n-3)...(3)(2)(1) and 0! = 1 (n! is read “‘n factorial”).

Try values of n € N beginning with n = 1.
Letn=1:LS.=2'=2,andR.S.=1!=1
Since L.S. > R.S., the statement is false.
Letn=2:LS.=2*=4,andR.S.=2! = (2)(1) =2
Since L.S. > R.S., the statement is false.
Letn=3:LS.=2>=8,andR.S.=3!=(3)(2)(1) =6
Since L.S. > R.S., the statement is false.
Letn =4:L.S.=2"=16,and R.S. = 4! = (4)(3)(2)(1) = 24
Since L.S. < R.S., the statement is true.
Letn =5:L.S.=2°=32,and R.S. = 5! = (5)(4)(3)(2)(1) = 120
Since L.S. < R.S., the statement is true.
The statement appears to be true for n = 4.
Try further values of n to check the conjecture that 2" < n!, forn > 4.

389
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9.1 Exercises

. Conjecture a formula for the sum of # terms
of the series

2 4 8 16 = 2"

. Conjecture a formula for the sum of n terms
of each of the following series.

a) 2+4+8+16+32+...+2" forn>1
b) 1+2+4+8+16+...+2""!

. Giventheseriesl1 +2+3 + ... + n.

a) ListS,, S, S5, and S,.
b) List 25, 25, 25, 425
1 2 3 4

c¢) Guess a formula for S,,.

. Conjecture a formula for the sum of n terms
of the series
1 N 1 N 1
1x3 3x5 5%x7
+ 1
2n-1)2n+1)

. Conjecture a formula for the sum of n terms
of each of the following series.
a) 1 N 1 N 1
I1x5 5x9 9x13
+ 1

(4n - 3)(4n + 1)

1 1 N 1
2Xx3 3x4 4x5

1

+ -_—

(n+1)(n+2)
1 1 1 1
—+=+=+...+ =
21 22 23 2n

b)

. a) Evaluate the 2-term product

a+ 1)(1 + %)

b) Evaluate the 3-term product

1+ 1)(1 + %)(1 + %)

¢) Evaluate the 4-term product

G

10.

11.

d) Evaluate the 5-term product

e

e) Conjecture a formula for value of the
n-term product

ool o))

. Conjecture a formula for the value of each

of the following n-term products.

o (3020 205
o (0002

n’+3n*+2n

3
a) Evaluate f(1), f(2), f(3), and f(4).
b) Make a conjecture concerning the

values of n € N for which f(n) is a
natural number.

Given f(n) =

. Make a conjecture concerning the values of

n € N for which

5" 2"

I

is a natural number.

Ly

Make a conjecture concerning the values of
n € N, for which each of the following is a
natural number.

5_
a) ngn2+ 1) d) n : n

2
b) n§n+l}§n+2} e) n-+ 2n
6 8
3 _ 3
c) n—-n f) n’ + 20n
6 48

Make a conjecture concerning the values of
n € N, for which
2" = n?



12.

13.

14.

Make a conjecture concerning the values of
n € N for which each of the following
inequalities is true.

a) 3" <n!

b) 3n > 2n+1

() <2

c) |=) <=

6 n

Given the series S, =1+ 8 + 27+ ...+ n’
a) ListS,, S, S3, S4, S5, S, and Sy

b) ListVS,, VS, VS, VS, VS, VS, and VS,
c¢) Compare your answers to part b) with
S1, 82, 83,84, S5, Se, and S
of question 3.
d) Guess a formula for §,.

a) Mark 3 non-collinear points on a paper.
How many different lines can you draw
joining two of the points?

b) Mark another point on the paper not
collinear with the first 3 points of
part a). You now have 4 non-collinear
points on the paper. How many
different lines can you draw joining
two of the points?

c¢) Mark another point on the paper not
collinear with the 4 points of part b).
You now have 5 non-collinear points
on a paper. How many different lines
can you draw joining two of the
points?

d) Conjecture a formula for the number of
lines you can draw joining any two
points among n non-collinear points,

n € N. (If you need a hint read part e) of
this question.)

e) Completing the following table should
help you to guess a formula for part d).

number of | number of
points (n) lines |n*|n*-n
1 0 1 0
2 1 4 2
3 3 9 6
4 * * *
5 * * *

15.

16.
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a) Draw any quadrilateral and its
diagonals. How many diagonals does a
quadrilateral have?

b) Draw any 5-gon, that is, a closed figure
with 5 sides, and its diagonals. How
many diagonals does a 5-gon have?

¢) Repeat part b) for a 6-gon and a 7-gon.

d) Conjecture a formula for the number of
diagonals that an n-gon has.

Draw a circle and any one chord of the
circle. The interior of the circle is divided
into 2 non-overlapping regions.

a) Draw asecond chord in the circle
intersecting the first chord. What is the
maximum number of non-overlapping
regions into which the interior of the
circle can be divided?

b) Draw a third chord in the circle,
intersecting the first and second chord.
What is the maximum number of
non-overlapping regions into which
the interior of the circle can be divided?

c¢) Draw a fourth chord in the circle,
intersecting the three previous chords.
What is the maximum number of
non-overlapping regions into which
the interior of the circle can be divided?

d) Conjecture a formula for the maximum
number of non-overlapping regions
into which the interior of the circle can
be divided by # chords.
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PROPERTY

9.2 The Principle of Mathematical
Induction

In the introduction you met three stories, each of which involved

starting an activity and trying to continue the activity forever. In each case
the activity was repeated over and over. It was assumed that any one
activity was followed immediately by the next one. You are now seeking a
proof that these activities can indeed continue indefinitely.

Examine the story of the dominoes. Suppose the dominoes are numbered
consecutively using the set of natural numbersN ={1, 2, 3, 4,...}. Suppose
further that D is the set of numbers corresponding to the dominoes that
will fall over after the queen has knocked over the first domino. Since the
queen pushed over the first domino, you know that the number 1 is in D.
Thus, D ={(1,...}. Now the dominoes are positioned in such a way that the
kth domino falling over will push over the next, that is, the (k + 1)th
domino. In other words, if the kth domino falls over the (k + 1)th will also
fall over. Thus, if the number k is in D then the number k + 1 is also in D.

But the dominoes are infinite in number and marked with the natural
numbers 1, 2, 3, 4,....Thus, if you can show that D is actually the set
N={1, 2, 3, 4,...} then you will know that all the dominoes have their
numbers in D. Hence all the dominoes will fall over.

Now the set of natural numbers N has a very special property called the
inductive property of N. This property is as follows.

Let T be a subset of the natural numbers N. Then T is the entire setN, if and
only if both of the following are true.

a) 1isamember of T.

b) If k is a member of T, then k + 1 is also a member of T.

But both of these are true for set D.

a) 1isin D because the queen knocked over the first domino.

b) If the kth domino falls over it will push over the next domino, that is,
the (k + 1)th domino. Thus, k being in D implies that k + 1 is also in D.

Hence by the inductive property of N, the set D and the set N
are the same set.

This process of using the inductive property of the set of natural numbers
to prove something is true is called a
proof using mathematical induction.

A proof using mathematical induction shows that a statement involving
natural numbers is true. To help understand the method of proof,

the inductive property of N is restated as

the principle of mathematical induction.
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METHOD

Example 1

Solution
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A statement involving the natural number # is true for every n € N

provided the following are true.

a) The statement is true forn = 1.

b) The truth of the statement for #n = k implies the statement is true for
n=k+ 1.

The principle of mathematical induction can be derived from the
inductive property of N. Suppose S is the set of natural numbers for which
a statement is true. Then a) implies that 1 € S. But b) shows thatk € S
implies that k + 1 € S. The inductive property of N allows the conclusion
that S =N.

In practice, you should use three steps in a proof by mathematical
induction.

Step 1: Show the statement is true forn = 1.
Step 2: Assume that the statement is true for n = k.
Step 3: Prove the statement is true for n = k + 1, using the result of step 2.

The principle of mathematical induction can only be used to prove a given
formula is true. The principle does not help you to obtain such a formula.
In Examples 1 and 2 and in Exercises 9.2 and 9.3 you will be given the
opportunity to prove some of the conjectures you made in section 9.1 and
in 9.1 Exercises.

Use mathematical induction to prove the following formula for n € N.
1+3+5+...4+(2n—-1)=n

Step 1: Prove the statement is true forn = 1.
Forn=1,LS.=1, RS.=1*=1
Since L.S. = R.S., the statement is true forn = 1.
Step 2: Assume the formula is true for n = k. That is,
assumel +3+5+...+2k-1)=k. ®
Step 3: Prove the formula is true for n = k + 1. That is, you have to prove
that1+3+5+ ...+ (2k+1)=(k+ 1)~

LS. =1+3+5+ ...coivinn.n. + 2k + 1)
=1+3+5+ ..... + 2k — 1)+ 2k+ 1)  thesameasLl.S (¥
=[1+3+5+ ....+2k- D]+ 2k+1) with(2k + 1) added
=[K]+ k+ 1) by step 2
=k*+2k+1
= (k+1)*=R.S.

Thus, by the principle of mathematical induction,
1+3+5+...+@2n—1)=n’foralln=€eN. W
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Example 2

Solution

Example 3

Solution

Prove, by mathematical induction
! + !, 1 ! +... 4+ S -
1x2 2x3 3x4 4Xx5 nn+1) n+1

1

StepI:Forn=1,L.S.=—=1,R.S.= =1=L.S
1x2 2 1+1 2
Step 2: Assume LU S S S k ®
1x2 2x3 3x4 k(k+1) k+1
Step 3: Prove + ! + ! +...+ ! =k+1
1x2 2x3 3x4 (k+1)(k+2) k+2
LS. = ! + ! + ! + ! B +41——
1x2 2%x3 3x4 4X5 (k + 1)(k + 2)
- + ! + ! + ! + oo + ! + !
1x2 2x3 3X4 4X5 k(k+1) (k+ 1)k +2)

=[ ! LIRS S S — ] + ! ¢
1x2 2x3 3x4 4x5 k(k + 1) (k + 1)(k + 2)
k 1

_k+1+(k+1)(k+2) using step 2 o !
_ kk+2)+1 This is the L.S. of (®
C(k+ 1)k +2) with

kK +2k+1 (k”)(kdg %)
T (k+ 1)(k +2) EERRE

_(k+Dk+1)
(k + 1)(k + 2)

_k+1 _ps.
k+2

Thus, by the principle of mathematical induction, the formula is true. W

Use mathematical induction to prove the following formula for n € N.
n

>[2k — 1] = n?

First write the sum explicitly by letting k equal successively 1, 2, 3, 4,..., n.

X

[2k — 1] = n* becomes
2() - 1]+ [2Q)-11+[2@) - 1]+ [2@4) - 1]+ ... +[2(n) - 1] =n®
orl+3+5+7+...+[2n—1]=n%

But this now is exactly the same problem as that of Example 1, so the
solution is the same. This solution will not be repeated here. W
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c) Which step(s) in a proof by
mathematical induction is (are) missing
in the demonstration given by the
mathematician?

9.2 Exercises

1. State the three steps in a proof using
mathematical induction.

6. A friend tells you that the formula

2. Prove the following statement using

mathematical induction, where n € N.

. Prove the following statements using
mathematical induction, where n € N.
a) 2+4+8+16+32+...+2"=2""-2
[You will need to use the fact that
2k + ok = 2¥2 Why is this true?]
b) 1+2+4+8+16+...+2""'=2"-1
c) 6+12+18+...+6n=3nn+1)
d) 3+5+7+...+Q2n+1)=m+1)>*-1

. Prove the following statements using
mathematical induction, where n € N.

a) ! + ! +
1x3 3X5
N 1 __.n
2n-1)(2n+1) 2n+1
b) 1+1
1xXx5 5x%x9
1 n

+ =
(4n —3)4n+1) 4n+1

. All three steps are essential in a proof by
mathematical induction, as the following
will demonstrate.

A certain mathematician thought that he

had a formula that produced prime

numbers. (A prime number has exactly two
divisors, 1 and the number itself.) He said
that n* + n + 41 is always a prime number
for n € N. He demonstrates the proof of his

formula forn =1, 2, 3,... 40.

a) Verify that the statement is true for
n=1,n=2,n=3,andn = 4.

b) If you have the inclination you can
show that the statement is true for all n
from 1 to 40, inclusive. Nevertheless,
do prove n* + n + 41 does not produce a
prime number for n = 41.

7+9+11+...+ (2n - 1)=n?is true. He
demonstrates this with the following
argument.

Assume the formula is true for n = k,

that is,

7+9+11+...+2k-1)=kKQ®D

Prove the formula is true forn =k + 1,
that is, prove that
7+9+11+...+Qk+1]-1)=(k+1)**

LS.of*=[7+9+11+...
+ 2k -1)]+2k+1
(the L.S. of @, with 2k + 1 added)

=[K*]+2k+1=(k+1)*=RS.of *

(from Q)

a) Which step(s), if any, in a proof by
mathematical induction are missing in
your friend’s proof?

b) Isyour friend’s formula true for all
n € N?

. Prove the following formulas by

mathematical induction.

a) zs _ n(n + 1)
s=1

2
b) is2=n§n+l}g2n+l)
s=1 6
Ly (nn+ 1)\
©) 2 _< 2 )

. Use mathematical induction to prove that

the sum of n terms of an arithmetic series
with first term a and common difference d

is S,= §[2a + (n — 1)d]

. Use mathematical induction to prove that

the sum of n terms of a geometric series
with first term @ and common ratio r

is s5,=4C=1)

r-1
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Example 1

Solution

9.3 Using Mathematical Induction

In section 9.1 and in 9.1 Exercises you made conjectures about formulas
for the sum of series. In section 9.2 you learned how to use mathematical
induction to prove your true conjectures. But in 9.1 Exercises you made
conjectures about products, inequalities and geometrical conclusions. In
this section you will learn how your true conjectures can be proven using
mathematical induction.

The first example will deal with question 6 of 9.1 Exercises.

Use mathematical induction to prove that
a+ 1)(1 + l)(1 + l)(1 + l)(l + l)...(1 + l) =n+1
2 3 4 5 n

Step 1. Prove the statement is true forn = 1.
Forn=1,LS.=(1+1)=2,RS.=1+1=2
Since L.S. = R.S., the statement is true forn = 1.

Step 2: Assume the statement is true for n = k. That is, assume

e A N

Step 3: Prove the statement is true for n = k + 1. That is, prove

(1+1)(1+l)(1+1)(1+1><1+l)...<l+i)=(k+1)+1
2 3 4 5 k+1
L.S. =(1+1)<1+1)(1+1>(1+1>(1+1) .......... <1+—1—)
2 3 4 5 k+1
=(1+1)(1+l)<1+l)(1+l)(1+1)...(1+l>(1+ ! )e
2 3 4 5 k k+1/)" |
the same as the L.S. of () multiplied on the right by(1+ ]1>'” ]
+

o)) e Do D 1)

=[k+1](1+%) by step 2
=([k+1]+[k+1]kT11)=(k+1+1)=k+2=R.S.

+1

Thus, by the principle of mathematical induction,

1+ 1)(1 + %)(1 + %)(1 +i)(l + %)(1 + %) =n+1,

forallneN. W

In Example 2 you will prove a true conjecture about question 8
of 9.1 Exercises.
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Solution

Example 3

Solution
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Use mathematical induction to prove that
3 2
+ .
f(n) = mron T an 3’; +2n is a natural number for all n € N.

Step 1: Prove the statement is true for n = 1.

3 2

Forn=1, f(1) = 1"+ 3(;) *2() _ g = 2, which is a natural
number. Thus, the statement is true for n = 1.

Step 2: Assume the statement is true for n = k. That is,

3 2
assume f(k) = w is a natural number.

Step 3: Prove the statement is true for n = k + 1. That is,

3 2
(k+1)"+3(k+1)"+2(k+1); - harural number.

prove f(k + 1) =

3
3 2 2
But f(k+1)=k + 3k +3k+1+3§k +2k+1)+2k+2
3 2 2
_k +3I; +2k+3k +39k+6=f(k)+k2+3k+2

From step 2 you know that f(k) is natural number. Also, because k is a
natural number, k* + 3k + 2 is also a natural number.

Thus, f(k) + k* + 3k + 2 = f(k + 1) is a natural number.

Thus, by the principle of mathematical induction,
3 2 )
f(n) = UL;H‘_E is a natural number foralln eN. W
The next example shows how to prove your true conjectures about
inequalities by studying the inequality of Example 3, section 9.1.

Use mathematical induction to prove that 2" <n! forn =>4, n€N.

This statement is not true for n = 1, 2, and 3 as you can easily check. So
step 1 must begin with n = 4.

Step 1: Prove the statement is true for n = 4.

Forn=4,LS.=2*=16, R.S.=41=(4)(3)(2)(1) =32.

Therefore L.S. < R.S., so the statement is true for n = 4.
Step 2: Assume the statement is true for n = k. That is, assume 2* < k! .
Step 3: Prove the statement is true for n = k + 1. That is, prove 2**' < (k + 1)!

But from step 2 you know that 2K < k!
Multiplying both sides by 2 gives 2! < 2(k!)
Sincek>4,2<k+1,s0 2(k)! < (k + 1)(k!) = (k + 1I)!

Thus, 2¢*! < (k + 1)!, as required by step 3.

Thus, by the principle of mathematical induction, 2" < n! for n>4,neN. B
Note: If the statement to be proved is not true for the first few natural
numbers, then step 1 must be done for the first number for which
the statement is true.
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9.3 Exercises

1. Use mathematical induction to prove that

(003

<1+2nn+ 1)_( + 1y

2. Use mathematical induction to prove that
forn= 2

(002 3)-

n+1

1
1-—)=
( n2> 2n

3. Use mathematical induction to prove that

(08

2n+ 1

(1 - (2.n£i 1)2) -

4. Use mathematical induction to prove that

each of the following is a natural number

for all n € N.
3_—
a) n(n + 1) <) n-n
2 6
S_
b) n(n+ 1)(n + 2) d) n n
6 5

5. Use mathematical induction to prove that

each of the following is a natural number,

provided # is an even natural number.
(hint: letn = 2m, m € N)

n+2n

3
a) b) n’+ 20n

48

6. Use mathematical induction to prove that
2">n* forn>4,neN.

7. Prove the following where n € N.

a) 3"<n! forn=7
b) 3">2"*! forn=2

o (5 <

8. Prove that (1 + x)" > 1 + nx for x > 0 and
n>1,xeR, neN.

for all n

9. Prove that (1 + x)" > 1 + nx + nx*forx > 0
andn>2,x€R, neN.

2n -1

10.

11.

12.

13.

14.

15.

17.

. Prove ————— Z

a) Show that
51=5x 5= 3 x5+ 2x5"
b) Use mathematical induction to prove

n n

that is a natural number

for all n € N.

Given a set of n points, no three of which
are collinear, prove that the number of line
segments that can be drawn joining these

points in pairs is n(n—Z—Q

[See question 14, 9.1 Exercises.]

Use mathematical induction to prove that
an n-gon has n(n42—32 diagonals.

[See question 15, 9.1 Exercises.]

Given a circle and a set of n chords of this
circle, show that the maximum number of
non-overlapping regions into which the

2
. .. . n+n+2
circle can be divided is ————

[See question 16, 9.1 Exercises.]

1
+ —=<n

Prove that "<
2 2"

LUR S
2 3 4

n-1
Prove that > k* <

k=1

4 n
no_x3
— <2k
4 k;

. Use mathematical induction to prove the

following.
2
a) Z k _ n(n + 1)
=12k — 1)2k+1) 22n+1)

6n° + 15n* + 10n> — n
30

b) Yk*=
k=1

Prove the following about matrix
multiplication.

2[5 3]0 ahrer
v [, 1‘]‘=[3 7]

it
k+ 1)k — 1)!

(n —k)'k' =T
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In Search of A Solution
to the Tower of Hanoi Problem

There is an interesting and challenging puzzle called the Tower of Hanoi.
The puzzle consists of three pegs and a set of graduated discs, as shown in
the figure.

The problem posed is to transfer the discs from any one peg to another peg
under the following rules.

1. Only one disc may be transferred at a time from one peg to another peg.
2. A larger disc may never be placed upon a smaller disc.

This problem can be solved using the principle of mathematical induction.
Indeed, you can use this principle to calculate the minimum number of
moves that would be needed for a given number # of discs.

Examine the problem for one disc, then for two discs, and finally for three
discs to get some idea of the pattern involved.

One disc It is clear that one disc can be transferred in one move.

Two discs  First transfer one disc leaving a peg free for the second disc.
You then transfer the second disc. Finally cover the second disc with the
first disc. This takes three moves.

Three discs  First transfer the top two discs as above in three moves. This
leaves a peg free for the third disc which is moved in one more move.
Then the top two discs can be transferred onto the third disc in three
moves, as above for two discs. This gives a total of seven moves.

The pattern for moving any number of discs is now clear. If you can
transfer k discs you can easily transfer k + 1 discs. First you transfer the k
discs leaving the (k + 1)th disc free to move to a new peg. Then the top k
discs can be moved onto the (k + 1)th disc. Thus, the problem can be
solved for any number of discs.

To determine the minimum number of moves needed to transfer n discs,
observe that no disc can be moved until all of the discs above it have been
transferred. Then a space is left free to which you can move that disc.
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Suppose the minimum number moves for k discs is m(k). To move the

(k + 1)th disc, you will need m(k) moves to the transfer the discs above it to
another peg. Then you can transfer the (k + 1)th disc to the free peg. Now,
to move the k discs over, to be on top of the (k + 1)th disc, will again take
m(k) moves.

Thus the total number of moves to transfer k + 1 discs is

m(k) + 1 + m(k), or 2m(k) + 1. That is, m(k + 1) = 2m(k) + 1.

To use mathematical induction to determine the minimum number of
moves for n discs you must now try to guess a formula for m(n).

The following table gives values of m(n) for n from 1 to 5.

n |1|2|3]| 45
m(n)| 1|3|7]|15|31

Adding a disc appears to ‘double’ the number of moves, so that this
sequence of numbers should be compared with the doubling sequence
1, 2, 4, 8, 16, 32. It appears that m(n) = 2" - 1.

A proof of this formula follows.
Step 1. The formula is true for n = 1 because 2' — 1 = 1 = m(1).
Step 2 Assume the formula is true for n = k.
Thus the minimum number of moves for k discs is 2* — 1.
Step 3 Prove the formula is true for n = k + 1, that is show that the
minimum number of moves for k + 1 discs is 2**! — 1.

Proof: You showed above that
m(k + 1) = 2m(k) + 1.
Using step 2, you can say that
mk+1)=22"-1)+1
=2""1-2+1
— 2k+1 -1

Hence, by the principle of mathematical induction, the minimum number
of moves needed to transfer n discs is 2" — 1.

Activity

Try the puzzle with three discs to see if you can match the minimum
number of moves. Then do the same for 4 and 5 discs.
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9.4 The Binomial Theorem

There is a very important and useful formula that involves the natural
numbers and the binomial (4 + x). This formula is called the
binomial theorem.

The formula gives a short cut for finding values of products such as
(@ + x)%, (a + x)?, (a + x)*, (a + x)°, and so on.

You may already know the following products.
(@a+x)*=(a+x)(a+x)=a*+ 2ax + x*
(@+xy=@+x)@+x)@+x)=a’>+3a*+3ax* +x

The binomial theorem is stated as follows.

(@ +x)"= C(n,0)a"x’ + C(n,1)a"'x' + C(n,2)a"*x* + C(n,3)a">x’

THEOREM +...+C(nna"x + ...+ C(nn-1)a'x"" + C(n,n)a’x",

wheren e N

n!

Note 1 The value of C(n,r) is
n-ntr

, where n! = n(n - 1)(n — 2)...(3)(2)(1).

2 The expansion of the product has n + 1 terms.

Example 1 Expand the product (a + x)".

Solution Use the binomial theorem

(@ +x)"= C(n,0)a"x’ + C(n,1)a" 'x' + C(n,2)a"*x* + C(n,3)a" x>
+...+Cnna"x + ...+ C(nn-1)a'x"" + C(n,n)a’x".

Here n = 4.
Thus,
(@ + x)* = C(4,0)a*x’ + C(4,1)a* 'x" + C(4,2)a* *x* + C(4,3)a* x> + C(4,4)a**x*
4!
Now C(4,0) = (4 - o)!0! =1 recall that 0! =1
c(4,1) = 4! =4x3x2x1=4
T@-1nr 3x2x1x1
Ca2)=— 2 _4x3x2x1_
@ -2m2! 2x1x2x1
c@a3)=—2 __
(4 -3)131
c@aa -2 _
(4 - 4)14!

Therefore, (a + x)* = a*x° + 4a’x' + 6a’x* + 4a'x® + 1a°*
=a*+4a’x + 6a*x* + 4ax> + x* M



402 Chapter Nine

Example 2

Solution

Pascal’s Triangle
Observe the coefficients of the expansion of (a + x)" forn =1, 2, 3, and 4.

value of n expansion of (a + x)" Pascal’s triangle
1 la' + 1x! 11
2 Ia* + 2ax + 1x* 121
3 1@’ + 3a’x + 3ax* + 1x° 1331
4 la* + 4a’x + 6a’x* + 4ax® + 1x* 14641

Note: In Pascal’s triangle, the numbers on the left and right of each row
are both 1. Each of the other numbers is the sum of the two numbers
on each side of it in the line above.

Thus, the next line in the triangle, corresponding to n = 5, will be
1,1+4,4+6,6+4,4+1,1 orl,5,10,10,5,1

Each line of Pascal’s triangle can also be written in terms of C(n,r).

C(1,0) €(1,1) For C(n,r)’s the note above
C(2,0) C(2,1) C(2,2) means that, for example,
C(3,0) C(3,1) €(3,2) €(3,3) C(4,2) = €(3,1) + C(3,2) and
C(4,0) C(4,1) C(4,2) C(4,3) C(4,4) C(3,1) = C(2,0) + C(2,1)

In general, the following is true: C(n + 1,r) = C(n,r — 1) + C(n,7)

You will be given the opportunity to prove this in the exercises that follow.
Expand (3m — Zyii"j

Since n = 6 the expansion you need is
(@ + x)® = C(6,0)a’x" + C(6,1)a*'x' + C(6,2)a**x* + C(6,3)a*’x’
+ C(6,4)a’*x* + C(6,5)a*°x* + C(6,6)a’°x°
where a = 3m and x = —2y. Thus,
(B3m + (=2y))° = C(6,0)(3m)*(~2y)° + C(6,1)(3m)*"'(=2y)" + C(6,2)(3m)**(-2y)*
+C(6,3)(3m)°(-2y)’ + C(6,4)(3m)**(-2y)*
+ C(6,5)(3m)*(=2y)° + C(6,6)(3m)*"(-2y)°
= 1(729)m® + 6(243)m>(-2)y + 15(81)m*(4)y*
+2027)m*(—8)y> + 15(9)m*(16)y* + 6(3)m*(—32)y’ + 1(1)(64)y*
=729m® — 2916m’y + 4860m*y* — 4320m>y>
+2160m*y* — 576my’ + 64y° W

Check that the value of the C(n,r)’s, make up line n = 6 of Pascal’s triangle.

Because the binomial theorem involves the natural numbers N, you can
prove the theorem using mathematical induction. The theorem will be
stated using the sigma notation X.

In proving the theorem you will make use of the formula
Cn+ 1,r)=C(n,r—-1)+C(n,r)
You will also use a property of the sigma notation about changing the

limits of sigma, namely,
m+d

m
zar = 2 arg4

r=t r=t+d
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Use mathematical induction to prove the binomial theorem

(@a+x)"= zc(n ra""x"

1
Step 1: Letn=1.L.S.= (a +x)', R.S. = > C(n,r)a’’x’, that is,
r=0

R.S.=C(1,0)a'x’ + C(1,1)a’' = la + Ix=a + x = L.S.
Step 2: Assume the formula is true for n = k.

k
Assume (a + x)* = Y C(k,na*"'x (&
r=0

Step 3: Prove the formula is true for n = k + 1, that is,
k+1

prove (a + x)**' = Y C(k + 1,r)a*"'~'x
r=0

But (a + x)**!
= (a + x)(a + x)*

=(a+x) lC(k ra*x"

= aZC(k,r)a" X+ x\ 2. C(k,r)a*"x"

r~0

= 2C(k a"x" + ZC(k ryax!

Now by changing the limits of the summation,
k+1

the second summation ZC(k r)a“”’x™*! can be written Y C(k,r — 1)a*"'x"
r=1
k+1 '
Thus (a + x)*"! = TC(k Na* "X + zC(k r—Da* "
r=0
In order to combine these two summations you must write each
summation so that each has the same limits. You can accomplish this by
removing the first term from the first summation and the last term from
the second summation.

(@ + x)**' = C(k,0)a*"'x° + ZC(k Na* " x" + ZC(k r— 1)a“"'x" + C(k,k)a’x**!
r=1
= C(k,0)a*"'x° + Y[C(k r) + C(k,r — 1)]a*"'x" + C(k,k)a’x*'

This expression may be simplified using the following facts.
1. C(k,0)=1=C(k + 1,0)
2. Ckky=1=C(k+1,k+1)
3. Ck,r)+ Clk,r —1)=C(k + 1,r)
k

@+ x)"" = Clk + 1,0)a"'x° + YC(k + 1,Na*""x" + Ck + 1k + 1)a’%*"!
r=1

This may be combined under one summation giving
k+1

(@a+x)*"' =Y C(k+ 1,/)a*"*'x"  which is what needed to be proven. W

r=0
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The term C(n,r)a"'x" is called the general term in the expansion of (a + x)".
You will find questions on the general term in the exercises.

Note that since C(n,r) = m___nn-lr=2)...(n-r+1)
(n—rn)irt r!
then C(n,0) = 1, C(n,1) = n, C(n,2) = ﬂﬁ”z—j—ll c(n,3) = ﬂ”;l%ﬁul y

Cin,n—1)=n,Cnn)=1

Hence an alternative form for the binomial theorem is
_ nn-1) ,_ nn—1)n-2) ,_
(a+x)"=a"+na"1x+—if2a"2x2+ " a4 ...

L = Dn = 2')' =t D) g 4 o nax ™ 4 X
r!

T'he Binomial Theorem for n not a Natural Number

The binomial theorem has been proven for # a natural number. A similar
result is true when # is not a natural number. In this case, however, there
are three important differences.

First, the alternative form of the expansion of (a + x)", with factorials,
must be used.

Second, instead of a series with a finite number of terms, you will have an
infinite series.

Thirdly, the expansion is true only for certain values of a and x. Indeed,
the expansion is true only for values of a and x such that -1 < X<l
a
The result (which will not be proven) is the following,
w'iere n € Rbutn ¢ N.
(a+x)"=

_ - _ - 1(n - _
a'x’ + na" 1x+ﬂ"2%)an 2X2+ﬂn__3¥_22a,, N+ o+ ..

N nn—-1mn-2)...(n—r+1)
r!

a"’x" + ...(an infinite number of terms)

Frequently this statement is written for a = 1 to give the following, where
neRbutnéNand -1 <x< 1.

(1+x)"=

1+ nx+ "(”2: 1_)x2+ nn - 13)'(" miz) IR

L= D = 2)" e mrt Doy .(an infinite number of terms)
r!
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. a) Write the rows of Pascal’s triangle for
n=1ton=8.

b) Evaluate 4! and 6!

c) Evaluate C(7,3).

d) Evaluate C(5,0), C(5,1), C(5,2), C(5,3),
C(5,4), C(5,5).

" e) Check that your answer for part d) is

the same as your answer for row n =5

in part a).
. Expand each of the following. Do not
simplify the C(n,r)’s.
a) @+x)* ¢) (@+x)* e) (@+x?®
b) @+x)° d) @+x) f) (@+x)’°

. Rewrite each part of question 2 by

substituting the values for the C(n,r)’s.

You may find these either by using the

formula C(n,r) = o or by using the
(n—n'r

appropriate row in Pascal’s triangle.

. Expand each of the following and simplify.

c) (m+7z2)>»
d) 2+x)°

e) (a+1)?®
f) 3-b)?

a) (a+y)’
b) (-

. Expand each of the following and simplify.

a) (a+2b)* c) 3-2m)’ e) (2x+3a)’
b) (3a+4b)*d) (da-5) f) (1-md°

. Find the first four terms in the expansion

of each of the following. Do not simplify.

a) @+bh* c¢) 3+x? e) 2m-3n»
b) (m - k)*® d) (4+2a)® f) (1+b*

. Expand.

Sy wed

6
. a) Find the general term for (x2 + l)
x

b) Find the term containing x’ in the
expansion of the binomial in part a).

c) Find the term containing x° in the
expansion of the binomial in part a).
This term is called the term
independent of x.

10.

11.

12.

13.

14.

15.

16.
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. Prove each of the following facts about the

relationship among an element of one row
in Pascal’s triangle and the elements above
it to the left and right.

a) C(4,2)=cC(3,1)+C(3,2)

b) C(8,5) = C(7,4) + C(7,5)

c) C(n+1,r)=C(nr—1)+C(n,r)

Show each of the following is true by
writing each sum explicitly. For example,

3
Sa,=a, +a,+ a;.

r=1

8 12 m+d
a) zar = zar—4
r=1 r=5

b) zar = 2 arq
r=t r=t+d
The first two terms in the expansion of
(3 + kx)” are 2187 + 20 412x.

Find the value of k.

By substituting a = x = 1 in the expansion
of (a + x)" show that

C(n,0) + C(n,1) + C(n,2) + C(n,3) + ...
+ C(n,n — 1) + C(n,n) = 2"

Use the expansion of (a + x)" to show that

C(n,0) — C(n,1) + C(n,2) — C(n,3) + ...
+ (-1)"C(n,n) = 0.

a) Find the first four terms in the
expansion of (1 + x)72.

b) Find the first four terms in the
expansion of (1 + x)i.

In your answers to question 14 a) and b),
give x the value 0.02. Simplify these
expressions to obtain approximate values
for (1.02)% and (1.02):. How do these
values compare with the values of (1.02)™
and (1.02)! found using the [y*] key of your
calculator?

a) Write a computer program for the
expansion of (a + x)", n € N.

b) Use your program to check your
answers for questions 2, 4, 5, and 6.

c¢) Adjust your program so that it will
handle the first few terms in the
expansion of (a + x)", n ¢ N.
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M A KI NG
Graph Theory

The graphs of graph theory are different from the graphs of lines,
parabolas, circles, etc, with which you are familiar. In graph theory a
graph is defined as a set of points called vertices, and a set of lines called
edges, that connect pairs of vertices. The figure shows several graphs.
Notice that the edges do not have to be straight lines.

AMARY

The systematic study of graph theory began in the 18th century with the
famous problems of the seven bridges of Koenigsberg, which you met in
the introduction to this chapter.

Graph theory is used extensively to solve problems involved in the
management of complex systems such as those in business and industry.
The following is a simple example.

PPP PP pPPP PP PPPPP pPPP PP
P P P P 13 13 P 3
pPpPPP ppPPPP PPP PP pPP PP

figure 1a figure 1b

The map in figure 1a shows a section of a city where there are two blocks
containing parking meters.

You are hired to find the most efficient route that a parking control officer

should travel (on foot) to check the meters. You must consider two things.

1. The parking control officer must patrol all of the meters without
retracing steps any more than is necessary.

2. The route should end at the same point it started, where the officer’s car
is parked.

To solve this problem you need to draw graphs. One such graph is
indicated in figure 1b. Notice that each street intersection is a vertex and
each sidewalk is an edge. Two possible routes covering this graph are
indicated in figure 2a and 2b. It is clear that figure 2b is a better solution
because it covers every edge (sidewalk) only once. A route that covers every
edge only once is called an Euler circuit, provided that the route starts and
finishes at the same vertex.

10=—
5—
{— <—9 11— 4——

att 20l e 8" 2@0?3 Is
<3 7= -7 = =6

figure 2a figure 2b
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One of the first discoveries made in graph theory was that there are some
graphs that do not have any Euler circuits. Two examples of such graphs
are shown in figure 3, where it is impossible to start at a vertex and return
to the same vertex unless you cover the same edge more than once.

c 7 G

E H

figure 3a figure 3b
Euler was able to determine the conditions under which a graph had an
Euler circuit. He used the concepts of valence and connectedness. The
valence of a vertex in a graph is the number of edges meeting at that point.
(Point A has valence 1, points C, D, G, and H have valence 2, while points
B, E and F have valence 3.) A graph is connected if every pair of vertices is
joined by at least one edge. The graph in figure 3a is not connected
because points A and C are not joined by an edge.

Euler proved that a graph G has an Euler circuit if and only if the
following two conditions are true.

1. G must be connected

2. Each vertex must have an even valence.

If you examine the graph for the parking control officer given above in
figure 1b, you will see that both of these conditions are fulfilled.

It is interesting to note that the graph of the seven bridges of Koenigsberg
does not have an Euler circuit. (See page 387.)

The following problems are among the many that can be solved using
graph theory.

Computers, radios and TVs make use of printed circuits. These circuits are
conductive paths on a sheet of nonconductive material. What conditions
must hold for such a circuit to be able to be printed on a single
nonconductive sheet?

A telephone company wishes to send long distance messages between
cities at the least possible expense in transmission and in the construction
of interconnecting telephone lines. What cities should be joined directly by
telephone lines? What path should a telephone signal take to travel from
city A to city B?

A salesperson must visit several cities always starting and ending at the
same city. What route should be taken so that the cost of the trip will be a
minimum?

What is the best way to prepare an airplane so that the airplane is on the
ground for the least amount of time? Remember that passengers and
baggage must be loaded and unloaded, the cabin must be cleaned, food
must be brought on board and the airplane must be refueled.
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Summary

® The inductive property of N: let T be a subset of the natural numbers N.
Then T is the entire setN, if and only if both of the following are true.
a) 1is amemberof T.

b) If kis a member of T, then k + 1 is also a member of T.
® The principle of mathematical induction: a statement involving the natural
number 7 is true for every n € N provided the following are true.
a) The statement is true forn = 1.
b) The truth of the statement for n = k implies the statement is true for
n=k+ 1.
® The three steps in a proof by mathematical induction.
Step 1: Show the statement is true for n = 1.
Step 2: Assume that the statement is true for n = k.
Step 3: Prove the statement is true for n = k + 1, using the result of step 2.

If the statement to be proved is not true for the first few natural numbers

then step 1 must be done for the first number for which the statement is

true.

¢ The principle of mathematical induction can only be used to prove a
given formula is true. The principle does not help you to obtain such a
formula. If a formula is not given you can try to guess a formula by
examining results for n = 1, 2, 3, and 4. When you guess a formula you
are making a conjecture.

® The binomial theorem for n € N:

(@ + x)"=C(n,0)a"x* + C(n,1)a"'x" + C(n,2)a" *x* + C(n,3)a">x’
+...4CnNa"xX + ...+ Cnn = Da'x"" + C(n,n)a’s"
nt _nmr-N1Hn-2)...n-r+1)
(n—r)!r! r!
2 The expansion of the product has n + 1 terms.
3 Using the sigma notation, the binomial theorem may be written

(a+x)"=>C(nnra"x
r=0

Note 1 The value of C(n,r) is

® Pascal’s triangle and the binomial theorem

value Pascal’s
of n expansion of (a + x)" triangle
1 la' + 1x!' 11 C(1,0) €(1,1)
2 1a* + 2ax + 1x 121 C(2,0) C(2,1) C(2,2)
3 1a® + 3a’x + 3ax* + 1x? 1331 C(3,0) C(3,1) C(3,2) C(3,3)
4 1a* + 4a’x + 6a>x* + 4ax® + 1x* 14641 C(4,0) C(4,1) C(4,2) C(4,3) C(4,4)

Note: In Pascal’s triangle, the numbers on the left and right of each row
are both 1. Each of the other numbers is the sum of the two numbers
on each side of its in the line above.

e C(n+ 1,r)=C(n,r— 1)+ C(n,r)
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Inventory

Complete each of the following statements.

1.

Step 1 in the principle of mathematical induction usually shows thata
statement is true for

. In step 2 in the principle of mathematical induction you assume that

the statement is true forn=______, then in step 3 you
the statement is true for n =

. Select the word in the bracket to make the statement true.

a) If aformula is true forn = 1, n = 2, and n = 3, then the formula is
(always, sometimes, never) true for all n € N.

b) If you assume that a formula is true for n = k and then are able to
prove that it is true for n = k + 1, then the formula is (always,
sometimes, never) true for all n € N.

. You conjecture that1 +3 + 5+ ... + 2n — 1) = n’.

a) Forn=1,theL.S. equals______,and the R.S. equals
b) Forn =k, theL.S.equals _______, and the R.S. equals
c) Forn=k+1,theL.S.equals_______, and the R.S. equals

. You conjecture that

e R e eee

a) Forn=1,theL.S.equals________, and the R.S. equals .
b) Forn=k, theL.S.equals_______,andtheR,S.equals .
c) Forn=k+1,theL.S. equals_______, and the R.S. equals
3 2
. You conjecture that f(n) = QBZ—‘FZ—n is a natural number for all
nenN.,

a) Forn = 1, the statement becomes
b) For n = k, the statement becomes
c¢) Forn =k + 1, the statement becomes

. You conjecture that 2" < n! forn =4, n €N.

a) For n = 4, the statement becomes
b) For n = k, the statement becomes
c¢) Forn =k + 1, the statement becomes

. In the expansion of (a + x)’, thereare ______ terms. Unsimplified,

these terms are

. Row n = 8 in Pascal’s triangle is

1 8 28 56 70 56 28 8 1
Therefore, row n =9 is
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Review Exercises

1. State the three steps in a proof using
mathematical induction.

2. Prove the following statements using
mathematical induction, where n € N.

a) 4+11+18+...+(7Tn—-3)= 5

b) 1+3+5+...+2n—-1)=n?
c) 142+4+...+2"'=2"-1
d) 12)+23B)+3@)+...+n(n+1)
_ nn+ 1)(n + 2)
3
e) 1(2) +2(4) +3(6) + ...
=n§n+1!§2n+lg
3
f) 1(2)3+2(3)4+3(4)5+...

+ n(2n)

n(7n + 1)

nn+ 1)(n+2)n+3)

+nn+1)(n+2)= 2

3. Conjecture and prove a formula for the sum of n

terms of the series
1+7+19+...+(Bn*-3n+1)

4. Prove the following statements using
mathematical induction, where n € N.
a) !, 1 TR
1x4 4x7 7x%10
+ 1 __n
Bn-2)3n+1) 3n+1
1 1 1
+ + +
I1x5 5x9 9x13
. 1 _ . n
(4n-3)4n+1) 4n+1
1 N 1 + 1 n 1
1xXx2 2X3 3x4 4x5
1 __n
n(n +1) n+1

1 1/ 1
—+——+ t==1--=
4) 3? 3" 2( )

e) 2(45 +1)=

b)

c)

5. Prove by mathematical induction

n
a) ZS _ ngn2+ 12
s=1

10.

11.

12.

13.

b "sz=ngn+ 1)(2n + 1)
) 2 6
c) is3=(_g_)nn+1 )2

s=1 2

. Prove the following by mathematical

induction

4+14+30+52+...+(3n* +n)=n(n+ 1)

. Prove by mathematical induction

1,5, 1 n+n-1
31 4! 5! (2n + 1)
_1_n+l1
T2 (n+2)

. Use mathematical induction to prove that

each of the following is true.

900D )

. Prove the following where n € N.

a) 2n<2"forn=3

b) (1.1)" =2

Where does mathematical induction fail
when you try to use it to prove that
100n < n? for all n € N?

Use mathematical induction to prove that
6n°+15n* +10n°> — n

30
for all n e N.

is a natural number

Use mathematical induction to prove that

n _ pAn
-4 is a natural number for all n € N.

a) Show that if you falsely assume that
1+5+9+...+(4n-3)=2n"-n+3
is true for n = k, then the statement is
also true forn =k + 1.

b) Is the formula true for n = 1? for all
n eN?



14.

15.

16.

17.

18.

19.

Suppose that n circles are drawn in a plane
so that each circle intersects all of the
others. No two circles are tangent. No three
circles pass through the same point. Prove
that the plane is divided into

n? — n + 2 non-overlapping regions.

Expand each of the following and simplify.
a) (a+x)?* c) 2+x)
b) (3a+b)’ d) 2k - 5m)°

Show that the formula
N+21+31+ ... +n=3"

is true forn=1,n=2,and n = 3.
Is the formula true for all n € N?

a) Turn back to the introduction to this
chapter on page 384. Read again about
the prince who had to open door after
door. Use mathematical induction to
prove that if the prince lived forever
then he would be able to continue
unlocking rooms.

b) Try to use mathematical induction to
convince the cow with the ladder that
she could climb the ladder to the moon,
and beyond the moon.

Use mathematical induction to prove that
a) (H11+ (2)2!+(3)3!1+ (@4l + ...

+ mnl=(n+1)! -1
b) (1)(2)+(2)3) + B3)@) + ...

@+ 1) = nn+ 1)(n+2)

3
c) l+l+i+...+l=l(1—l)
3.9 27 3" 2 3"
d)l+i+—l—+...+l=l<l—l)
5 25 125 5" 4 5"

Given 7 lines in a plane so that each line
intersects all the other lines but no three
lines are concurrent, show that the lines
divide the plane into

n+n+2 . .
~————= non-overlapping regions.
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. Use mathematical induction to prove that

each of the following is a natural number
foralln eN.
6" — 2" 7" =2" 8" — 3"
a b c) ——
) 4 ) 5 ) 5

. Three consecutive terms in the expansion

of (1 + x)" have coefficients 21, 35, and 35.
Find the value for n.

. Prove, by mathematical induction or

otherwise, that
d+x)"=1+ (")x+(">x2+

" 1 2
+ ( )x’ + ...+ x", where n is a positive

r

!
integer and for 0 <r <n, (n) - m
r ri(n — !

By using this result, or otherwise, and

taking (n) = 1 find the values of
n

o 3(1) v Seo(l) o 2(0)

(80 H)

23. i) The diagram represents a pile

of cylindrical logs; if there are n
logs in the lowest row, how many logs
are in the pile?

1__1 for all

r(r+1) Cror+1
positive r. Hence prove that

| n

ii) Show that

ar(r+1) n+1
iii) Assuming that >r* = %n(n + 1)@+ 1)
r=1

show that

S(r+1)t= %(n +1)(n + 2)(2n + 3) and

n-1
determine the value of X (r + 2)°

r=1

(82 SMS)



